The Skyscraper 2008 07.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
August 10Th 2019 August 2019 7:00Pm at the Herrett Center for Arts & Science College of Southern Idaho
Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting MVAS President’s Message August 2019 Saturday, August 10th 2019 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. Colleagues, Public Star Party follows at the I hope you found the third week of July exhilarating. The 50th Anniversary of the first Centennial Observatory moon landing was the common theme. I capped my observance by watching the C- SPAN replay of the CBS broadcast. It was not only exciting to watch the landing, but Club Officers to listen to Walter Cronkite and Wally Schirra discuss what Neil Armstrong and Buzz Robert Mayer, President Aldrin was relaying back to us. It was fascinating to hear what we have either accepted or rejected for years come across as something brand new. Hearing [email protected] Michael Collins break in from his orbit above in the command module also reminded me of the major role he played and yet others in the past have often overlooked – Gary Leavitt, Vice President fortunately, he is now receiving the respect he deserves. If you didn’t catch that, [email protected] then hopefully you caught some other commemoration, such as Turner Classic Movies showing For All Mankind, a spellbinding documentary of what it was like for Dr. Jay Hartwell, Secretary all of the Apollo astronauts who made it to the moon. Jim Tubbs, Treasurer / ALCOR For me, these moments of commemoration made reading the moon landing’s [email protected] anniversary issue from the Association of Lunar and Planetary Observers (ALPO) 208-404-2999 come to life as they wrote about the features these astronauts were examining – including the little craters named after the three astronauts. -
Planetary Nebula
How Far Away Is It – Planetary Nebula Planetary Nebula {Abstract – In this segment of our “How far away is it” video book, we cover Planetary Nebula. We begin by introducing astrophotography and how it adds to what we can see through a telescope with our eyes. We use NGC 2818 to illustrate how this works. This continues into the modern use of Charge-Coupled Devices and how they work. We use the planetary nebula MyCn18 to illustrate the use of color filters to identify elements in the nebula. We then show a clip illustrating the end-of-life explosion that creates objects like the Helix Planetary Nebula (NGC 7293), and show how it would fill the space between our Sun and our nearest star, Proxima Centauri. Then, we use the Cat’s Eye Nebula (NGC 6543) to illustrate expansion parallax. As a fundamental component for calculating expansion parallax, we also illustrate the Doppler Effect and how we measure it via spectral line red and blue shifts. We continue with a tour of the most beautiful planetary nebula photographed by Hubble. These include: the Dumbbell Nebula, NGC 5189, Ring Nebula, Retina Nebula, Red Rectangle, Ant Nebula, Butterfly Nebula, , Kohoutek 4- 55, Eskimo Nebula, NGC 6751, SuWt 2, Starfish, NGC 5315, NGC 5307, Little Ghost Nebula, NGC 2440, IC 4593, Red Spider, Boomerang, Twin Jet, Calabash, Gomez’s Hamburger and others culminating with a dive into the Necklace Nebula. We conclude by noting that this will be the most likely end for our Sun, but not for billions of years to come, and we update the Cosmic Distance Ladder with the new ‘Expansion Parallax’ rung developed in this segment.} Introduction [Music @00:00 Bizet, Georges: Entracte to Act III from “Carman”; Orchestre National de France / Seiji Ozawa, 1984; from the album “The most relaxing classical album in the world…ever!”] Planetary Nebulae represent some of the most beautiful objects in the Milky Way. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Technical Activities 1983 Center for Basic Standards
Technical Activities 1983 Center for Basic Standards U S. DEPARTMENT OF COMMERCE National Bureau of Standards National Measurement Laboratory Center for Basic Standards Washington, DC 20234 November 1983 Final Issued January 1984 Prepared for: U S. DEPARTMENT OF COMMERCE National Bureau of Standards Qc /ashington, DC 20234 1 00 -USk p p p I p p V i I » i » i i » i [i fi n NBSIR 83-2793 TECHNICAL ACTIVITIES 1983 CENTER FOR BASIC STANDARDS Karl G. Kessler, Director U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Measurement Laboratory Center for Basic Standards Washington, DC 20234 November 1 983 Final Issued January 1984 Prepared for: U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, DC 20234 U.S. DEPARTMENT OF COMMERCE, Malcolm Baidrige. Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director TABLE OF CONTENTS Part II Page Technical Activities: Introduction 1 Quantum Metrology Group 2 Electricity Division 21 Temperature and Pressure Division 81 Length and Mass Division 123 Time and Frequency Division 135 Quantum Physics Division 187 i i I 1 I II II i li 1 1 INTRODUCTION This book is Part II of the 1983 Annual Report of the Center for Basic Standards and contains a summary of the technical activities of the Center for the period October 1, 1982 to September 30, 1983. The Center is one of the five resources and operating units in the National Measurement Laboratory. The summary of activities is organized in six sections, one for the technical activities of the Quantum Metrology Group, and one each for the five divisions of the Center. -
El Dragon De Gaudi En Barcelona
NETWORK FOR ASTRONOMY SCHOOL EDUCATION EL DRAGON DE GAUDI EN BARCELONA Rosa M. Ros – NASE Introducción En 1884 Gaudí proyecta los pabellones de entrada y los jardines de la finca que tiene Eusebi Güell Bacigalupi en la zona de Pedralbes en Barcelona como un homenaje póstumo al suegro del Sr. Güell que pasaba temporadas en dicha finca. El martes 16 de enero de 1883 falleció en Barcelona el primer Marqués de Comillas, Antonio López López y los Pabellones Güell se realizan del 1884 al 1887. Para ello Gaudí se inspira en el Jardín de las Hespérides tal y como Jacinto Verdaguer lo describía en su poema La Atlántida. Verdaguer dedicó este poema en 1877 al Marqués de Comillas, y curiosamente el autor lo termino de escribir en esta misma finca. La finca Güell El conjunto se compone de la casa de los guardias y las caballerizas. Dos casas unidas por una puerta monumental (figura 1). En la entrada destaca la gran escultura de hierro forjado de Ladón, el dragón mitológico adversario de Hércules en su undécimo trabajo. Después de la muerte de Eusebio Güell, en 1918, sus descendientes ceden la casa y parte de los terrenos de la finca para construcción del Palacio Real de Pedralbes. Las antiguas caballerizas, el picador y la casa del guardia forman parte actualmente de la Universidad de Barcelona. Las caballerizas son la sede actual de la Real Cátedra Gaudí de la Universidad Politécnica de Cataluña. Figura 1: Pabellones de la Finca Güell: Casa del Guardia, puerta y Caballerizas. NETWORK FOR ASTRONOMY SCHOOL EDUCATION Este precioso conjunto modernista, tiene una de las puertas de hierro forjado mas fotografiadas de Barcelona (figura 1). -
Binocular Universe: Surfing Serpens August 2010 Phil Harrington
Binocular Universe: Surfing Serpens August 2010 Phil Harrington erpens the Serpent has the unique distinction of being the sky’s only constellation that is sliced in half by a second star group, the constellation Ophiuchus, the Serpent Bearer. To the west of Ophiuchus is Serpens Caput, the Serpent's head. This sparse S area is highlighted by the fine globular cluster M5, which was discussed in the June 2010 edition of this column, as well as several variable stars that are within binocular range. East of Ophiuchus is Serpens Cauda, the Serpent’s tail. But even with the plane of the Milky Way passing through, Serpens Cauda still contains no bright stars and surprisingly few deep-sky objects. But what it lacks in quantity, Serpens Cauda more than makes up for in quality. Above: Summer star map from Star Watch by Phil Harrington Above: Finder chart for this month's Binocular Universe. Chart adapted from Touring the Universe through Binoculars Atlas (TUBA), www.philharrington.net/tuba.htm Let’s begin with open cluster IC 4756, a faint, but large mob of stars that’s perfect for binoculars. Unfortunately, its position is quite far from any handy reference stars, so finding it can be a challenge. Your best bet is to trace a line between Altair, in Aquila the Eagle, and second-magnitude Cebalrai [Beta (β) Ophiuchi]. IC 4756 lies just south of the halfway point between the two. There might not be many bright stars nearby, but the cluster's field overflows with faint stardust. Eighty suns scattered across an apparent diameter nearly twice that of the Full Moon form a faint mist against the backdrop of the summer Milky Way. -
Solar Writer Report for Abraham Lincoln
FIXED STARS A Solar Writer Report for Abraham Lincoln Written by Diana K Rosenberg Compliments of:- Stephanie Johnson Seeing With Stars Astrology PO Box 159 Stepney SA 5069 Australia Tel/Fax: +61 (08) 8331 3057 Email: [email protected] Web: www.esotech.com.au Page 2 Abraham Lincoln Natal Chart 12 Feb 1809 12:40:56 PM UT +0:00 near Hodgenville 37°N35' 085°W45' Tropical Placidus 22' 13° 08°ˆ ‡ 17' ¾ 06' À ¿É ‰ 03° ¼ 09° 00° 06° 09°06° ˆ ˆ ‡ † ‡ 25° 16' 41'08' 40' † 01' 09' Œ 29' ‰ 9 10 23° ¶ 8 27°‰ 11 Ï 27° 01' ‘ ‰02' á 7 12 ‘ áá 23° á 23° ¸ 23°Š27' á Š à „ 28' 28' 6 18' 1 10°‹ º ‹37' 13° 05' ‹ 5 Á 22° ½ 27' 2 4 01' Ü 3 07° Œ ƒ » 09' 23° 09° Ý Ü 06° 16' 06' Ê 00°ƒ 13° 22' Ý 17' 08°‚ Page 23 Astrological Summary Chart Point Positions: Abraham Lincoln Planet Sign Position House Comment The Moon Capricorn 27°Cp01' 12th The Sun Aquarius 23°Aq27' 12th read into 1st House Mercury Pisces 10°Pi18' 1st Venus Aries 7°Ar27' 1st read into 2nd House Mars Libra 25°Li29' 8th Jupiter Pisces 22°Pi05' 1st Saturn Sagittarius 3°Sg08' 9th read into 10th House Uranus Scorpio 9°Sc40' 8th Neptune Sagittarius 6°Sg41' 9th read into 10th House Pluto Pisces 13°Pi37' 1st The North Node Scorpio 6°Sc09' 8th The South Node Taurus 6°Ta09' 2nd The Ascendant Aquarius 23°Aq28' 1st The Midheaven Sagittarius 8°Sg22' 10th The Part of Fortune Capricorn 27°Cp02' 12th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Square Mars 1°32' Separating The Moon Conjunction The Part of Fortune 0°00' Applying The Sun Trine Mars 2°02' Applying The Sun Conjunction The Ascendant -
Proto-Planetary Nebula Observing Guide
Proto-Planetary Nebula Observing Guide www.reinervogel.net RA Dec CRL 618 Westbrook Nebula 04h 42m 53.6s +36° 06' 53" PK 166-6 1 HD 44179 Red Rectangle 06h 19m 58.2s -10° 38' 14" V777 Mon OH 231.8+4.2 Rotten Egg N. 07h 42m 16.8s -14° 42' 52" Calabash N. IRAS 09371+1212 Frosty Leo 09h 39m 53.6s +11° 58' 54" CW Leonis Peanut Nebula 09h 47m 57.4s +13° 16' 44" Carbon Star with dust shell M 2-9 Butterfly Nebula 17h 05m 38.1s -10° 08' 33" PK 10+18 2 IRAS 17150-3224 Cotton Candy Nebula 17h 18m 20.0s -32° 27' 20" Hen 3-1475 Garden-sprinkler Nebula 17h 45m 14. 2s -17° 56' 47" IRAS 17423-1755 IRAS 17441-2411 Silkworm Nebula 17h 47m 13.5s -24° 12' 51" IRAS 18059-3211 Gomez' Hamburger 18h 09m 13.3s -32° 10' 48" MWC 922 Red Square Nebula 18h 21m 15s -13° 01' 27" IRAS 19024+0044 19h 05m 02.1s +00° 48' 50.9" M 1-92 Footprint Nebula 19h 36m 18.9s +29° 32' 50" Minkowski's Footprint IRAS 20068+4051 20h 08m 38.5s +41° 00' 37" CRL 2688 Egg Nebula 21h 02m 18.8s +36° 41' 38" PK 80-6 1 IRAS 22036+5306 22h 05m 30.3s +53° 21' 32.8" IRAS 23166+1655 23h 19m 12.6s +17° 11' 33.1" Southern Objects ESO 172-7 Boomerang Nebula 12h 44m 45.4s -54° 31' 11" Centaurus bipolar nebula PN G340.3-03.2 Water Lily Nebula 17h 03m 10.1s -47° 00' 27" PK 340-03 1 IRAS 17163-3907 Fried Egg Nebula 17h 19m 49.3s -39° 10' 37.9" Finder charts measure 20° (with 5° circle) and 5° (with 1° circle) and were made with Cartes du Ciel by Patrick Chevalley (http://www.ap-i.net/skychart) Images are DSS Images (blue plates, POSS II or SERCJ) and measure 30’ by 30’ (http://archive.stsci.edu/cgi- bin/dss_plate_finder) and STScI Images (Hubble Space Telescope) Downloaded from www.reinervogel.net version 12/2012 DSS images copyright notice: The Digitized Sky Survey was produced at the Space Telescope Science Institute under U.S. -
Smartstar Ieq45 Instruction Manual
® SmartStar® iEQ45TM With Go2NovaTM 8407 Hand Controller Instruction Manual Table of Content Table of Content.................................................................................................................................................2 1. iEQ45TM Overview.........................................................................................................................................4 2. iEQ45TM Assembly.........................................................................................................................................5 2.1. Parts List..................................................................................................................................................5 2.2. Assembly terms .......................................................................................................................................6 2.3. iEQ45 Ports .............................................................................................................................................7 2.4. Introduction .............................................................................................................................................7 2.5. iEQ45 Assembly......................................................................................................................................8 3. Go2NovaTM 8407 Hand Controller ..............................................................................................................17 3.1. Key Description.....................................................................................................................................17 -
GTO Keypad Manual, V5.001
ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN! -
SAC's 110 Best of the NGC
SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog. -
Atlas Menor Was Objects to Slowly Change Over Time
C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.