Bio-Activities of Extracts from Some Axenically Farmed and Naturally Grown Bryophytes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bryophytes: Indicators and Monitoring Agents of Pollution
NeBIO (2010) Vol. 1(1) Govindapyari et al . 35-41 GENERAL ARTICLE Bryophytes: indicators and monitoring agents of pollution H. Govindapyari, M. Leleeka, M. Nivedita and P. L. Uniyal Department of Botany, University of Delhi, Delhi – 110 007 Author for correspondence: [email protected], [email protected] Received: 17 September 2009; Revised and Accepted: 2 January 2010 ABSTRACT Bryophyte proves to be a potential bio-indicator of air pollution. The habitat diversity, structural simplicity, totipotency, rapid rate of multiplication and high metal accumulation capacity make bryophytes an ideal organism for pollution studies. The decline and absence of bryophyte populations especially epiphytes is a phenomenon primarily induced by air pollution caused by gaseous and particulate pollutants. Bryophytes are reliable indicators and monitors of air pollution as they are easy to handle and show a vast range of specific sensitivity and visible symptoms to pollutants greatly exceeding that of higher plants. KEY WORDS: Bryophyte, bio-indicator, air pollution, pollutants. Bryophytes are green land plants which lack a • which have the capacity to absorb and retain vascular system and are simple both morpho- pollutants in quantities much higher than those logically and anatomically. The growth potential in absorbed by other plant groups growing in the bryophytes is not as highly polarized as vascular same habitat. These plants trap and prevent plants. Bryophytes grow in a variety of habitats recycling of such pollutants in the ecosystem especially in moist places on soil, rocks, trunks and for different periods of time. Analysis of such branches of trees and fallen log. They obtain plants gives a fair idea about the degree of nutrients directly from substances dissolved in metal pollution. -
Volume 1, Chapter 2-7: Bryophyta
Glime, J. M. 2017. Bryophyta – Bryopsida. Chapt. 2-7. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-7-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 10 January 2019 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-7 BRYOPHYTA – BRYOPSIDA TABLE OF CONTENTS Bryopsida Definition........................................................................................................................................... 2-7-2 Chromosome Numbers........................................................................................................................................ 2-7-3 Spore Production and Protonemata ..................................................................................................................... 2-7-3 Gametophyte Buds.............................................................................................................................................. 2-7-4 Gametophores ..................................................................................................................................................... 2-7-4 Location of Sex Organs....................................................................................................................................... 2-7-6 Sperm Dispersal .................................................................................................................................................. 2-7-7 Release of Sperm from the Antheridium..................................................................................................... -
Mosses in Pine Phytocenosis in Dry Climate of East Kazakhstan
Asian Journal of Applied Sciences (ISSN: 2321 – 0893) Volume 04 – Issue 06, December 2016 Mosses in Pine Phytocenosis in Dry Climate of East Kazakhstan Irina Pankiv1, Svetlana Nesterova2, Nurziya Karipbayeva3, Vassiliy Polevik4, Viktor Khromov5 1Shakarim State University of Semey Semey, Kazakhstan 2Al-Farabi Kazakh National University Almaty, Kazakhstan 3Shakarim State University of Semey Semey, Kazakhstan 4Shakarim State University of Semey Semey, Kazakhstan 5Shakarim State University of Semey Semey, Kazakhstan *Corresponding author’s email: irina.g.pankiv [AT] gmail.com _________________________________________________________________________________ ABSTRACT— The present article is concerned with the results of a long-term study on the role of bryophytes in pine phytocenosis of East Kazakhstan. Comparative studies have been conducted in order to identify the change of species composition and their frequency on dry, fresh and wet formations of pine forest, as well as on the sites recovering from forest fires of 1997-2005. Such a large-scale study on the role of mosses with the use of geobotanical approach is the first to have been carried out in the territory of the Republic of Kazakhstan. The results of the study have provided data on species diversity of mosses in pine forest, their role in phytocenosis and an activity level of every specie in synusiae. Depending on the change of key parameters of plant communities in pine forest principles of bryophyte expansion have been identified. Keywords— Bryophytes, mosses, species diversity, pine forest, plant community, distribution, Semey city, East Kazakhstan, synusiae, geobotanical approach, Drude’s scale, level of species activity. _________________________________________________________________________________ 1. INTRODUCTION Kazakhstan is one of the largest countries in Asia, with an area of 2,724,900 square kilometers. -
Tardigrade Reproduction and Food
Glime, J. M. 2017. Tardigrade Reproduction and Food. Chapt. 5-2. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological 5-2-1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 5-2 TARDIGRADE REPRODUCTION AND FOOD TABLE OF CONTENTS Life Cycle and Reproductive Strategies .............................................................................................................. 5-2-2 Reproductive Strategies and Habitat ............................................................................................................ 5-2-3 Eggs ............................................................................................................................................................. 5-2-3 Molting ......................................................................................................................................................... 5-2-7 Cyclomorphosis ........................................................................................................................................... 5-2-7 Bryophytes as Food Reservoirs ........................................................................................................................... 5-2-8 Role in Food Web ...................................................................................................................................... 5-2-12 Summary .......................................................................................................................................................... -
Flora Mediterranea 26
FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M. -
(Bryum Argenteum Hedw.) on Creeping Bentgrass Putting Greens
Chemical and Biological Control of Silvery Threadmoss (Bryum argenteum Hedw.) on Creeping Bentgrass Putting Greens Angela Rose Post Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Pathology, Physiology and Weed Science Shawn D. Askew Antonius B. Baudoin Jacob N. Barney Erik H. Ervin David S. McCall July 2nd, 2013 Blacksburg, Virginia Keywords: biological control, herbicide, preemergent, postemergent, radiolabeled herbicide, silvery threadmoss i Chemical and Biological Control of Silvery Threadmoss (Bryum argenteum Hedw.) on Creeping Bentgrass Putting Greens Angela Rose Post ABSTRACT Silvery threadmoss is a problematic weed of golf putting greens, growing interspersed with turf, decreasing aesthetic quality and playability. Moss is typically controlled postemergence and currently only one herbicide, carfentrazone, is registered for silvery threadmoss control on greens. Carfentrazone controls moss up to 75% applied at a three week interval throughout the growing season. Alternatives providing longer residual or more effective control are desirable. Studies were conducted to examine the growth of moss gametophytes from spores and bulbils and to evaluate turf protection products for pre and postemergence moss control. Moss gametophytes develop best from spores at 30C and from bulbils at 23C. Products which control moss equivalent to carfentrazone (>70%) both pre and postemergent include sulfentrazone, saflufenacil, flumioxazin, oxadiazon, and oxyfluorfen. Fosamine and fosetyl-Al alone controlled moss equivalent to carfentrazone post-, but not preemergent. 14C glyphosate absorption and translocation through moss colonies was examined from 12 to 192 hours after treatment (HAT) to understand how herbicides are absorbed by silvery threadmoss. -
LIVERWORT (Reboulia Hemisphaerica)
23 LIVERWORT (Reboulia hemisphaerica) A liverwort known to favor habitats Figure 23.1 Two colonies of liverwort growing from soil in a brick walkway. Reboulia hemisphaerica is on the right, and Marchantia polymor- pha is on the left. The species on the right is reported to favor “wild” in wild areas has established habitats; the species on the left can be weedy. The site of all photos of liverworts illustrated in this chapter is the alley in figure 23.7 unless colonies on brick walkways in stated otherwise. Center City. From Ecology of Center City, Philadelphia by Kenneth D. Frank. Published in 2015 by Fitler Square Press, Philadelphia, PA. In 1799 the American Philosophical Society of Philadelphia published a list of liver- worts found within a mile of the city of Lancaster, 93 kilometers west of Philadel- phia. It was the first systematic account of liverworts published in North America. The author, Henrico Muhlenberg, credited his identifications to many authorities, all European. One of the liverworts he found is Reboulia hemisphaerica, which has no common name.1 Reboulia hemisphaerica in Center City Reboulia hemisphaerica is shaped like a ribbon about 0.5 centimeter wide and 1–3 centimeters long. In Center City it anchors itself on soil in spaces between brick pavers. The ribbon, or thallus, grows flat along the top of the brick and bifurcates once or twice as it grows. If the surface of the soil is below the top of the brick, it grows up the side of the brick. Sometimes many thalli radiate from a sliver of soil between bricks. -
Phylogeny of Three East Antarctic Mosses
University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2013 Phylogeny of Three East Antarctic Mosses Rhys A. Wyber University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Wyber, Rhys A., Phylogeny of Three East Antarctic Mosses, Bachelor of Medical Biotechnology Advanced - Honours thesis, , University of Wollongong, 2013. https://ro.uow.edu.au/theses/4646 Research Online is the open access institutional repository for the University of Wollongong. -
Establishment and Development of the Catherine’S Moss Atrichum Undulatum (Hedw.) P
Arch. Biol. Sci., Belgrade, 58 (2), 87-93, 2006. ESTABLISHMENT AND DEVELOPMENT OF THE CATHERINE’S MOSS ATRICHUM UNDULATUM (HEDW.) P. BEAUV. (POLYTRICHACEAE) IN IN VITRO CONDITIONS 1 ANETA SABOVLJEVIĆ1, 2, TIJANACVETIĆ andM. SABOVLJEVIĆ1, 3 1Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia and Montenegro 2Institute of Botany, University of Cologne, 50931 Cologne, Germany 3AG Bryology, Nees Institute of Botany, University of Bonn, 53115 Bonn, Germany Abstract - The effect of sucrose and mineral salts on morphogenesis of the Catherine’s moss (Atrichum undulatum)in in vitro culture was tested. In vitro culture of this species was established from disinfected spores on Murashige and Skoog (MS) medium. Apical shoots of gametophytes were used to investigate the influence of sucrose and mineral salts on protonemal and gametophyte growth and multiplication. Paper also treats morpho-anatomical characteristics of plants grown in nature and plants derived from in vitro culture. Key words: Brzophytes, morphogenesis, Catherine’s moss, growth, multiplication UDC 582.325.1:57.08 INTRODUCTION higher plants, (2) haploid gametophyte of the dominant vegetative phase, and (3) lower chromosome numbers The Catherine’s moss [Atrichum undulatum (Hedw.) P. (Gang et al., 2003). Cells of bryophytes, especially in Beauv.] is among the largest European terrestrial moss suspension culture, have been noted as ideal materials for species. It is widespread across Europe, and due to its morphogenetic, genetic, physiological, biochemical, and size is widely used in moss biology research (e.g., Be- molecular studies (O n o et al., 1988). querel, 1906; G e m m e l l, 1953; W o r d, 1960; Sitte, 1963; W o l t e r s, 1964; B r o w n and Lem- According to F e l i x (1994), 31 liverworts, 18 mon, 1987; O n o et al., 1987; L i n d e m a n n et al., mosses, and one hornwort have been used asexperimen- 1989; M i l e s and L o n g t o n, 1990; Stoneburn- tal objects in the sterile culture of bryophytes. -
The Genus Anomobryum Schimp. (Bryopsida, Bryaceae) in Australia
777 The genus Anomobryum Schimp. (Bryopsida, Bryaceae) in Australia John R. Spence and Helen P. Ramsay Abstract Spence, John R.1 and Ramsay, Helen P.2 (1National Park Service, Glen Canyon NRA, PO Box 1507, Page, AZ 86040, USA; 2National Herbarium of New South Wales, Mrs. Macquaries Road, Royal Botanic Gardens, Sydney, NSW 2000, Australia) 2002. The genus Anomobryum Schimp. (Bryopsida, Bryaceae) in Australia. Telopea 9(4) 777–792. The genus Anomobryum has been revised for Australia and five species are recognized: A. auratum (Mitt.) A. Jaeger, A. harriottii (R. Br. bis.) Dixon, Anomobryum sp. (= Bryum argenteum Hedw.), and two new combinations made for species transferred from Bryum: A. lanatum (P. Beauv.) J.R. Spence & H.P. Ramsay, and A. subrotundifolium (A. Jaeger) J.R. Spence & H.P. Ramsay. Keys, descriptions, illustrations and distributions are presented for the species in Australia. Relationships with other genera in the Bryaceae are discussed. Introduction In this study the genus Anomobryum (Bryaceae) has been examined in detail as a contribution for the Flora of Australia. Anomobryum is closely related to the widespread genus Bryum and most bryologists (e.g. Smith 1978, Crum & Anderson 1981, Noguchi 1994, Eddy 1996) consider it a separate genus, although Ochi (1970, 1992) retained it as a subgenus within Bryum. In general Anomobryum is distinguished by its very small size, julaceous stems, and leaves with a weak costa and smooth margins, all features that it shares with the silver Bryum species, such as B. argenteum Hedw. At least two species of Anomobryum are also silver in colouration like B. argenteum and its allies. -
The Potential Ecological Impact of Ash Dieback in the UK
JNCC Report No. 483 The potential ecological impact of ash dieback in the UK Mitchell, R.J., Bailey, S., Beaton, J.K., Bellamy, P.E., Brooker, R.W., Broome, A., Chetcuti, J., Eaton, S., Ellis, C.J., Farren, J., Gimona, A., Goldberg, E., Hall, J., Harmer, R., Hester, A.J., Hewison, R.L., Hodgetts, N.G., Hooper, R.J., Howe, L., Iason, G.R., Kerr, G., Littlewood, N.A., Morgan, V., Newey, S., Potts, J.M., Pozsgai, G., Ray, D., Sim, D.A., Stockan, J.A., Taylor, A.F.S. & Woodward, S. January 2014 © JNCC, Peterborough 2014 ISSN 0963 8091 For further information please contact: Joint Nature Conservation Committee Monkstone House City Road Peterborough PE1 1JY www.jncc.defra.gov.uk This report should be cited as: Mitchell, R.J., Bailey, S., Beaton, J.K., Bellamy, P.E., Brooker, R.W., Broome, A., Chetcuti, J., Eaton, S., Ellis, C.J., Farren, J., Gimona, A., Goldberg, E., Hall, J., Harmer, R., Hester, A.J., Hewison, R.L., Hodgetts, N.G., Hooper, R.J., Howe, L., Iason, G.R., Kerr, G., Littlewood, N.A., Morgan, V., Newey, S., Potts, J.M., Pozsgai, G., Ray, D., Sim, D.A., Stockan, J.A., Taylor, A.F.S. & Woodward, S. 2014. The potential ecological impact of ash dieback in the UK. JNCC Report No. 483 Acknowledgements: We thank Keith Kirby for his valuable comments on vegetation change associated with ash dieback. For assistance, advice and comments on the invertebrate species involved in this review we would like to thank Richard Askew, John Badmin, Tristan Bantock, Joseph Botting, Sally Lucker, Chris Malumphy, Bernard Nau, Colin Plant, Mark Shaw, Alan Stewart and Alan Stubbs. -
Flora of North America, Volume 27, 2007
24 ECONOMIC AND ETHNIC USES toothpicks or small twigs. Many gardeners apply mosses to loose soil, then trample the mosses once in place. Many planting techniques take advantage of the ability of bryophytes to grow from vegetative fragments. In experiments with Atrichum undulatum and Bryum argenteum, many fragments developed shoots, whereas upright stems usually failed to develop from protonemata started with spores (C. J. Miles and R. E. Longton 1990). C. Gillis (1991) explained how to prepare, plant, and maintain a moss garden. She described mixing a handful of moss, a can of beer, and a half teaspoon of sugar in a blender, then spreading the mixture 0.5 cm thick on the ground; it produced moss growth within five weeks. Others have successfully used buttermilk, egg whites, rice water, carrot water, potato water, and even just water as the medium instead of beer (V. L. Ellis 1992). Such mixtures are helpful in assuring that moss fragments adhere to rocks. In their “Fact sheet for moss gardening,” the American Horticultural Society recommended grinding dried moss and spreading it as powder, cautioning the gardener never to buy moss from a grower unless certain that the moss has been propagated by the seller and not taken from the wild. They recommended keeping the pH below 5.5 by applying sulfur, buttermilk, or aluminum sulfate. Successful starters can be grown from fragments between two moist sheets of cheesecloth (J. K. Whitner 1992), although spores can be used as well (J. McDowell 1968). Partially dried moss fragments must be spread over cheesecloth that overlies a sand-peatmoss or sawdust mix in a flat.