Stabilized Finite Element Formulations for Solving Incompressible Magnetohydrodynamics

Total Page:16

File Type:pdf, Size:1020Kb

Stabilized Finite Element Formulations for Solving Incompressible Magnetohydrodynamics UNIVERSITAT POLITECNICA` DE CATALUNYA PhD Thesis STABILIZED FINITE ELEMENT FORMULATIONS FOR SOLVING INCOMPRESSIBLE MAGNETOHYDRODYNAMICS by Ramon Planas Badenas Barcelona, September 2013 Stabilized finite element formulations for solving incompressible magnetohydrodynamics Author: Ramon Planas Advisors: Santiago Badia, Ramon Codina Escola T`ecnicaSuperior d'Enginyers de Camins, Canals i Ports Universitat Polit`ecnicade Catalunya September 2013 Curs acadèmic: Acta de qualificació de tesi doctoral Nom i cognoms Programa de doctorat Unitat estructural responsable del programa Resolució del Tribunal Reunit el Tribunal designat a l'efecte, el doctorand / la doctoranda exposa el tema de la seva tesi doctoral titulada __________________________________________________________________________________________ _________________________________________________________________________________________. Acabada la lectura i després de donar resposta a les qüestions formulades pels membres titulars del tribunal, aquest atorga la qualificació: APTA/E NO APTA/E (Nom, cognoms i signatura) (Nom, cognoms i signatura) President/a Secretari/ària (Nom, cognoms i signatura) (Nom, cognoms i signatura) (Nom, cognoms i signatura) Vocal Vocal Vocal ______________________, _______ d'/de __________________ de _______________ El resultat de l’escrutini dels vots emesos pels membres titulars del tribunal, efectuat per l’Escola de Doctorat, a instància de la Comissió de Doctorat de la UPC, atorga la MENCIÓ CUM LAUDE: SÍ NO (Nom, cognoms i signatura) (Nom, cognoms i signatura) Presidenta de la Comissió de Doctorat Secretària de la Comissió de Doctorat Barcelona, _______ d'/de ____________________ de _________ Acknowledgements I would like to thank my co-advisors, Santi Badia and Ramon Codina, for their support, advice and never-ending patience to solve my doubts. It's been a great experience to work with them, who have such a vast knowledge of this field. I also really appreciate the advice, help and discussions with my co-workers during these years, Javier Principe, Alberto Mart´ın,Rub´enOt´ın,Elisabet Mas de les Valls, Oriol Colom´es,Alba Hierro, Marc Olm, Joan Baiges, Vladimir Jazarevic, and the rest of people at CIMNE and RMEE-UPC. The financial support received from the Universitat Polit`ecnica de Catalunya (UPC) and from the Col.legi d'Enginyers de Camins, Canals i Ports de Catalunya is gratefully acknowledged. 5 Abstract Magnetohydrodynamics (MHD) is the physics branch that studies electrically conduct- ing fluids under external magnetic fields. This thesis deals with the numerical approx- imation using stabilized finite element methods of two different formulations to model incompressible MHD, namely the resistive and inductionless MHD problems. Further, the linear systems of equations resulting from the application of these discrete formula- tions to simulate real cases are typically ill-conditioned and can have as many as 106-109 degrees of freedom. An efficient and scalable solver strategy is mandatory in these cases. On one hand, a new stabilized finite element formulation for the approximation of the resistive magnetohydrodynamics equations has been proposed. The novelty of this formulation with respect to existing ones is that it always converges to the physical so- lution, even when it is singular, which has been proved through a detailed stability and convergence analysis of the formulation. Moreover, it is inferred from the convergence analysis that a particular type of meshes with a macro-element structure is needed, which can be easily obtained after a straight modification of any original mesh. Finally, different operator splitting schemes have been proposed for solving the transient incom- pressible resistive MHD system that are unconditionally stable. Two levels of splitting have been considered. On the first level, the segregation of the Lagrange multipliers, the fluid pressure and the magnetic pseudo-pressure, from the vectorial fields computation is achieved. On the second level, the fluid velocity and induction fields are also decoupled. This way, the fully coupled indefinite multiphysics system is transformed into smaller uncoupled one-physics problems. On the other hand, a stabilized formulation to solve the inductionless magnetohy- drodynamic problem using the finite element method is presented. The inductionless MHD problem models the flow of an electrically charged fluid under the influence of an external magnetic field where the magnetic field induced in the fluid by the currents is negligible with respect to the external one. This system of partial differential equations is strongly coupled and highly nonlinear for real cases of interest. Therefore, solving the multiphysics linear systems of equations resulting from the discretization of these equa- tions with finite element methods is a very challenging task which requires efficient and scalable preconditioners. A new family of recursive block LU preconditioners has been designed to improve the convergence of iterative solvers for this problem. These precon- ditioners are obtained after splitting the fully coupled matrix into one-physics problems for every variable (velocity, pressure, current density and electric potential) that can be optimally solved, e.g. using preconditioned domain decomposition algorithms. Further- more, these ideas have been extended for developing recursive block LU preconditioners for the thermally coupled inductionless MHD problem. 7 Resum La magnetohidrodin`amica(MHD) ´esla branca de la F´ısicaque estudia el moviment de fluids el`ectricament conductors que es troben sotmesos a camps magn`eticsexterns. Aquesta tesi tracta de l'aproximaci´onum`ericaamb m`etodes d'element finits estabilitzats de dues formulacions per modelar el problema de la MHD incompressible, com s´onla MHD resistiva i la MHD sense inducci´o. A m´esa m´es,els sistemes lineals d'equacions que resulten de l’aplicaci´od'aquestes formulacions discretes per a simular casos reals solen ser mal condicionats i poden arribar a comprendre entre 106-109 graus de llibertat. La ressoluci´od'aquests sistemes lineals d'equacions necessita obligat`oriament una estrat`egia eficient i escalable. Per una banda, s'ha proposat una nova formulaci´oestabilitzada d'elements finits per a l'aproximaci´ode les equacions de la MHD resistiva. La novetat d'aquesta formulaci´o resideix en el fet que sempre convergeix a la soluci´of´ısicadel problema, fins i tot quan ´es singular, cosa que s'ha demostrat a trav´esde les an`alisisd'estabilitat i converg`enciadel m`etode. A m´es,l’an`aliside converg`encia mostra la necessitat de fer servir un tipus par- ticular de malles amb una estructura de macro-element, que es poden obtenir f`acilment a partir de qualsevol malla original. Finalment, s'han proposat diferents esquemes de segregaci´oincondicionalment estables per a resoldre el problema de la MHD resistiva transit`oria.S'han considerat dos nivells de segregaci´o.El primer nivell permet la segre- gaci´odels multiplicadors de Lagrange, la pressi´oi la pseudo-pressi´omagn`etica,del c`alcul dels camps vectorials. En el segon nivell, es desacobla el c`alculdels camps vectorials, la velocitat i l’inducci´omagn`etica.D'aquesta manera, el sistema de multif´ısicatotalment acoblat es transforma en problemes d'una f´ısicadesacoblats i m´espetits. D'altra banda, tamb´es'ha presentat una formulaci´oestabilitzada per al problema de la MHD sense inducci´o.Aquest problema permet modelar el flux d'un fluid carregat el`ectricament sota l'efecte d'un camp magn`eticextern on el camp magn`eticindu¨ıtal fluid pels corrents ´esnegligible respecte del camp magn`eticextern. Aquest sistema d'equacions ´esfortament acoblat i altament no lineal. Llavors, resoldre els sistemes d'equacions lineals que resulten de la discretitzaci´oamb m`etodes d'elements finits d'aquestes equacions ´esun gran repte que necessita precondicionadors eficients i escalables. S'ha desenvolupat una nova fam´ıliade precondicionadors LU per blocs recursius per millorar la converg`encia dels m`etodes iteratius per a resoldre aquest problema. Aquests precondicionadors permeten la segregaci´ode la matriu totalment acoblada en problemes d'una f´ısicaper a cada una de les variables del problema (velocitat, pressi´o,densitat de corrent i potencial el`ectric)que es poden resoldre de forma `optima,per exemple, fent servir algorismes de descomposici´o de domini precondicionats. A m´esa m´es,aquestes idees s'han ext`esper a desenvolupar precondicionadors LU per blocs recursius per al problema de la MHD sense inducci´o amb acoblament t`ermic. 8 Contents 1 Introduction 13 2 Resistive MHD problem 16 2.1 Introduction . 16 2.1.1 State-of-the-art . 16 2.1.2 Motivation of the work . 17 2.2 Problem statement . 18 2.2.1 The strong form . 18 2.2.2 The weak form . 20 2.3 Some finite element approximations . 21 2.4 Time discretization and linearization . 23 2.5 A stabilized FE formulation suitable for singular magnetic solutions . 24 2.6 Numerical experimentation . 27 2.6.1 Convergence to singular solutions. Case 2D . 27 2.6.2 Convergence to singular solutions. Extension to the 3D case . 29 2.6.3 Classical MHD problems with analytical solution. Shercliff's case 35 2.6.4 Classical MHD problems with analytical solution. Hunt's case . 37 2.6.5 Clogging of nozzles in steel casting processes. 38 2.7 Conclusions . 40 3 Analysis of the stabilized formulation for the resistive MHD problem 42 3.1 Introduction . 42 3.2 Problem statement . 43 3.2.1 The strong form . 43 3.2.2 The weak form . 44 3.3 A stabilized FE formulation suitable for singular magnetic solutions . 46 3.4 Stability analysis . 48 3.5 Convergence analysis . 53 3.6 Some comments on the nonlinear analysis . 56 3.7 Numerical experimentation . 57 3.8 Conclusions . 59 4 Operator splitting solvers for the resistive MHD problem 66 4.1 Introduction . 66 4.2 Problem statement . 69 4.2.1 Continuous problem . 69 9 4.2.2 Weak form . 69 4.2.3 Galerkin finite element approximation and time integration . 71 4.3 Linearization and semi-implicit algorithms . 74 4.4 Term-by-term stabilized finite element formulation . 75 4.5 Operator splitting techniques .
Recommended publications
  • An Introduction to Computational Fluid Dynamics
    An Introduction to Computational Fluid Dynamics Chapter 20 in Fluid Flow Handbook By Nasser Ashgriz & Javad Mostaghimi Department of Mechanical & Industrial Eng. University of Toronto Toronto, Ontario 1 Introduction:................................................................................................................ 2 2 Mathematical Formulation.......................................................................................... 3 2.1 Governing equations.............................................................................................. 3 2.2 Boundary Conditions............................................................................................. 5 2.2.1 Example....................................................................................................... 7 3 Techniques for Numerical Discretization ................................................................... 9 3.1 The Finite Difference Method ............................................................................... 9 3.2 The Finite Element Method................................................................................. 11 3.3 The Finite Volume Method ................................................................................. 14 3.4 Spectral Methods................................................................................................. 15 3.5 Comparison of the Discretization Techniques..................................................... 16 4 Solving The Fluid Dynamic Equations....................................................................
    [Show full text]
  • Advanced Development of Smoothed Finite Element Method (S-FEM) and Its Applications
    Advanced Development of Smoothed Finite Element Method (S-FEM) and Its Applications A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Aerospace Engineering and Engineering Mechanics of the College of Engineering and Applied Science April 2015 by Wei Zeng M.S., Hunan University, 2008 B.S., Hunan University, 2005 Committee: Dr. G.R. Liu, Dr. S. Abdallah Dr. Y.J. Liu, Dr. F. Simonetti Abstract The smoothed finite element method (S-FEM) was recently proposed to bring softening effects into and improve the accuracy of the standard FEM. In the S-FEM, the system stiffness matrix is obtained using strain smoothing technique over the smoothing domains associated with cells, nodes, edges or faces to establish models of desired properties. In this dissertation, it will introduce several aspects of advanced development and applications of S-FEM in solid mechanics. The idea, main work and contribution are included in four aspects as following: (1) A Generalized Stochastic Cell-based S-FEM (GS_CS-FEM): The cell-based S-FEM is extended for stochastic analysis based on the generalized stochastic perturbation technique. Numerical examples are presented and the obtained results are compared with the solution of Monte Carlo simulations. It is found that the present GS_CS-FEM method can improve the solution accuracy with high-efficiency for stochastic problems with large uncertainties. (2) An effective fracture analysis method based on the VCCT implemented in CS-FEM: The VCCT is formulated in the framework of CS-FEM for evaluating SIF’s and for modeling the crack propagation in solids.
    [Show full text]
  • The $ P $-And $ Hp $-Versions of the Virtual Element Method for Elliptic
    The p- and hp-versions of the virtual element method for elliptic eigenvalue problems O. Cert´ıkˇ ,∗ F. Gardini,y G. Manzini,z L. Mascotto,x G. Vacca{ Abstract We discuss the p- and the hp-versions of the virtual element method for the approximation of eigenpairs of elliptic operators with a potential term on polygonal meshes. An application of this model is provided by the Schr¨odingerequation with a pseudo-potential term. We present in details the analysis of the p-version of the method, proving exponential convergence in the case of analytic eigenfunctions. The theoretical results are supplied with a wide set of experiments. We also show numerically that, in the case of eigenfunctions with finite Sobolev regularity, an exponential approximation of the eigenvalues in terms of the cubic root of the number of degrees of freedom can be obtained by employing hp-refinements. Importantly, the geometric flexibility of polygonal meshes is exploited in the construction of the hp-spaces. AMS subject classification: 65L15, 65N15, 65N30 Keywords: virtual element methods, polygonal meshes, eigenvalue problems, p- and hp- Galerkin methods 1 Introduction In the last five years, the virtual element method (VEM) [1,11], has established itself as one of the most ductile and flexible Galerkin methods for the approximation of solutions to partial differential equations (PDEs) on polygonal and polyhedral meshes, i.e., meshes with arbitrarily-shaped polyg- onal/polyhedral (polytopal, for short) elements. Implementation details can be found in [14]. The method has been proved to be very successful for a number of mathematical/engineering problems, an extremely short list being given by References [2, 3, 5, 12, 22, 35, 36, 55, 56].
    [Show full text]
  • 10907067.Pdf
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Queensland University of Technology ePrints Archive This is the author’s version of a work that was submitted/accepted for pub- lication in the following source: Liu, QingXia, Gu, YuanTong, Zhuang, Pinghui, Liu, Fawang, & Nie, Yufeng (2011) An implicit RBF meshless approach for time fractional diffusion equations. Computational Mechanics, 48(1), pp. 1-12. This file was downloaded from: http://eprints.qut.edu.au/45681/ c Copyright 2011 Springer The original publication is available at SpringerLink http://www.springerlink.com Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source: http://dx.doi.org/10.1007/s00466-011-0573-x An implicit RBF meshless approach for time fractional diffusion equations Q. Liu 1,Y. T. Gu 2*,P. Zhuang 1, F. Liu 3, and Y.F. Nie 4 1. School of mathematical sciences, Xiamen University, 361005, Xiamen, China 2. School of Engineering Systems, Queensland University of Technology, Brisbane, Australia 3. School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia 4. School of Natural and Applied Sciences, Northwestern Polytechnical University, 710072, Xi’an China Abstract: This paper aims to develop an implicit meshless approach based on the radial basis function (RBF) for numerical simulation of time fractional diffusion equations. The meshless RBF interpolation is firstly briefed. The discrete equations for two-dimensional time fractional diffusion equation (FDE) are obtained by using the meshless RBF shape functions and the strong-forms of the time FDE.
    [Show full text]
  • BV Estimates for Mortar Methods in Linear Elasticity
    BV estimates for mortar methods in linear elasticity Patrice Hauret Michael Ortiz ∗ Graduate Aeronautical Laboratories, California Institute of Technology Pasadena, CA 91125, USA Abstract This paper is concerned with the convergence of mortar methods applied to linear elasticity. We prove that the conventional mesh-dependent norms used in the anal- ysis of mortar methods are bounded below by the BV norm. When combined with standard results, this bound establishes a decomposition-independent and mesh- independent proof of the convergence of mortar methods in linear elasticity. Key words: Mortar methods, error estimates, BV space, linear elasticity PACS: 02.60, 46.20 1 Introduction Mortar methods were introduced by C. Bernardi, Y. Maday and A.T. Pat- era for the Poisson equation in [1,2] in order to formulate a weak continuity condition at the interface of subdomains in which different variational approx- imations are used. Relaxing the constraint on the boundaries of the interfaces, the formulation of F. Ben Belgacem [3] with Lagrange multipliers is the stan- dard framework in which the method is understood at present time. One of the key aspects of the method consists of defining appropriate spaces of Lagrange multipliers for enforcing the gluing constraint. Indeed, the original proposal of a modified trace space [1,2] for Lagrange multipliers suffers from a number of shortcomings, such as the non-locality of the constraint over the interfaces, and a necessary special treatment of the boundary of the interfaces. Using the ∗ Corresponding author. Email addresses: [email protected] (Patrice Hauret), [email protected] (Michael Ortiz). Preprint submitted to Elsevier Science 23 August 2005 concept of bi-orthogonal bases for low order elements, both Wohlmuth [4] and Kim-Lazarov-Pasciak-Vassilevski [5] proposed Lagrange multipliers rendering the constraint diagonal.
    [Show full text]
  • A FETI Method for a TDNNS Discretization of Plane Elasticity
    www.oeaw.ac.at A FETI method for a TDNNS discretization of plane elasticity A. Pechstein, C. Pechstein RICAM-Report 2013-11 www.ricam.oeaw.ac.at A FETI METHOD FOR A TDNNS DISCRETIZATION OF PLANE ELASTICITY∗ ASTRID PECHSTEINy AND CLEMENS PECHSTEINz Abstract. In this article, we consider a hybridized tangential-displacement normal-normal- stress (TDNNS) discretization of linear elasticity. As shown in earlier work by Joachim Sch¨oberl and the first author, TDNNS is a stable finite element discretization that does not suffers from volume locking. We propose a finite element tearing and interconnecting (FETI) method in order to solve the resulting linear system iteratively. The method is analyzed thoroughly for the compressible case in two dimensions, leading to a condition number bound of C(1 + log(H=h))2, which coincides with known bounds of many other iterative substructuring methods. Numerical results confirm our theoretical findings. Furthermore, our experiments show that a certain instance of the method remains stable even in the almost incompressible limit. Key words. linear elasticity, finite element method, TDNNS, iterative solvers, domain decom- position, FETI, almost incompressible AMS subject classifications. 65N30, 65N22, 65N55, 74B05 1. Introduction. The tangential-displacement normal-normal-stress (TDNNS) method is a mixed finite element method for linear elasticity, see [33]. Its main benefits are that the method is applicable both in case of nearly incompressible materials [38, Ch. 5] and for structurally anisotropic discretizations of slim domains by tensor product elements [34]. The TDNNS method is in between standard finite element discretizations using continuous elements for the displacement and mixed methods based on the dual Hellinger-Reissner formulation, where continuity of the normal stress vector is necessary.
    [Show full text]
  • Stabilized Finite Element Formulations for Solving Incompressible Magnetohydrodynamics
    UNIVERSITAT POLITECNICA` DE CATALUNYA PhD Thesis STABILIZED FINITE ELEMENT FORMULATIONS FOR SOLVING INCOMPRESSIBLE MAGNETOHYDRODYNAMICS by Ramon Planas Badenas Barcelona, September 2013 Stabilized finite element formulations for solving incompressible magnetohydrodynamics Author: Ramon Planas Advisors: Santiago Badia, Ramon Codina Escola T`ecnicaSuperior d'Enginyers de Camins, Canals i Ports Universitat Polit`ecnicade Catalunya September 2013 Curs acadèmic: Acta de qualificació de tesi doctoral Nom i cognoms Programa de doctorat Unitat estructural responsable del programa Resolució del Tribunal Reunit el Tribunal designat a l'efecte, el doctorand / la doctoranda exposa el tema de la seva tesi doctoral titulada __________________________________________________________________________________________ _________________________________________________________________________________________. Acabada la lectura i després de donar resposta a les qüestions formulades pels membres titulars del tribunal, aquest atorga la qualificació: APTA/E NO APTA/E (Nom, cognoms i signatura) (Nom, cognoms i signatura) President/a Secretari/ària (Nom, cognoms i signatura) (Nom, cognoms i signatura) (Nom, cognoms i signatura) Vocal Vocal Vocal ______________________, _______ d'/de __________________ de _______________ El resultat de l’escrutini dels vots emesos pels membres titulars del tribunal, efectuat per l’Escola de Doctorat, a instància de la Comissió de Doctorat de la UPC, atorga la MENCIÓ CUM LAUDE: SÍ NO (Nom, cognoms i signatura) (Nom, cognoms i signatura) Presidenta de la Comissió de Doctorat Secretària de la Comissió de Doctorat Barcelona, _______ d'/de ____________________ de _________ Acknowledgements I would like to thank my co-advisors, Santi Badia and Ramon Codina, for their support, advice and never-ending patience to solve my doubts. It's been a great experience to work with them, who have such a vast knowledge of this field.
    [Show full text]
  • Trefftz Method VI Method of Fundamental Solutions II
    Joint International Workshop on Trefftz Method VI and Method of Fundamental Solutions II DDDeeepppaaarrrtttmmmeeennnttt ooofff AAAppppppllliiieeeddd MMMaaattthhheeemmmaaatttiiicccsss NNNaaatttiiiooonnnaaalll SSSuuunnn YYYaaattt---ssseeennn UUUnnniiivvveeerrrsssiiitttyyy KKKaaaooohhhsssiiiuuunnnggg,,, TTTaaaiiiwwwaaannn MMMaaarrrccchhh 111555---111888,,, 222000111111 Edited by Z. C. Li, T. T. Lu, A. H.-D. Cheng D. L. Young, J. T. Chen, C. S. Chen and Y. T. Lee Joint International Workshop on Trefftz Method VI and Method of Fundamental Solution II National Sun Yat-sen University, Kaohsiung, Taiwan, March 15-18,2011 Content Content................................................................................................................ 1 Preface................................................................................................................. 2 History of Trefftz VI........................................................................................ 2 History of MFS II............................................................................................. 3 About the Joint Conference on Trefftz method/MFS....................................... 3 Organizing Committee...................................................................................... 5 About NSYSU..................................................................................................... 8 Introduction...................................................................................................... 8 History.............................................................................................................
    [Show full text]