<<

Lecture 11: ABC Theory and Feynman Diagrams

H. A. Tanaka Reminder

• Problem Set 2 due in Box 7 (basement) today by 1700. Today:

• Introduction into Feynman rules for a basic theory • We’ve already played around with Feynman diagrams • Start of the process to learn how to turn these into definite expressions for the amplitude of a process • This has been the missing ingredient in our study so far. • this will be the bulk of the rest of the class • Introduce the “ABC” theory • Realistic theory three species of scalar ( 0) particles (A, B, C) with an interaction • but it doesn’t correspond to any interaction/particles that we know of • we study it because it is particularly simple and allows us to study the “recipe” without too much mathematical complication. • We’ll see a “real” theory (QED) in the next chapter. Basic Review of Particle Dynamics Basic Review of Particle Dynamics • Interactions between particles are effected by the exchange of particles • All interactions are effected by the exchange of particles • Electromagnetic interactions are the result of the exchange of •betweenElectromagnetic electrically charged are the particles: result of the exchange of photons between charged particles

µ 0 µ 0 qq1 p1 =(p1, p1) p =(p , p ) EE== 1 ˆrˆr 3 3 3 RR22 FF== qq22EE qµ =(q0, q) q1 q2 q1 q2

µ 0 µ 0 p4 =(p4, p4) p2 =(p2, p2)

Thursday, February 4, 2010 3 TimeTime ordering ordering of of vertices vertices

+

t • The incorporates possible time orderings of particle exchange. • The “vertical” nature of the exchange is just to illustrate that the amplitude to • Feynman diagrams incorporate possible time orderings corresponding to the diagram is agnostic as to which “direction the exchange particle goes • The vertical exchange illustrates that the amplitude corresponding to the • In illustrating a process, we just “say” that this is the case. diagram is agnostic as to which “direction the exchange particle goes” • In the mathematical statement of the amplitude, the Feynman rules incorporate the possible orderings automatically. • The derivation of the Feynman rules through Quantum Theory includes• if we werethis into to derive consideration. them from QFT, we incorporate this in the derivation. Thursday, February 4, 2010 5 Components of a Feynman Diagram

• External Lines: • particles that come in and out in the initial and final state, respectively. • for spin-0, there is no factor. • Vertex factors: • each vertex (i.e. where A, B, C meet) has a factor. • determines “order” of diagram: order=number of vertices • Internal lines and : • Factors for internal particles exchanged between vertices • Only applies to particles “internal” to the diagram, not external lines • Conservation at vertex: • (4d) delta function at each vertex enforcing 4-momentum conservation • Integrals over internal momentum: • Internal lines have any momentum consistent with 4-momentum conservation B Basic Structure

TheoryExamples: of 3 “scalar” (spin 0) particles that are distinct with one interaction A, B, C are different types of particles A B B A Vertices C Vertex Internal line C External lines A B External lines

Thursday, February 4, 2010 8 MoreMore examples Examples

A A A C B B B A C C C B A A A B A C B B A C B A C A B

Thursday, February 4, 2010 9 Step The1 Feynman Calculus: Step I

• For a given process (e.g. A→B+C, A+C→A+C), specify the external lines: • For a given process (e.g. A!B+C, A+C!A+C), the particles specify the external lines:

B A C A ? ? A C C

Thursday, February 4, 2010 10 StepDiagrams 2: diagram and Order by “order”

• •IdentifyNow we all identifydiagrams all thatdiagrams contain that ≤N contain vertices, N wherevertices, N iswhere the order N is thewe orderwant towe calculatewant to thecalculate amplitude the amplitude to: to:

B A

C

• •CheckNote thatthat eachin order vertex to connect follows twothe vertexvertices, “rules” one has to “eliminate” one or two legs by connecting it to the other. • There are no second order diagrams for this process • There are no second order diagrams for this process

Thursday, February 4, 2010 11 Writing down the Amplitude (I)

• For each diagram, label the “flow” of momentum along each leg

p 3 3 StepWriting 3: Label down the2 the momentum Amplitude pflow, (I) vertex factorsp p 1 B p 1 • ForA each diagram, label the “flow” of energy momentum along each leg q q p1 3 3 p p 2 p p 2 pp 1 2 p p p p 3 CB 4 4 1

A q q p1 • Now we start writing down terms: 2 2 p p p p 3 C p • For each vertex, write down a factor of -ig 4 4 ig ( ig)2 ( ig)2 • Now we start writing down terms: • WeThursday, can February direct 4, 2010 the arrows in any way so long as we are consistent 13 • For each vertex, write down a factor of -ig • Introduce a factorig of (-ig) for each vertex.( (Feynmanig)2 rule (for igvertex))2

Thursday, February 4, 2010 13 Writing down the amplitude StepWriting 4: Propagators down the amplitude

• •ForFor each each internal internal line, line, write write a apropagation propagation factor: factor: i • Introduce a term for each internal line i q2q2 mm2c22c2 3 3 p 3 3 2 p p p 2 p p p p 1 1 BB p p 1 1 AA q q q q p1p1 2 2 2 p p p p 2 p p p p p 3 C p 3 C 4 4 4 4 2 i i 2 i 2 2 i ( (igig) ) ( (igig) ) 2 ( ig) q2 2 m c22 2 ( ig) 2 2 22 q mB c q q2 mmBc c2 B B

• Note that we have to use the momentum we assigned to the line!

Thursday, February 4, 2010 14 Thursday, February 4, 2010 14 4-momentum conservation 4-momentum conservation Step 5: energy-momentum conservation • For each vertex, write a delta function to enforce 4-momentum conservation • For each vertex, write a delta function to enforce 4-momentum conservation • Introduce• + if “into” a delta the vertex,function - enforcingif “out of” 4-momentumthe vertex conservation at each vertex • + if “into” the vertex, - if “out of” the vertex p 3 3 2 p p 3 3 p 1 p 2 p p p B 1 p 1

B p A 1 q

A q q

p1 q p 1 p 2 p 2 2 p p p p 3 C 2 p p 4 4 p 3 C p 4 4 4 4 2 i 2 i ( ig) (2⇥) (p1 p2 p3) ( ig) i ( ig) ⇥ 4 4 q22 m2 c2 22 i2 2 ( ig) (2⇥) (p1 p2 p3) ( ig) B ( ig)q mBc 2 2 2 2 2 2 ⇥ 44 q mBc 44 q m c (2⇥) (p1 p3 q) (2⇥) (p p Bq) ⇥ 4 4 4 4 1 4 (2⇥4) 4 (p1 p3 q) ⇥ (2⇥4) 4 (p1 p4 q) ⇥(2⇥) (p2 p4 +q) (2⇥) (p p + q) 4 4 ⇥ 4 4 2 3 ⇥ (2⇥) (p2 p4 + q) ⇥ (2⇥) (p p + q) ⇥ ⇥ 2 3

Thursday,• convention:February 4, 2010 momentum in/out of vertex is (+/-) 15 Thursday, February 4, 2010 15 Integration4-momentum over conservationInternal Momenta 1

Step 6: integrate over internal momenta:1 • For• For each each internal vertex, line, write write a delta down function a factor to of: enforce 4-momentumd4q conservation (2)4 • Introduce• where• + if “into”q an is integralthe the 4-momentum vertex, over the- if “outmomentum of thatof” theparticle vertexof each internal line: • integral over each such 4-momenta 3 3 3 3 p p 2 p p p 2 p p 1 p B 1 p B p 1

1 A

A q q q p1 q p 1 2 2 2 p p p p C 2p p p 3 p p p 4 4 3 C 4 4 4 4 ( ig) (2⇥) (p1 p2 p3) 4 4 2 i 2 i ( ig⇥) (2⇥) (p1 p2 p3) ( ig) 1 i 2 2 2 4( ig) 22 2 2 ⇥ q mBc d q( ig)q m c 1 4 2 i 4 2 B2 2 4 4 (2⇥) q mBc 4 d q( ig) 2 2 2 4 4 (2⇥) (2⇥)q (p1m cp3 q) (2⇥) 4 (4p1 p4 q) ⇥ B ⇥ (2⇥) (p1 p4 q) 4(24⇥)44(p p + q) ⇥ 4 4 (2⇥) (p1 p23 q4) (2⇥) 4 (4p2 p3 + q) ⇥ ⇥ ⇥ (2⇥) (p2 p3 + q) (2⇥)44(p p + q) ⇥ ⇥ 2 4 Thursday, February 4, 2010 15 Thursday, February 4, 2010 16 4-momentumIntegration over conservation Internal Momenta 2 Step 7: perform the integral •• ForIntegrate each vertex,over each write internal a delta 4-momenta function to enforce 4-momentum conservation • Perform• + if “into” the integrals,the vertex, leaving - if “out a δof” function the vertex for overall 4-p conservation

3 33 p 3 2 p p pp p 2 p1 p 1 BB pp 1 1 AA q q q p q p11 2 p 2 p 2 p p 2 p p3 C p p p 3 C p4 4 4 4 ( ig) (2⇥)4 4(p p p ) 4 4 1 2 3 2 i 2 i ( ig) ⇥(2⇥) (p1 p2 p3) ( ig) ( ig) ⇥ i q2 m2 c2 q2 im2 c2 ( ig)2 B ( ig)2 B 4 42 2 2 4 4 2 2 2 (p4(2⇥)p2) (p1 m pc3 q) (2⇥) (p(3p p2p) qm) c ⇥ B 1 4 B 4 4 4 4 ⇥ 4 4 4 (2⇥) (p1(2⇥)p3 (pp24 + pp42)+ q) (2⇥(2)⇥) (p1(p p3p +p4q+) p2) ⇥ ⇥ ⇥ ⇥ 2 3

Thursday, February 4, 2010 15 Thursday,• FebruaryIn lowest 4, 2010 order calculations, each integral will meet with a delta function. 17 4-momentumCancel the overall conservation delta function Result: Result:• For each vertex, write a delta function to enforce 4-momentum conservation • Eliminate the overall delta function (along with the (2")4): • Eliminate• + if “into” the the δ function, vertex, - andif “out the of” Resulting the vertex expression is -iM • The result is equal to -iM 3 3 3 p 3 p 2 p p p p 2 p1 p B 1 p 3 B p1 3 p

p 1

2 p A p 1

A q

p q

B q q p1 1 p A 1 2 p q 2 2 p p p q p p C 2 p 3 p p p 4 1 3 C p4 4 4 p 2 p 2 p p p (4 ig4 ) 3 C i i 2i 2 i 4 ( ig) (2⇥) (p1 p2 p3) 2 ( ig) 4 2( ig) ( ig) 2 2 2 ( ig) 2 2 22 ⇥ 2q m2 B2c (p pq )2 mmc c2 (p4 p2) mBc 3 2 B B ( ig) 4 4 i 4 4 i 2 (2⇥) (p1 p3 q) ( ig(2)2⇥) (p1 p4 q) ( ig)⇥ 2 2 2 ⇥ 2 2 2 (p4 4 p42) m c (p434 p2) mBc (2⇥) (p2 p4B+ q) (2⇥) (p2 p3 + q) ⇥ ⇥ = g g2 g2 M = = 2 2 2 2 2 2 Thursday, February 4, 2010 M (p4 p2) m c M (p3 p2) mBc 15 Thursday, February 4, 2010 B 18 These amplitudes must be added

Thursday, February 4, 2010 19 DecayDecayDecayDecay RateRate RateRate ofof AA !of→of B+CB+CAA!!B+CB+C

•• RecallRecall•• RecallourRecallour formulaformula ourour formulaformula forfor thethe for fortwo-bodytwo-body thethe two-bodytwo-body decaydecay decayofofdecay aa particle:particle: ofof aa particle:particle:

SS 2 S= 2 2 p = = 2 p p22 288mm21cc |M|2 | | 8m1c |M|1 |M|| | | |

•• NowNow• •thatthatNowNow wewe thatthat cancan wewe calculatecalculate cancan calculatecalculate thethe amplitude,amplitude, thethe amplitude,amplitude, wewe cancan wewe finishfinish cancan ourour finishfinish calculation:calculation: ourour calculation:calculation:

1 2 1= 1 2 g2 p = = g 2 pg pB/CB/C 288mm2Acc B/C | | 8mAc A | || |

•• from from• •PS PSfromfrom 2 2 PSPS 22

c cc 4 4 4 2 2 2 2 2 2 ppB/C == 4 mm44A++mm44B ++mm4C2 222mm2Amm2B2 222mm2Amm2C2 222mm2Bmm2C pB/C |=B/C | 2mmAA+ mBA + mCB 2mCAmB A2mBAmC A2mCBm C B C | || 2m|A 2mA

Thursday, February 4, 2010 20 Thursday, FebruaryThursday, 4, 2010 February 4, 2010 20 20 ScatteringScatteringScatteringScattering rate raterate rate of ofof ofA+A A+AA+A A+A!!!C+CC+CC+CC+C in inin CMin CMCM CM Frame FrameFrame Frame ScatteringScattering rate rate of of A+A A+A!!→C+CC+C in in CM CM Frame Frame

• From the textbook (6.47): • From•• •FromFromFrom the thethe thetextbook textbooktextbook textbook (6.47): (6.47):(6.47): (6.47), assume M=MA=MC, MB = 0 • From the textbook (6.47):2 2 22 2 22 p d⇥dd⇥⇥ ccc S SS 2 pfppff d⇥= = c 2 |M|S |M| 2| ||| f || d⇥== c S|M||M|2 22| p|f ddd =888 (E(1(EE+11 E++2EE) 22))2pi pp| ii | d 8⇥ ⇥⇥ (E1 +|M|E2) 2|pi | d 8⇥ (E1 + E2|) ||| p||i ⇥p3 | | p3pp33 2 1 11 1 11 = =g=2 gg22 1 + ++ 1 p3 = g 2 2 221 2 22 22 + 2 221 2 22 22 p1pp11 p2pp22MMM = g(p4((pp44 p2)pp22))2 m mmc2Bcc2 (p+3((pp33 p2)pp22))2 m mmc2Bcc2 p1 ### p2 M (p4 p2) 2BmBB2c 2 (p3 p2) 2BmBB2c⇥ 2⇥ p1 # p2 M (p4 p2) m c (p3 p2) m c⇥⇥ # B B ⇥ p4ppp444 p4 2 22 2 22 22 2 222 22 2 22 22 2 22 22 2 22 (p4((pp44p2)pp22=))2 m== mmc2C+cc2 m++mmc2Acc2 2p422pp4p42 pp=22 m== mmc2C+cc2 m++mmc2Acc2 2((2((2((E/cE/cE/c) ))2 p ppp4 2)pp22)) (p4 p2) 2= CmCCc2 +2 AmAAc2 22p·4 ··p2 = CmCCc2 +2 AmAAc2 22((E/c) 24p·44 ··p2) (p4 p2) = mC c + mAc 22p·4 22 p22 =2m22C c22 + mAc2 222((E/c) p4· p2) =m== mmc2C· +cc2 m++mmc2Acc2 2((2((2((E/cE/cE/c) ))2 pf ppff pi ppcosii coscos)· )) = CmCCc2 +2 AmAAc2 22((E/c) 2|||p|·|f |·||·||pi ||cos ) = mC c + mAc 2((E/c) | p|·|f p|i cos ) 2 22 2 22 22 2 222 22 2 22 22 2 22 22 |2 22|·| | (p3((pp33p2)pp22=))2 m== mmc2C+cc2 m++mmc2Acc2 2p322pp3p32 pp=22 m== mmc2C+cc2 m++mmc2Acc2 2((2((2((E/cE/cE/c) ))2 p ppp3 2)pp22)) (p3 p2) 2= CmCCc2 +2 AmAAc2 22p·3 ··p2 = CmCCc2 +2 AmAAc2 22((E/c) 23p·33 ··p2) (p3 p2) = mC c + mAc 22p·3 22 p22 =2m22C c22 + mAc2 222((E/c) p3· p2) =m== mmc2C· +cc2 m++mmc2Acc2 2((2((2((E/cE/cE/c) +))2 ++pf ppff pi ppcosii coscos)· )) = CmCCc2 +2 AmAAc2 22((E/c) 2+| ||p|·|f |·||·||pi ||cos ) m mm=A m== mm=C m,== m,m, m m m=0B =0=0 = mC c + mAc 2((E/c) +| p|·|f p|i cos ) AmAA = CmCC = m,B mBB =0 | |·| | mA = mC = m, m2B 22=02 222 22 2 22 2 22 2 22 (p ((pp44p )pp22=2))2 =2=2m mmc2 cc2 2((2((2((E/cE/cE/c) ))2 p ppcos2 coscos)=)=)=2 p22 pp(12 (1(1coscoscos) )) 4(p4 2p2) 2=2m c2 2 2((E/c) 2 p cos2 )= 2 p (12 cos ) (p4 p2) =2mc 2((E/c)||||| |p|| cos )= | |||2| |p|| (1 cos ) 2 22 2 222 22 2 22 2 22 2 22 (p ((pp33p )pp22=2))2 =2=2m mmc2 cc2 2((2((2((E/cE/cE/c) +))2 ++pppcos|2 |coscos)=)=)=2 p22 pp(1|2 +(1|(1 cos + + cos cos) )) 3(p3 2p2) 2=2m c2 2 2((E/c) +2 p cos2 )= 2 p 2(1 + cos ) (p3 p2) =2mc 2((E/c)| +|||| |p|| cos )= | ||2|| p||| (1 + cos ) Thursday,Thursday, FebruaryFebruary 4,4, 20102010 2121 Thursday,Thursday, February February 4, 2010 4, 2010 | | | | 21 21 Thursday, February 4, 2010 21 ToTo thethe end:end: ToTo To thethe the end:end: end: Endgame

22 1 11 1 11 2 2 ==gg 1 ++1 = g2= g 1 22 + + 1 22 = g2 MM 2 2 22pp (1(1+ coscos))2 2 22pp (1(1 + + cos cos)) M=Mg 2 p2 p(1(1cos|| |cos|)+) 2 p2 p(1 +(1 cos| +| | cos|) ) ⇥⇥ M 2p| 2|(1| | cos) 2 p| 2|(1| | + cos ) ⇥ ⇥ | | 22 | | 22 ⇥ 2 22 22pp (1(1 + + cos cos2))2 22pp (1(1 coscos)) 22 p=2 pg(1 +(1 cos + cos) )2 p2 p(1 (1coscos) ) 2 2 p 2=(1g + cos|| ||) 2 p424(1 cos||22||) = g2=g2 p| |(1| | + cos )4 424pp|p |(1(1|(12| coscoscos))) = g | | 44p (1 | cos|2 ) 4 p42 (1 cos|| 2|| ) 2 4 p| gg|(1|2 | cos ) 2 g | | g2 == 2 = = g 2 22 2 = 2 2 2 pp sinsin = p2psin2sin|| || p| 2||sin| | | 2 2 2 22 p dd⇥⇥2 cc 2 2SS p pff d⇥ d⇥ c 2c= S S 2 p f || || d⇥ =c =S 2 p|M||M|f| | 22 SS=1=1//22,E,E11==EE22,, pp == ppii d⇥ = cdd S88|M| |M|((EE|1f2++|EE2)) ppSi =1/2,E1 = E2, p = pffi =d 8 |M|(E1 + E2|2)1 | pi 2 S =1i /2,E1 = E2, pf =f pi|| || || || d 8 (E1 +⇥E⇥2)2 pi S =1|| |/|2,E1 = E2, p| f ||= |p| i | | d 8⇥ (⇥E1 + E2) p| i | | | | | | ⇥ | | | | | | 22 44 dd⇤⇤ 2112 cc 4 gg d⇤ 1 2c 4 g d⇤ 1 c== g4 2 d⇤ =1= dc 2 8⇥ g 222 22 2 22 =d 2d 8⇥ 2 82⇥ 22 (2(22E2E p2p sin2sin )) d= 2 8⇥ (2E(22 Ep⇥⇥2 psin2sin|)2| ||) d 2 8⇥⇥ (2⇥E2 p| 2||sin| )2 ⇥ | |

Thursday,Thursday, February February 4, 4, 2010 2010 2222 Thursday, February 4, 2010 22 Thursday, February 4, 2010 22 Thursday, February 4, 2010 22