Web Applications

Total Page:16

File Type:pdf, Size:1020Kb

Web Applications INFORMATION TECHNOLOGY 402 NAME :________________________________ CLASS/ SEC :______________ ROLL: _____ SESSION :_____________________________ QUOTE :_______________________________ _______________________________________ WEB APPLICATIONS 1. Browser It is a software which is used to navigate the World Wide Web. 2. Web Client It is a software that communicates with a web server, using Hypertext Transfer Protocol (HTTP). 3. Server It is a software that uses HTTP (Hypertext Transfer Protocol) to serve the files to the web client in response to their requests. It is classified into many categories some of which are Mail Server, Web Server, Application Server etc. 4. Port It is the part of Server which listens to the client’s request. 80 is the accepted standard for the HTTP protocol. 5. Web Applications It is a computer software which a web client runs in a browser using internet. 6. Web resource It is the data or information which is available on the Internet. Some examples are web pages, e-mail, information from database etc. 7. Request It is the query sent by the client to the server to fetch information. Most commonly used request methods are GET and POST. SHEIKH ABDULLAH Page 1 INFORMATION TECHNOLOGY 402 The difference between these request methods are: GET POST remains in the browser history do not remain in the browser history can be bookmarked cannot be bookmarked should never be used for sensitive data may be used for sensitive data transfer GET requests have length restrictions have no restrictions on data length 8. Response It is the relevant information given by Server to the Client in response to a request. It may be either a. Static: It is the web resource which remains unchanged during response. Example: Username. b. Dynamic: It is the Web resource which changes on the fly during response. Example: System time. 9. Protocol It is the agreed upon method of information transfer. Often they are also referred to as schemes, however there is a difference. Few common protocols include: a. Hyper Text Transfer Protocol (HTTP) works as a request-response protocol between a client and server. It is used to view websites. b. Simple Mail Transfer Protocol (SMTP) is a set of rules for sending and receiving emails. c. File Transfer Protocol (FTP) is used to access and transfer files. d. Transmission Control Protocol (TCP) uses a set of rules for communication between computers at Information Packet Level. e. Internet Protocol (IP) uses a set of rules for communication between computers at Internet Address Level. SHEIKH ABDULLAH Page 2 .
Recommended publications
  • An Empirical Study of Web Resource Manipulation in Real-World Mobile
    An Empirical Study of Web Resource Manipulation in Real-world Mobile Applications Xiaohan Zhang, Yuan Zhang, Qianqian Mo, Hao Xia, Zhemin Yang, and Min Yang, Fudan University; Xiaofeng Wang, Indiana University, Bloomington; Long Lu, Northeastern University; Haixin Duan, Tsinghua University https://www.usenix.org/conference/usenixsecurity18/presentation/zhang-xiaohan This paper is included in the Proceedings of the 27th USENIX Security Symposium. August 15–17, 2018 • Baltimore, MD, USA ISBN 978-1-939133-04-5 Open access to the Proceedings of the 27th USENIX Security Symposium is sponsored by USENIX. An Empirical Study of Web Resource Manipulation in Real-world Mobile Applications Xiaohan Zhang1,4, Yuan Zhang1,4, Qianqian Mo1,4, Hao Xia1,4, Zhemin Yang1,4, Min Yang1,2,3,4, Xiaofeng Wang5, Long Lu6, and Haixin Duan7 1School of Computer Science, Fudan University 2Shanghai Institute of Intelligent Electronics & Systems 3Shanghai Institute for Advanced Communication and Data Science 4Shanghai Key Laboratory of Data Science, Fudan University 5Indiana University Bloomington , 6Northeastern University , 7Tsinghua University Abstract built into a single app. For the convenience of such an integration, mainstream mobile platforms (including Mobile apps have become the main channel for access- Android and iOS) feature in-app Web browsers to run ing Web services. Both Android and iOS feature in- Web content. Examples of the browsers include Web- app Web browsers that support convenient Web service View [9] for Android and UIWebView/WKWebView for integration through a set of Web resource manipulation iOS [8, 10]. For simplicity of presentation, we call them APIs. Previous work have revealed the attack surfaces of WebViews throughout the paper.
    [Show full text]
  • Creating Dynamic Web-Based Reporting Dana Rafiee, Destiny Corporation, Wethersfield, CT
    Creating Dynamic Web-based Reporting Dana Rafiee, Destiny Corporation, Wethersfield, CT ABSTRACT OVERVIEW OF SAS/INTRNET SOFTWARE In this hands on workshop, we'll demonstrate and discuss how to take a standard or adhoc report and turn it into a web based First, it is important to understand SAS/INTRNET software and its report that is available on demand in your organization. In the use. workshop, attendees will modify an existing report and display the results in various web based formats, including HTML, PDF Three components are required for the SAS/INTRNET software and RTF. to work. INTRODUCTION 1) Web Server Software – such as Microsoft’s Personal To do this, we’ll use Dreamweaver software as a GUI tool to Web Server/Internet Information Services, or the create HTML web pages. We’ll use SAS/Intrnet software as a Apache Web Server. back end tool to execute SAS programs with parameters selected on the HTML screen presented to the user. 2) Web Browser – Such as Microsoft’s Internet Explorer or Netscape’s Navigator. Our goal is to create the following screen for user input. 3) SAS/INTRNET Software – Called the Application Dispatcher. It is composed of 2 pieces. o SAS Application Server – A SAS program on a Server licensed with the SAS/INTRNET Module. o Application Broker – A Common Gateway Interface (CGI) program that resides on the web server and communicates between the Browser and the Application Server. These components can all reside on the same system, or on different systems. Types of Services 1) Socket Service: is constantly running, waiting for incoming Transactions.
    [Show full text]
  • Pushing Data in Both Directions with Websockets, Part 2
    Menu Topics Archives Downloads Subscribe Pushing Data in Both CODING Directions with WebSockets, Part 2 Pushing Data in Both Directions Message Processing Modes with WebSockets, Part 2 Path Mapping Deployment of Server Using WebSockets’ long-lasting Endpoints connections to build a simple chat app The Chat Application by Danny Coward Conclusion January 1, 2016 Learn More In Part 1 of this article, I introduced WebSockets. I observed that the base WebSocket protocol gives us two native formats to work with: text and binary. This works well for very basic applications that exchange only simple information between client and server. For example, in the Clock application in that article, the only data that is exchanged during the WebSocket messaging interaction is the formatted time string broadcast from the server endpoint and the stop string sent by the client to end the updates. But as soon as an application has anything more complicated to send or receive over a WebSocket connection, it will find itself seeking a structure into which to put the information. As Java developers, we are used to dealing with application data in the form of objects: either from classes from the standard Java APIs or from Java classes that we create ourselves. This means that if you stick with the lowest-level messaging facilities of the Java WebSocket API and want to program using objects that are not strings or byte arrays for your messages, you need to write code that converts your objects into either strings or byte arrays and vice versa. Let’s see how that’s done.
    [Show full text]
  • Modern Web Application Frameworks
    MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY Û¡¢£¤¥¦§¨ª«¬­Æ°±²³´µ·¸¹º»¼½¾¿Ý Modern Web Application Frameworks MASTER’S THESIS Bc. Jan Pater Brno, autumn 2015 Declaration Hereby I declare, that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or ex- cerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Bc. Jan Pater Advisor: doc. RNDr. Petr Sojka, Ph.D. i Abstract The aim of this paper was the analysis of major web application frameworks and the design and implementation of applications for website content ma- nagement of Laboratory of Multimedia Electronic Applications and Film festival organized by Faculty of Informatics. The paper introduces readers into web application development problematic and focuses on characte- ristics and specifics of ten selected modern web application frameworks, which were described and compared on the basis of relevant criteria. Practi- cal part of the paper includes the selection of a suitable framework for im- plementation of both applications and describes their design, development process and deployment within the laboratory. ii Keywords Web application, Framework, PHP,Java, Ruby, Python, Laravel, Nette, Phal- con, Rails, Padrino, Django, Flask, Grails, Vaadin, Play, LEMMA, Film fes- tival iii Acknowledgement I would like to show my gratitude to my supervisor doc. RNDr. Petr So- jka, Ph.D. for his advice and comments on this thesis as well as to RNDr. Lukáš Hejtmánek, Ph.D. for his assistance with application deployment and server setup. Many thanks also go to OndˇrejTom for his valuable help and advice during application development.
    [Show full text]
  • 1. Plugin Framework Documentation
    1. Plugin Framework Documentation . 3 1.1 Writing Atlassian Plugins . 6 1.1.1 Creating your Plugin Descriptor . 8 1.1.2 Plugin Module Types . 16 1.1.2.1 Component Import Plugin Module . 16 1.1.2.2 Component Plugin Module . 20 1.1.2.3 Module Type Plugin Module . 23 1.1.2.4 Servlet Context Listener Plugin Module . 29 1.1.2.5 Servlet Context Parameter Plugin Module . 32 1.1.2.6 Servlet Filter Plugin Module . 34 1.1.2.7 Servlet Plugin Module . 38 1.1.2.8 Web Item Plugin Module . 41 1.1.2.9 Web Resource Plugin Module . 50 1.1.2.10 Web Section Plugin Module . 56 1.1.3 Adding Plugin and Module Resources . 64 1.1.4 Supporting Minification of JavaScript and CSS Resources . 70 1.1.5 Adding a Configuration UI for your Plugin . 73 1.1.6 Ensuring Standard Page Decoration in your Plugin UI . 75 1.1.7 Using Packages and Components Exposed by an Application . 77 1.1.8 Running your Plugin in the Reference Implementation . 79 1.1.9 OSGi, Spring and the Plugin Framework . 89 1.1.9.1 Behind the Scenes in the Plugin Framework . 94 1.1.9.1.1 Going from Plugin to OSGi Bundle . 94 1.1.9.1.2 Lifecycle of a Bundle . 95 1.1.9.1.3 Automatic Generation of Spring Configuration . 96 1.1.9.2 Converting a Plugin to Plugin Framework 2 . 98 1.1.9.3 OSGi and Spring Reference Documents . 99 1.2 Embedding the Plugin Framework .
    [Show full text]
  • Ajax (In)Security
    Ajax (in)security Billy Hoffman ([email protected]) SPI Labs Security Researcher Overview • Architecture of web applications • What is Ajax? • How does Ajax help? • Four security issues with Ajax and Ajax applications • Guidelines for secure Ajax development Architecture of Web Applications Traditional Web Application Browser receives input from user Uses JavaScript for simple logic and optimizations Sends HTTP request across the Internet Server processes response Backend logic evaluates input (PHP, ASP, JSP, etc) Possibly access other tiers (database, etc) Resource is returned to user Problems with Traditional Web Apps Case Study: MapQuest Reducing the Long Wait • These long pauses are very noticeable • Regular applications don't with the user this way • Reducing the delay between input and response is key – Request is a fixed size – Response is a fixed size – Network speed,latency is fixed – Server processes relatively fixed • Trick the user with better application feedback • This is what Ajax does What is Ajax? Asynchronous JavaScript And XML JavaScript takes on a larger role Send HTTP request Provides immediate feedback to user Application continues to respond to user events, interaction Eventually processes response from server and manipulates the DOM to present results Providing a Rich User Experience Case Study: Google Maps More information on Ajax • Use XmlHttpRequest Object • Sends any HTTP method – Simple: GET, POST, HEAD – WebDav: COPY, DELETE • Limited to where JavaScript came from (hostname, port) • Fetch any kind of
    [Show full text]
  • Attacking AJAX Web Applications Vulns 2.0 for Web 2.0
    Attacking AJAX Web Applications Vulns 2.0 for Web 2.0 Alex Stamos Zane Lackey [email protected] [email protected] Blackhat Japan October 5, 2006 Information Security Partners, LLC iSECPartners.com Information Security Partners, LLC www.isecpartners.com Agenda • Introduction – Who are we? – Why care about AJAX? • How does AJAX change Web Attacks? • AJAX Background and Technologies • Attacks Against AJAX – Discovery and Method Manipulation – XSS – Cross-Site Request Forgery • Security of Popular Frameworks – Microsoft ATLAS – Google GWT –Java DWR • Q&A 2 Information Security Partners, LLC www.isecpartners.com Introduction • Who are we? – Consultants for iSEC Partners – Application security consultants and researchers – Based in San Francisco • Why listen to this talk? – New technologies are making web app security much more complicated • This is obvious to anybody who reads the paper – MySpace – Yahoo – Worming of XSS – Our Goals for what you should walk away with: • Basic understanding of AJAX and different AJAX technologies • Knowledge of how AJAX changes web attacks • In-depth knowledge on XSS and XSRF in AJAX • An opinion on whether you can trust your AJAX framework to “take care of security” 3 Information Security Partners, LLC www.isecpartners.com Shameless Plug Slide • Special Thanks to: – Scott Stender, Jesse Burns, and Brad Hill of iSEC Partners – Amit Klein and Jeremiah Grossman for doing great work in this area – Rich Cannings at Google • Books by iSECer Himanshu Dwivedi – Securing Storage – Hackers’ Challenge 3 • We are
    [Show full text]
  • Ftp Vs Http Protocol
    Ftp Vs Http Protocol Unilobed Bentley unstrings reportedly while Durand always waul his stigmatists lull remittently, he dozing so asymmetrically. When Stuart ad-lib his ageings bumble not centrically enough, is Bryant definite? Jerold often appraised wearily when corruptible Tomlin blackouts balefully and expiate her Libyan. FTP stands for File Transfer Protocol used to transfer files online. To ensure the functionality of the Sophos Web Appliance, configure your network to allow access on the ports listed below. Syntax error in any data since a time when and passive mode, when a tcp connection and get closed prematurely or http or other end the parent directory. What is File Transfer Protocol FTP What she My IP Address. Why FTPFTPSSFTP file transport related protocols are not mentioned but used HTTPS As did general concepts PUTGET are more FTP related requests. Using ftp protocol relatively easy to the protocols can just serve other. The ftp vs protocol, not to the protocol. Expand your ftp vs https protocols offer the size can use in the server needs to the latest version. This ftp vs http is specifically remember the protocols with ftps: it is not at once authenticated and services similar. Rfcs are ftp protocol at this https protocols in the ass with. Smtp server ftp protocol runs on http does it has rules to https because data packets are on. To begin a characterbased command session on a Windows computer, follow these steps. The web server sends the requested content really a response message. XML and JSON and learned that kid are custom data formats indeed.
    [Show full text]
  • Security Guide Release 21.0.2 F10645-01
    1[Oracle®] AutoVue Client/Server Deployment Security Guide Release 21.0.2 F10645-01 October 2018 Oracle® AutoVue Client/Server Deployment Security Guide Release 21.0.2 F10645-01 Copyright © 1999, 2018, Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
    [Show full text]
  • Oracle Communications Converged Application Server Datasheet
    ORACLE DATA SHEET Oracle Communications Converged Application Server Oracle Communications Converged Application Server is the industry’s most widely used, fastest and most powerful converged Java EE-SIP-IMS application server, delivering a carrier-grade, open, standards-based development and deployment platform for next-generation and enterprise communications applications. As the foundation for several Oracle service delivery products, it is proven to dramatically lower the cost and time of developing and deploying converged Web-telecom applications for communication service providers, enterprises, and contact centers. KEY FEATURES Migration to Communications Application Platforms • Converged Web-telecom application container based on SIP Servlet, IMS, With the explosive proliferation of IP devices such as smartphones, tablets, TVs, home Java EE, Diameter, JSR 309 Media appliances, gaming consoles, and cars, communications service providers (CSP) and Server Control and Web Services enterprises are faced with the operational and business challenges of delivering • SIP Servlet 2.0 built on Java EE 7 innovative services with maximum profitability. In order to achieve this goal, they are includes efficient optimal POJO and CDI interfaces, concurrent session migrating away from expensive, closed, proprietary, application-specific legacy management, web sockets, and platforms, towards virtualized converged communications application platforms. This standard JSON, XML, JAX, JMS dramatically lowers the time and cost of adding new features and extensions to existing interfaces IP-based communication services. It enables CSPs and enterprises to develop and • Virtual Network Function (VNF) deploy applications on a single, unified platform, and re-use those applications across compliance to Network Function Virtualization multiple networks, including the Web, mobile, virtualized, broadband or fixed networks.
    [Show full text]
  • Dynamic Web Acceleration What Is It, Who Needs It, How It Works
    WHITE PAPER Dynamic Web Acceleration What is it, who needs it, how it works TABLE OF CONTENTS Executive Summary ........................................................................................................ 1 The Problem: Inherent Internet Issues ............................................................................. 2 What Causes the Problem? ............................................................................................ 2 The Solution: Dynamic Web Acceleration ....................................................................... 3 Who Can Benefit from Dynamic Web Acceleration ........................................................ 4 The CDNetworks Approach............................................................................................ 4 Case Study: Streamlining the Retail Supply Chain with Dynamic Web Acceleration ........ 5 Conclusion: A Simple Solution for Enhanced eCommerce, Greater Application Adoption, and Lower Costs ............................................................................................................ 6 Appendix: Key Features of CDNetworks’ Dynamic Web Acceleration Solution ............... 7 About CDNetworks ........................................................................................................ 8 Executive Summary Dynamic web acceleration is a service offered by Content Delivery Networks (CDNs) that enables organizations to quickly and reliably deliver applications and dynamic content from a centralized infrastructure to users around the world.
    [Show full text]
  • Session 1 – Main Theme Introduction to Application Servers
    Application Servers Session 1 – Main Theme Introduction to Application Servers Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences 1 Agenda 11 IntroductionIntroduction 22 ApplicationApplication ServersServers KeyKey ConceptsConcepts 33 PatternsPatterns andand ApplicationApplication ServersServers 44 ApplicationApplication ServerServer SupportingSupporting TechnologyTechnology 55 ExpectedExpected ApplicationApplication ServerServer FeaturesFeatures 66 RelatedRelated LifecycleLifecycle andand AdoptionAdoption ProcessesProcesses 77 ConclusionConclusion 2 Icons / Metaphors Information Common Realization Knowledge/Competency Pattern Governance Alignment Solution Approach 33 Who am I? - Profile - ¾ 26 years of experience in the Information Technology Industry, including twelve years of experience working for leading IT consulting firms such as Computer Sciences Corporation ¾ PhD in Computer Science from University of Colorado at Boulder ¾ Past CEO and CTO ¾ Held senior management and technical leadership roles in many large IT Strategy and Modernization projects for fortune 500 corporations in the insurance, banking, investment banking, pharmaceutical, retail, and information management industries ¾ Contributed to several high-profile ARPA and NSF research projects ¾ Played an active role as a member of the OMG, ODMG, and X3H2 standards committees and as a Professor of Computer Science at Columbia initially and New York University since 1997 ¾ Proven record of delivering business
    [Show full text]