LAZAROA 34: 65-75. 2013 doi: 10.5209/rev_LAZA.2013.v34.n1.41523 ISSN: 0210-9778

Changes in the summit flora of a Mediterranean mountain (Sierra Nevada, Spain) as a possible effect of climate change Maria Rosa Fernández Calzado & Joaquin Molero Mesa (*)

Abstract: Fernández Calzado, M.R. & Molero Mesa, J. Changes in the summit flora of a Mediterranean mountain (Sierra Nevada, Spain) as a possible effect of climate change. Lazaroa 34: 65-75 (2013).

The evidences on climate change-induced impacts on alpine communities is growing and some of them warn us about the expected changes in vegetation of the generally fragmented Mediterranean high mountain areas in a war - mer and drier future. Short-term (2001-2008) changes in species richness, cover and abundance were studied on four summits in the Sierra Nevada (Spain). The resurvey revealed a decrease in species richness on each summit, which is confirmed by small-scale changes in species abundance within the same summits. These changes involve local losses of high-elevation endemic species as well as the new appearance of predominantly more wides - pread species. Some of the latter species were also observed to expand elsewhere in the Sierra Nevada. On a small scale, cover of several endemic species decreased and cover of some species that occur on a wider altitudinal range increased. Although the observed changes are statistically only marginally or not significant, they are largely consistent with pan-European studies suggesting stagnant or declining species richness on summits of the Mediterranean biome and a ‘thermophilisation’ of the species composition in high mountain plant communities over the past years. Even though we cannot rule out other non-climatic factors, our results give rise to concern about the situation of the mainly endemic high-altitude flora of the Sierra Nevada and give an incentive to intensify monitoring efforts.

Keywords: high mountain , endemism, species richness, species cover, frequency, GLORIA, resurvey

Resumen: Fernández Calzado, M.R. & Molero Mesa, J. Cambios en la flora de alta montaña de una montaña medi - terránea (Sierra Nevada, Spain) como un posible efecto del cambio climático. Lazaroa 34: 65-75 (2013).

Las evidencias de un cambio climático inducido y sus impactos en las comunidades vegetales alpinas continúan en aumento, alertándonos sobre los cambios esperables en la vegetación de las áreas de cumbre, en ocasiones fragmen - tadas, en un futuro más cálido y seco. A corto plazo (2001-2008) cambios en la riqueza de las especies vasculares, la cobertura y la abundancia fueron estudiadas en cuatro cumbres de Sierra Nevada. El nuevo muestreo reveló un descenso en la riqueza de todas las cumbres, confirmándose cambios a pequeña escala en las abundancias de las especies en las mismas cumbres. Estos cambios implican pérdidas locales de especies endémicas de alta montaña, así como aparicón de las nuevas especies de distribución más amplia. Algunas de ellas también se han expandido a otras áreas de Sierra Nevada. A pequeña escala, el recubrimiento de varias especies endémicas disminuyó, mientras que la de algunas es - pecies de rangos altitudinales más amplios aumentó. Aunque los cambios observados no son significativos o sólo mar - ginalmente, a gran escala sugieren un estancamiento de la especificidad o una disminución de la riqueza en las cumbres de este bioma mediterráneo y una ‘termofilización’ de la composición florística de las comunidades vegetales de alta montaña en los últimos años. Aunque no podemos descartar otros factores no climáticos, si parece existir una situación de riesgo de la flora endémica de alta montaña de Sierra Nevada e incentivándonos para intensificar los esfuerzos de monitorización.

Palabras clave: plantas de alta montaña, endemismos, riqueza de especies, cobertura, frecuencia, GLORIA, re-inves - tigación.

* Department of Botany. Faculty of Pharmacy. University of Granada. Campus de Cartuja. E-18071 Granada, Spain. E-mail: [email protected]

65 LAZAROA 34: 65-75. 2013 Maria Rosa Fernández Calzado & Joaquin Molero Mesa Changes in the summit flora of Sierra Nevada (Spain)

INTRODUCTION significant changes in high mountain plant diversity such as upward shifts from lower altitudes, extinc - The average annual surface temperature has in - tions or changes in the competitive relations among creased by 0.8 ºC in Europe during the past century plants ( GUISAN & al. , 1995; BENISTON & al. , 1997; (ALCAMO & al. , 2007) and two to three fold greater KöRNER , 2003; GRABhERR & al. , 2010). rates of warming are projected for the 21 st century Most of the revisitation studies in high mountain (NOGUéS -B RAvO & A RAúJO , 2006). Specifically, on vegetation reported an increase in the number of the Iberian Peninsula climate change projections for species in the Alps ( GRABhERR & al. , 1994, 2001; the current century predict an increase of the ave - BAhN & KöRNER , 2003; WALThER , 2005) and the rage temperature by 0.4 ºC/decade in winter and 0.7 Scandes ( KLANDERUD & B IRKS , 2003). More re - ºC/decade in summer, for the least favourable sce - cent evidences confirm the previously observed in - nario (A2 of the IPCC), and by 0.4ºC and 0.6 ºC/de - creases in species numbers in the Alps ( hOLzINGER cade, for the most favourable scenario (B2 of the & al. , 2008; vITTOz & al. , 2008; ERSChBAMER & IPCC) ( FERNáNDEz -G ONzáLEz & al. , 2005). al. , 2008; KULLMAN , 2010; WIPF & al. , 2012, in Mountain ecosystems are especially sensitive to press). A recent range contraction of subnival to climate change because they are limited by low tem - nival species at their lower range margin, however, peratures ( ChAPIN & K öRNER , 1994; P RICE & has been observed in the Alps ( PAULI & al. , 2007). BARRy , 1997; K öRNER , 2003; P AULI & al. , 2005) On this framework, the first high-altitude per - being its flora very particular with many endemics manent plots in southern Spain were established (DEL EGIDO & P UENTE , 2011; G AvILáN & al. , 2012). in 2001 as part of the Global Observation Rese - Therefore, climate warming is expected to cause arch Initiative in Alpine Environments (GLORIA,

Figure 1. – Location of the Sierra Nevada and sampling summits in Spain: Pulpitito (PUL); Cupula (CUP); Tosal Cartujo (TCA); Machos (MAC).

LAZAROA 34: 65-75. 2013 66 Maria Rosa Fernández Calzado & Joaquin Molero Mesa Changes in the summit flora of Sierra Nevada (Spain) http://www.gloria.ac.at), whose main aim is to SAMPLING DESIGN provide long-term observation series on the state of alpine biota. Permanent plots were established The standardized GLORIA Multi-Summit Ap - along a standardised sampling design on moun - proach ( PAULI & al. , 2004) was used to establish tain summits along an elevation gradient, where four permanent sampling summits in 2001. Each vegetation data and time series of temperatures summit was divided into eight summit area sections were recorded ( PAULI & al. , 2004). (SASs), aligned along the four cardinal directions The recent multi-region report of the first re - (N, S, E and W). The four upper sections cover the survey seven years after the establishment of the area from the highest summit point (hSP) to the 5- GLORIA sites in Europe ( PAULI & al. , 2012) has m contour line, while the four lower ones from the clearly confirmed that changes in vascular plant 5-m to the 10 m contour line. All vascular plant spe - species exist. Therefore, the aims of the present cies were recorded in each one of the sections. study are to analyze the detailed changes in the Four quadrat clusters (3 m x 3 m) were establis - Sierra Nevada (Spain, ES-SNE) related to slope hed in each cardinal direction (N, E, S, W) at 5 m exposure, summit elevation and the altitudinal below the highest summit point. In each of the four distribution range of the species. 1 m 2 corner-plots of each cluster, a complete list of plant species and an estimation of their percen - tage cover and frequency (i.e. their presence in 100 MATERIALS AND METhODS divisions of 10 x 10 cm) was recorded in the 1 m x 1 m plots. Further, a data-logger (StowAway Tid - STUDy AREA biT, Onset Corporation, Massachusetts, USA) was installed at 10 cm below the soil surface in each The Sierra Nevada is located in the south-east central quadrat of the clusters to measure soil tem - of the Iberian Peninsula (37ºN, 3ºW), within the peratures at hourly intervals. In 2008, the resurvey Baetic Range of Mountains (Figure 1). It contains involved the same procedure used in 2001. numerous summits that exceed 3000 m asl, inclu - We used as sources for taxonomy, distribution ding the highest peak of the Peninsula (Mulhacén, and altitudinal ranges of the species Flora Euro - 3482 m asl). paea ( TUTIN & al. , 1964-1980), Flora Iberica ( CAS - Within its upper part (above 2600 m asl) four TROvIEJO & al. , 1986-2009) and regional floras or sampling summits were permanently marked in vegetation studies ( MARTíNEz -P ARRAS & al. , 1985; 2001 according to the criteria specified in the MOLERO MESA & P éREz -R AyA 1987; M OLERO GLORIA field manual ( PAULI & al. , 2004). These MESA & al. , 1996; GIMéNEz & G óMEz , 2002). summits are situated in the western central zone of the range: Machos (MAC) 3327 m asl; Tosal DATA ANALySIS Cartujo (TCA) 3150 m asl; Cúpula (CUP) 2968 m asl and Pulpitito (PUL) 2778 m asl (Figure 1). To investigate whether the species richness of All the summits share a Mediterranean biocli - vascular plants in the summit area sections mate in its pluviseasonal oceanic variant ( RIvAS - (SASs) changed between 2001 and 2008, we used MARTíNEz & al. , 2007). Summer drought is a 3-way ANOvA using summit, slope exposure pronounced and the 700-1500 mm/year rainfall (N, S, E, W) and year as factors, and accounting occurs almost exclusively as winter snow at alti - for their interactions. A 3-way ANOvA was also tudes above 2500 m. All summits are formed by used to investigate whether vascular plant species siliceous bedrocks except one (Pulpitito), having richness and Shannon Index ( DEL RíO & al. , a less acidic substrate. The lower summits are do - 2003) changed in the 1 m 2 plots between 2001 minated by dwarf shrub communities, while the and 2008. We verify whether species frequency higher ones are composed by grasses, hemicryp - changed in relation to slope exposure and/or sum - tophytes and cushion chamaephytes scattered on mit elevation by a Chi-Square test for heteroge - open psycroxerophylous soils. neity or independence ( χ²- Test). In the cases

67 LAZAROA 34: 65-75. 2013 Maria Rosa Fernández Calzado & Joaquin Molero Mesa Changes in the summit flora of Sierra Nevada (Spain) where the results of ANOvA were significant, we 1), the total species richness in the 1m 2 plots de - tested for differences between groups within a creased on two summits (PUL and TCA), stagna - factor though a Tukey and Bonferroni test. Sta - ted on CUP and increased on MAC. tistical analyses were performed using SPSS 15.0. Species richness and Shannon Weaver Index We analyzed mean annual soil temperature did not significantly change at the 1 m 2 scale. In data from each cardinal direction of each summit spite of this, changes in the sub-plot species fre - (n = 16) from January 2002 to December 2008. quency within the 1 m 2 plots were significantly The trends of these temperatures, in each of the (χ²-; p = 0.040) influenced by slope exposure: the 16 time series, were studied fitting a straight line number of species with decreasing frequency was model. Temperature data were also used to calcu - larger than those with increasing frequency in late the growing season period, defined as the every cardinal direction. Consistently, the number number of days with mean daily soil temperatures of disappearing species was larger than the num - > 2º C ( ERSChBAMER & al. , 2008; vittoz & al. , ber of appearing ones (Table 3). 2010). Thus, the first day was that with a mean Percentage cover data showed changes in the temperature > 2º C, as long as this temperature majority of the recorded species, but they were was maintained for at least 6 days, while the end not significant. Despite that, we have believed an of the period was defined as the first day with a interesting item to show in Table 4 those cases mean temperature < 2º C also maintained for at where either increases or decreases of ≥ 1% in ab - least 6 days. Then, we calculated the mean gro - solute terms (referred to 1m 2 plots) in more than wing season length along the main compass di - two plots from 2001 to 2008 were observed. rection at the four Sierra Nevada summits. SOIL TEMPERATURES

RESULTS Mean annual soil temperatures from the four cardinal directions of the four summits from 2002 TRENDS IN SPECIES RIChNESS to 2008 are shown in Figure 2. There was no clear warming trend within this short period. Differen - Considering all summits together, species rich - ces among the main cardinal directions were, ho - ness changed from 79 to 78 taxa during the seven wever, discernible. Southern slopes were the year period. Overall, seven species disappeared warmest, with the exception of the TCA summit, from all summits areas, four of them showing a where higher temperatures occurred in the eastern narrow distribution area ( Poa minor subsp. neva - direction in some years. densis , Vitaliana primuliflora subsp. assoana , The mean duration of the growing season for nivalis and Coincya monensis subsp. ne - each summit is shown in Table 5. The longest vadensis ) and three having a wider distribution growing seasons were at the southern and eastern (Galium rosellum, Luzula hispanica and Rhamnus expositions, meanwhile the shortest growing se - pumilus ). Six species were newly found: four an - ason period was inconsistent among the cardinal nual species with widespread distribution ( Ero - directions, although it was least common at sou - phila verna, Cuscuta sp. in PUL-E10, Viola sp. in thern slopes. TCA-S11 and Veronica sp. in CUP-S11) and two restricted to the Sierra Nevada massif ( Senecio ne - vadensis and Linaria glacialis ) (Appendix 1). DISCUSSION At the summit level (Table 1), absolute and mean species richness values showed a decrea - This study provides detailed information about sing trend between 2001 and 2008, although these the changes occurred in the GLORIA summits of changes were not statistically significant. A de - Sierra Nevada, a crucial mountain region to un - tailed overview of locally new and locally lost derstand the impact of climate change in the Me - taxa is shown in Table 2. At the plot scale (Table diterranean regions ( PAULI & al. , 2012).

LAZAROA 34: 65-75. 2013 68 Maria Rosa Fernández Calzado & Joaquin Molero Mesa Changes in the summit flora of Sierra Nevada (Spain)

Table 1 Total species richness in the summit area (pooled from eight SASs) and the 16-m² plots (pooled from 16 single 1m² plots) of each of the four study summits in 2001 and 2008 (mean number for SASs and 1m² plots ± standard deviation). Summit area sections (SAS) 1 m 2 plots Summit 2001 2008 2001 2008 Pulpitito 47 (30±7.2) 45 (24.4±6.4) 31 (9.3±3.9) 27 (8.1±2.9) Cupula 52 (29.3±4.5) 50 (26.6±5.1) 32 (11.6±2.9) 32 (10.8±2.3) Tosal Cartujo 40 (20±4.8) 39 (18.4±4.4) 20 (5.8±1.7) 18 (5.3±2.1) Machos 18 (8.5±3.2) 16 (7±2.7) 13 (0.8±1.1) 14 (0.9±1.3)

Table 2 New and lost taxa at the Sierra Nevada summits from 2001 to 2008. (Distribution: Ne, Nevadense, Be, Baetican, Ib, Iberian, Ib-N, Iberian-northern African, Eu, European, Eu-N, European-northern African, Others, widely distributed) Summit New species Lost species PUL Cuscuta sp. Erysimum nevadense (Be) Erophila verna (Others) Hieracium castellanum (Eu) Galium rosellum (Be) Rhamnus pumilus (Eu-N) CUP Cystopteris fragilis (Others) Artemisia granatensis (Ne) Erophila verna (Others) Carduus carlinoides subsp. hispanicus (Ne) Erysimum nevadense (Be) Erigeron major (Be) Senecio nevadensis (Ne) Hieracium castellanum (Eu) Veronica sp. Luzula hispanica (Ib) Saxifraga nevadensis (Ne) Vitaliana primuliflora subsp. assoana (Ne) TCA Cirsium acaule subsp. gregarium (Be) Arenaria armerina (Ib-N) Erigeron frigidus (Ne) Biscutella glacialis (Ne) Euphorbia nevadensis (Ib) Coincya monensis subsp. nevadensis (Ne) Linaria glacialis (Ne) Cystopteris fragilis (Others) Viola sp. Galium pyrenaicum (Ib) Plantago nivalis (Ne) MAC Crepis oporinoides (Be) Cystopteris fragilis (Others) Linaria glacialis (Ne) Herniaria boissieri (Be) Senecio nevadensis (Ne) Leontodon boryi (Be) Linaria aeruginea subsp. nevadensis (Ne) Poa minor subsp. nevadensis (Ne)

In contrast to the majority of changes obser - than that of newly appearing ones in all cardinal ved in European alpine sites ( GRABhERR & al. , directions. 1994, 2010; WALThER & al. , 2005; KULLMAN , Among the few studies which provide these 2010), species richness was stagnating or decre - kind of evidences, a decline of high-elevation asing on all summit sites. This is also indicated species, are KLANDERUD & B IRKS (2003) from the by the plot-level data (abundance in the 1 m 2 Scandes and PAULI & al. (2007) from the Alps. plots), where the number of species with decre - Adding to these, a recent Europe-wide GLORIA asing abundance exceeded the increasers and the study ( PAULI & al. , 2012), which includes Sierra number of species not found again was larger Nevada GLORIA sites, showed similar observa -

69 LAZAROA 34: 65-75. 2013 Maria Rosa Fernández Calzado & Joaquin Molero Mesa Changes in the summit flora of Sierra Nevada (Spain)

Table 3 Table 4 Total number of species with frequency changes Species with cover changes (2001 versus 2008) in the within the 1-m² plots (hundred 0.1 x 0.1 m subplots) in 1-m² plots of ≥ 1% (in absolute terms, referred to 1m² each of the four cardinal directions of the four Sierra plots) in more than two quadrates on the four Sierra Nevada summits combined. Nevada summits. Species Increasing/ Appearing/ Change response Decreasing Disappearing Summit Species in cover East 36/42 17/30 PUL Genista baetica i North 26/46 3/14 Erodium cheilanthifolium i South 41/49 15/21 Festuca indigesta i West 31/41 13/16 CUP Alyssum spinosum h Thymus serpylloides subsp. serpylloides h Festuca indigesta h i tions in other Mediterranean mountains (Cor - Ranunculus demissus Crepis oporinoides i sica/France, Lefka Ori-Crete /Greece), where an Deschampsia flexuosa subsp. iberica i average decrease in species number was recorded TCA Arenaria tetraquetra subsp. amabilis h opposed to an average increase for the boreal and Reseda complicata h temperate summits, even though species predo - Jasione crispa subsp. amethystina i minantly showed an upward shift across all three Festuca clementei i h biomes. MAC Alyssum spinosum PAULI & al. (2012) hypothesized that the obser - ved species declines could indicate range retrac - tions through a combination of rising summer in Spain ( FERNáNDEz GONzáLEz & al. , 2005). In temperature and stable to decreasing rainfall, facts the Sierra Nevada, as in other Mediterranean high also reported by the comprehensive governmental mountains, the stagnation or decrease of species assessment report on the effects of climatic change numbers and the local disappearance of species is

Figure 2. – Mean annual soil temperatures (ºC) from 2002 to 2008 at the four summits along the main slope exposures (circle, north; quadrat, south; triangle, east; rhomb, west) in the Sierra Nevada (Spain).

LAZAROA 34: 65-75. 2013 70 Maria Rosa Fernández Calzado & Joaquin Molero Mesa Changes in the summit flora of Sierra Nevada (Spain)

Table 5 maephytes such as Alyssum spinosum may fur - Mean growing season length (2002 to 2008), in days, ther facilitate the arrival of other lower eleva - along the main compass directions at the four Sierra tion species by acting as nurse plants Nevada summits. (CALLAWAy & al. , 2002; CAvIERES & al. , 2006; AMMER RABhERR MAC TCA CUP PUL K & al. , 2007; G & al. , 2010). Festuca indigesta , a common graminoid of the N 128,86 164,71 192,57 200,71 oromediterranean belt that reaches its upper S 167,86 156,57 200,00 218,29 E 149,29 168,43 165,14 188,57 limit on CUP, was increasing in cover on this W 128,29 165,71 192,14 204,43 summit, whereas Festuca clementei , a common endemic restricted to the uppermost belt, was decreasing on TCA. particularly worrying because its flora has a high Several other high-elevation endemics, such percentage of endemic and relict taxa, where fur - as Saxifraga nevadensis, Artemisia granaten - ther declines can result in irretrievable losses on sis, Vitaliana primuliflora subsp. assoana, Poa the phylogenetical level ( SANz ELORzA & al. , minor subsp. nevadensis and Coincya monensis 2003; FERNáNDEz CALzADO & al. , 2012). subsp. nevadensis were not found in 2008. The Changes in species cover (in the 1 m 2 plots), same accounts for Luzula hispanica on CUP despite are not significant or marginally signi - and Plantago nivalis on TCA, and Ranunculus ficant, may partly be related to the local habitat demissus was decreasing in cover on CUP. Ac - situation, but in some cases seem to reflect di - cording to the knowledge about the ecology of rectional changes with respect to the altitudinal the studied species, it is likely that observed range of species and to moisture requirements changes are associated with the reduction of of species, trend that will need confirmation in water availability. the future. A related pan-European paper, which included the Sierra Nevada GLORIA sites (GOTTFRIED & al. , 2012), consistently showed CONCLUSIONS that species of lower elevations were immigra - ting to or expanding within higher-elevation Species richness in the summit areas was stag - sites. This ‘thermophilisation’ signal was signi - nating or decreasing and, at the plot scale, species ficant across the entire European data set, but abundance were more commonly declining and also for some single GLORIA sites such as for the numbers of local disappearances were larger Sierra Nevada. The cover decrease of Genista than new appearances. baetica, Erodium cheilanthifolium and Festuca Both changes in presence and absence of spe - indigesta , common species on the lowest sum - cies as well as of species cover appear to reflect mit (PUL), might be related to the abundant in several cases shifts along a moisture gradient. unstable substrate which could impede their es - Declines in species richness as well as in spe - tablishment. The cover increase of some cha - cies cover are surprising in comparison to similar maephytes on the other summits, such as studies in the Alps and Scandes, but are in accor - Reseda complicata, Thymus serpylloides subsp. dance with the results of other Mediterranean serpylloides and particularly of Alyssum spino - GLORIA sites reported in the pan-European sum , as well as the new appearance of Senecio GLORIA studies: a thermophilisation of the spe - nevadensis on two summits, however, could li - cies composition of high mountain plant commu - kely have been boosted by climate change, as nities and a predominant upward-shift of species their upper distribution ranges were observed to across Europe’s mayor biomes, but declines in be expanding in the upper zone of the Sierra species numbers in the Mediterranean region, Nevada ( FERNáNDEz CALzADO & M OLERO which could result from a combined effect of ri - MESA , 2011a, b; and personal observations of sing temperatures and restricted water availabi - the authors). A continued increase of cha - lity.

71 LAZAROA 34: 65-75. 2013 Maria Rosa Fernández Calzado & Joaquin Molero Mesa Changes in the summit flora of Sierra Nevada (Spain)

Ongoing climate change impacts on the high- ACKNOWLEDGMENTS elevation flora of Sierra Nevada are expected to continue in the view of model predictions of fur - The setup of the permanent plots and data collection ther warming and decreasing precipitation ( FER - (2000-2003) was supported by the FP-5 project GLORIA- NáNDEz GONzáLEz & al. , 2005, ChRISTENSEN & Europe (EvK2-CT-2000-0006) of the European Commis - sion. Resurvey (2008) was supported by the Swiss MAvA al. , 2007) and are worrisome insofar as a large pro - Foundation for Nature Conservation and by a number of na - portion of the vascular plant flora is highly ende - tional funding agencies. We thank A. San Miguel Ayanz for mic and restricted to the uppermost elevation zone. his valuable comments and suggestions.

REFERENCES

Alcamo, J., Moreno, J.M., Nováky, B., Bindi, M., Corobov, mental Panel on Climate Change. Pp. 847-940. Cam - R., Devoy, R.J.N., Giannakopoulos, C., Martin, E., Ole - bridge Univ. Press, Cambridge. sen, J.E. & Shvidenko, A. —2007— Europe — In: Parry, Del Río, M., Montes, F., Cañellas, I. & Montero —2003— M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Revisión. índices de diversidad estructural en masas fo - hanson, C.E. (Eds.). Climate Change 2007 Impacts, restales — Sist. Recur. For. 12 (1): 159-176. Adaptation and vulnerability. Working Group II Contri - Erschbamer, B., Kiebacher, T., Mallaun, M. & Unterlug - bution to the Fourth Assessment Report of the IPCC. Pp. gauer, P. —2008— Short-term signals of climate change 541-580.Cambridge University Press, UK. along an altitudinal gradient in the South Alps — Plant Beniston, M., Diaz, h.F. & Bradley, R.S. —1997—Climatic Ecol. 202 (1): 79-89. change at high elevation sites: An overview — Clim. Egido, F. del & Puente, E. —2011— valeriano apulae-Po - chang. 36: 233-251. tentilletum nivalis y Festuco eskiae-Cytisetum oromedi - Bahn, M. & Körner, C. —2003— Recent increases in sum - terranei: dos nuevas comunidades vegetales de la alta mit flora caused by warming in the Alps — In: Nagy, L., montaña cantábrica — Lazaroa 32: 91-99. Grabherr, G., Körner, C., Thompson, D.B.A. (Eds.). Al - F. Fernández-González, J. Loidi, J. C. Moreno Saiz, M. del pine Biodiversity in Europe - A Europe-wide Assessment Arco, A. Fernández Cancio, X. Font, C. Galán, h. García of Biological Richness and Change - Pp. 437-441. Eco - Mozo, R. Gavilán, A. Penas, R. Pérez Badia, S. del Río, S. logical Studies, vol. 167. Springer, Frankfurt. Rivas-Martínez, S. Sardinero & L. villar —2005— Impac - Callaway, R.M., Brooker, R.W., Choler, P., Kikvidze, z., tos sobre la biodiversidad vegetal — In: Moreno Rodríguez, Lortie, C.J., Michalet, R., Paolini, L., Pugnaire, F.I., Ne - J.M. (Dtor./Coord.). Evaluación Preliminar de los Impactos wingham, B., Aschehoug, E.T., Armas, C., Kikodze, D. en España por Efecto del Cambio Climático. Pp.183-248. & Cook, B.J. —2002— Positive interactions among al - Centr. Publ. Secr. Gral. Téc. Min. Medio Amb., Madrid pine plants increase with stress — Nature 417: 844-848. Fernández Calzado, M.R. & Molero Mesa, J. —2011a— Castroviejo, S. & al. (Eds.) —1986-2009— Flora Iberica. The cartography of vegetation in the cryoromediterra - Plantas vasculares de la Península Ibérica e Islas Balea - nean belt of Sierra Nevada: a tool for biodiversity con - res — vols. I-vIII, X, XIII-Xv, XvIII y XXI. R. Jard. servation — Lazaroa 32: 101-115. Bot. Madrid. CSIC, Madrid. Fernández Calzado, M.R. & Molero Mesa, J. —2011b— Cavieres, L.A., Badano, E.I., Sierra-Almeida, A., Gómez-Gon - historical evidences on flora composition changes in a zález, S., Molina-Montenegro, M.A. —2006— Positive high vegetation belt, Sierra Nevada, Spain (1837-2009) interactions between alpine plants species and the nurse cus - — Int. J. Geobot. Res. 1(1): 41-54. hion plant Laretia acaulis do not increase with elevation in Fernández Calzado, M.R., Molero Mesa, J., Merzouki, A. the Andes of central Chile — New Phytologist 169: 59-69. & Casares Porcel, M. —2012— vascular plant diversity Chapin, F.S.I. & Corner, C. — 1994— Arctic and alpine and climate change in the upper zone of Sierra Nevada, biodiversity - Patterns, causes and ecosystem consequen - Spain — Plant Biosyst. 1-10. ces — Trends Ecol. Evol. 9: 45-47. Gavilán R.G., Díez-Monsalve E., Izquierdo J.L., Gutiérrez- Christensen, J.h., hewitson, B., Busuioc, A., Chen, A., Gao, Girón A., Fernández-González F. & Sánchez-Mata D. — X., held, I., Jones, R., Kolli, R.K., Kwon, W.T., Laprise, 2012— An approach towards the knowledge of Iberian R., Magaña Rueda, v., Mearns, L., Menéndez, C.G., Räi - high-mountain calcareous grasslands — Lazaroa 33: 43-50. sänen, J., Rinde, A., Sarr, A. & Whetton, P. —2007— Giménez Luque, E. & Gómez Mercado, F. —2002—Aná - Regional Climate Projections — In: Solomon, S., Qin, lisis de la flora vascular de la Sierra de Gádor (Almería, D., Manning, M., Chen, z., Marquis, M., Averyt, K.B., España) — Lazaroa 23: 35-43. Tignor, M., Miller, h.L. Climate Change 2007: The Gottfried, M., Pauli, h., Futschik, A., Akhalkatsi, M., Ba - Physical Science Basis. Contribution of Working Group rančok, P., Benito Alonso, J.L., Coldea, G., Dick, J., Ers - I to the Fourth Assessment Report of the Intergovern - chbamer, B., Fernández Calzado, R., Kazakis, G., Krajči,

LAZAROA 34: 65-75. 2013 72 Maria Rosa Fernández Calzado & Joaquin Molero Mesa Changes in the summit flora of Sierra Nevada (Spain)

J., Larsson, P., Mallaun, M., Michelsen, O., Moiseev, Pauli, h., Gottfried, M., hohenwallner, D., Reiter, K. & P., Moiseev, D., Molau, U., Merzouki, A., Nagy, L., Na - Grabherr, G — 2004— The GLORIA field manual a khutsrishvili, G., Pedersen, B., Pelino, G., Puşcaş, M., multi-summit approach. Eur. Comm., Luxembourg. Rossi, G., Stanisci, A., Theurillat, J.P., Tomaselli, M., vi - Pauli, h., Gottfried, M., hohenwallner, D., Reiter, K. & llar, L., vittoz, P., vogiatzakis, I. & Grabherr, G — Grabherr, G. —2005— Ecological Climate Impact Re - 2012— Continent wide response of mountain vegetation search in high Mountain Environments: GLORIA (Glo - to climate change — Nat. Clim. Chang. 2: 111-115. bal Observation Research Initiative in Alpine Grabherr, G., Gottfried, M. & Pauli, h. —2001— Long- Environments) - its Roots, Purpose and Long-term Pers - term monitoring of mountain peaks in the Alps — In: pectives — Adv. Glob. Change Res. 23: 383-391. Burga, C.A. & Kratochwil, A. (Eds). Biomonitoring: Ge - Pauli, h., Gottfried, M., hohenwallner, D., Reiter, K., Klettner, neral and applied aspects on regional and global scales. C. & Grabherr, G. — 2007— Signals of range expansions Tasks for vegetation Science 35. Pp. 153-177. Kluwer and contractions of vascular plants in the high Alps: obser - Academic Publishers, Dordrecht. vations (1994–2004) at the GLORIA master site Schran - Grabherr, G., Gottfried, M. & Pauli, h. —2010— Climate kogel,Tyrol, Austria — Glob. Change Biol. 13: 147-156. Change Impacts in Alpine Environments — Geography Pauli, h., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, Compass 4 (8): 1133-1153. M., Benito Alonso, J.L., Coldea, G., Dick, J., Erschbamer, Guisan, A., Tessier, L., holten, J.I., haeverli, W. & Baum - B., Fernández Calzado, R. Ghosn, D., holten, J.I., Kanka, gartner, M. —1995— Understanding the impact of cli - R., Kazakis, G., Kollár, J., Larsson, P., Moiseev, P., Moiseev, mate changing on mountain ecosystems: an overview — D., Molau, U., Molero Mesa, J., Nagy, L., Pelino, G., Puşcaş, In: Guisan, A, holten, J.I., Spichiger, R. & Tessier, L. M., Rossi, G., Stanisci, A., Syverhuset, A.O., Theurillat, J.P., (Eds.). Potential ecological impacts of climate change in Tomaselli, M., Unterluggauer, P., villar, L., vittoz, P. & the Alps and Fennoscandian mountains. Pp. 15-37. Ed. Grabherr, G. —2012— Recent plant diversity trends on Eu - Conserv. Jard. Bot. Genéve, Switzerland. rope´s mountain summits — Science 336: 353-355. Kammer, P.M., Schöb, C. & Choler, P. —2007— Increasing Peñuelas, J., Filella, I. &Comas, P. —2002— Changed plant species richness on mountain summits: upward migra - and animal life cycles from 1952 to 2000 in the Medite - tion due to anthropogenic climate change or re-coloni - rranean region — Global Chang. Biol. 8 (6): 531–544. sation? — J. veg. Sci. 18: 301-306. Price, M,F, & Barry, R.G. —1997— Climate change — In: Klanderud, K. & Birks, h.J.B. —2003— Recent increases Messerli, B., Ives, J.D. (Eds). Mountains of the World - A in species richness and shifts in altitudinal distributions Global Priority. A Contribution to Chapter 13 of Agenda of Norwegian mountain plants — The holocene 13: 1-6. 21. Pp. 409-445. The Parthenon Publ. Gr., London. Körner, C. —2003— Alpine plant life: functional plant eco - Rivas-Martínez, S. & al. —2007— Mapa de series, geose - logy of high mountain ecosystems. 2nd edition — Sprin - ries y geopermaseries de vegetación de España (Memo - ger, Berlin. ria del mapa de vegetación potencial de España). Parte Kullman, L. —2010— Alpine flora dynamics - a critical review I. — Itinera Geobot. 17: 5-436 of responses to climate — Nordic J. Bot. 28: 398-408. Sanz Elorza, M., Dana, E.D., González, A. & Sobrino, E. Martínez-Parras, J.M., Peinado Lorca, M. & Alcaraz, F. — —2003— Changes in the high-mountain vegetation of 1985— Datos sobre la vegetación de Sierra Nevada — the Central Iberian Peninsula as a probable sign global Lazaroa 7: 515-533. warming — Ann. Bot. 92: 273-280. Molero Mesa, J. & Perez Raya, F. —1987—. La Flora de Tutin, T.G., heywood, v & al. (Eds.) —1964-1980— Flora Eu - Sierra Nevada. Avance sobre el catálogo florístico neva - ropaea, volumes 1-5 — Cambridge Univ. Press, Cambridge. dense — Univ. Granada, Spain. vittoz, P., Bodin, J., Ungricht, S., Burga, C. & Walther, G.R. Molero Mesa, J., Pérez Raya, F. & González-Tejero, M,R. —2008— One century of vegetation change on Isla —1996— Catálogo y análisis florístico de la flora orófila Persa, a nunatak in the Bernina massif in the Swiss Alps de Sierra Nevada — In: Chacón Montero, J & Rosúa — J. veg. Sci. 19: 671-680. Campos, J.L. (Eds.). Sierra Nevada. Conservación y Des - Wipf, S., Stöckli, v., herz, K. & Rixen, C. —2013— The arrollo Sostenible. vol. 2. Pp. 271-290. Madrid, Spain. oldest monitoring site of the Alps revisited: accelerated Nogués-Bravo, D. & Araújo, M. —2006— Species rich - increase in plant species richness on Piz Linard summit ness, area and climate correlates — Global Ecol. Biog. since 1835 — Plant Ecol. & Div. 6: 447-455.. 15: 452-460. vittoz, P., Camenisch, M., Mayor, R., Miserere, L., vust, M. Pauli, h., Gottfried, M., Dirnböck, T., Dullinger, S. & Grabherr, & Theurillat, J.P. —2010— Subalpine-nival gradient of G. —2003— Assessing the long-term dynamics of endemic species richness for vascular plants, bryophytes and li - plants at summit habitats — In: Nagy, L., Grabherr, G., Körner, chens in the Swiss Inner Alps — Bot. helv. 120: 139-149. C. & Thompson, D.B.A. (Eds.). Alpine biodiversity in Europe. Walther, G.R. Beißner, S. & Burga, C.A. —2005— Trends in the Ecological Studies 167. Pp. 195-207. Berlin, Springer. upward shift of alpine plants — J. veg. Sci. 16(5): 541–548.

Received: 11 March 2013 Accepted: 21 November 2013

73 LAZAROA 34: 65-75. 2013 Maria Rosa Fernández Calzado & Joaquin Molero Mesa Changes in the summit flora of Sierra Nevada (Spain)

Appendix 1 List of plant species in GLORIA summits (2001 and 2008) (Distribution: Ne, Nevadense, Be, Baetican, Ib, Iberian, Ib-N, Iberian-northern African, Eu, European, Eu-N, European-northern African, Others, widely distributed) Taxa name Family Distribution Acinos alpinus subsp. meridionalis Lamiaceae Eu-N Aethionema saxatile subsp. marginatum Brassicaceae Eu-N Agrostis nevadensis Poaceae Ne Alyssum purpureum Brassicaceae Ne Alyssum spinosum Brassicaceae Eu-N Andryala agardhii Asteraceae Be Anthyllis vulneraria subsp. pseudoarundana Fabaceae Ne Arenaria armerina Ib-N Arenaria pungens Caryophyllaceae Be Arenaria tetraquetra subsp. amabilis Caryophyllaceae Ne Artemisia granatensis Asteraceae Ne Asperula aristata subsp. scabra Rubiaceae Eu-N Biscutella glacialis Brassicaceae Ne Campanula willkommii Campanulaceae Eu Carduus carlinoides subsp. hispanicus Asteraceae Ne Cerastium ramosissimum Caryophyllaceae Others Chaenorhinum glareosum Scrophulariaceae Ne Cirsium gregarium Asteraceae Be Coincya monensis subsp. nevadensis Brassicaceae Ne Crepis oporinoides Asteraceae Be Cuscuta sp. Cuscutaceae - Cystopteris fragilis subsp. fragilis Athyriaceae Others Dactylis juncinella Poaceae Ne Deschampsia flexuosa subsp. iberica Poaceae Ib pungens subsp. brachyanthus Caryophyllaceae Ib-N Draba hispanica subsp. laderoi Brassicaceae Ne Erigeron frigidus Asteraceae Ne Erigeron major Asteraceae Be Erodium cheilanthifolium Geraniaceae Be Erophyla verna Brassicaceae Others Erysimum nevadense Brassicaceae Be Eryngium glaciale Apiaceae Ib-N Euphorbia nevadensis Euphorbiaceae Ib Euphrasia willkommii Scrophulariaceae Ib-N Festuca clementei Poaceae Ne Festuca indigesta Poaceae Ib-N Festuca pseudeskia Poaceae Ne Galium pyrenaicum Rubiaceae Ib Galium rosellum Rubiaceae Be Genista baetica Fabaceae Be Herniaria boissieri Caryophyllaceae Be Hieracium castellanum Asteraceae Eu Holcus caespitosus Poaceae Ne Iberis carnosa subsp. embergeri Brassicaceae Ne Jasione crispa subsp. amethystina Campanulaceae Ne

LAZAROA 34: 65-75. 2013 74 Maria Rosa Fernández Calzado & Joaquin Molero Mesa Changes in the summit flora of Sierra Nevada (Spain)

Taxa name Family Distribution Juniperus communis subsp. hemisphaerica Cupressaceae Others Juniperus sabina Cupressaceae Others Jurinea humilis Asteraceae Eu-N Lactuca perennis subsp. granatensis Asteraceae Be Leontodon boryi Asteraceae Be Lepidium stylatum Brassicaceae Ne Leucanthemopsis pectinata Asteraceae Ne Linaria aeruginea subsp. nevadensis Scrophulariaceae Ne Linaria glacialis Scrophulariaceae Ne Lotus corniculatus subsp. glacialis Fabaceae Ne Luzula hispanica Juncaceae Ib Myosotis minutiflora Borraginaceae Others Nepeta amethystina subsp. laciniata Lamiaceae Ne Plantago nivalis Ne Plantago radicata subsp. granatensis Plantaginaceae Eu Paronychia polygonifolia Caryophyllaceae Others Pimpinella procumbens Apiaceae Ne Poa ligulata Poaceae Ib-N Poa minor subsp. nevadensis Poaceae Ne Poa nemoralis Poaceae Eu Prunus prostrata Rosaceae Others Rhamnus pumila Rhamnaceae Eu-N Ranunculus demissus Ranunculaceae Others Reseda complicata Resedaceae Ne Saxifraga nevadensis Saxifragaceace Ne Sedum amplexicaule subsp. tenuifolium Crassulaceae Others Sedum dasyphyllum Crassulaceae Eu-N Sempervivum nevadense Crassulaceae Be Senecio boissieri Asteraceae Ib Senecio nevadensis Asteraceae Ne Senecio pyrenaicus subsp. granatensis Asteraceae Be Sideritis glacialis Lamiaceae Ne Silene boryi Caryophyllaceae Ib Teucrium lerrouxii Lamiaceae Ib Thymus serpylloides subsp. serpylloides Lamiaceae Ne Trisetum glaciale Poaceae Ne Veronica sp. Scrophulariaceae - Viola sp. violaceae - Viola crassiuscula violaceae Ne Vitaliana primuliflora subsp. assoana Primulaceae Ne

75 LAZAROA 34: 65-75. 2013