LOCALISATION and MODULATION of Gabab and 5-HT3

Total Page:16

File Type:pdf, Size:1020Kb

LOCALISATION and MODULATION of Gabab and 5-HT3 LOCALISATION AND MODULATION OF GABA b AND 5-HT3 RECEPTORS IN RODENT BRAIN: AN AUTORADIOGRAPHIC STUDY Gerard David Pratt B.Sc. A thesis submitted to the University of London in part fulfilment of the requirements for the degree of Doctor of Philosophy Department of Pharmacology, The School of Pharmacy, 29/39, Brunswick Square, LONDON, WC1N 1AX. May 1991 ProQuest Number: U050912 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U050912 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 2 ABSTRACT Autoradiographical visualisation of GABA b binding sites in sections of rat brain has extended the findings of previous reports in that within the frontal cortex, the distribution of such sites is clearly laminated into four distinct regions. Furthermore, GABA b binding sites have also been identified in the dorsal vagal complex of the brainstem, especially within the nucleus tractus solitarius (NTS). In parallel with these GABAergic medullary receptors, detailed analysis of the autoradiography of the 5-HT3 receptor radioligand, [3H]BRL43694 (as well as [3H]zacopride, [3H]GR65630 and [3H]quipazine) has also been investigated within this region. Using histological markers in conjunction with autoradiography, 5-HT3 binding sites were localised in the area postrema, dorsal motor vagal nucleus and the nucleus of the spinal tract of the trigeminal nerve. However, by far the highest concentration of sites was observed in the NTS. As the NTS/dorsal vagal complex provides the site of termination for the majority of vagal afferent fibres, 5-HT3, GABA b and GABA a receptor autoradiography was examined 10 days after vagal lesioning achieved via chronic unilateral nodose ganglionectomy. Since all three binding site categories were reduced ipsilaterally in the dorsal vagal complex, this suggested that such sites are likely to be located presynaptically on vagal afferent fibres that terminate in this region. Conflicting and inconsistent reports regarding GABA b receptor modulation by chronic antidepressant treatment prompted the use of receptor autoradiography (restricted to the sub-laminal regions of the frontal cortex) in an attempt to resolve this issue. Administration of imipramine (14 days) either orally or via subcutaneously implanted osmotic minipumps failed to increase GABA b receptor numbers in this region. In contrast, chronic oral and i.p. administration (21 days) of desipramine 3 significantly up-regulated GABA b receptors in lamina I of the frontal cortex with a concomitant beta-adrenoceptor down-regulation. Repeated adminstration of amitriptyline, paroxetine or the centrally-active GABA b receptor antagonist, CGP 35348 was ineffective at modulating GABA b receptors. Conversely, another putative GABA b receptor antagonist, designated as Compound X, like desipramine, also increased GABA b receptor densities in the frontal cortex, but again only in lamina I. Despite the increase in GABA b receptor numbers produced by despramine, this drug, like the majority of the above treatment regimes, failed to increase the sensitivities of the GABA b receptor-modulation of forskolin- and noradrenaline-stimulated adenylyl cyclase activity. However, treatment with Compound X produced an apparent enhancement of the GABA b receptor-mediated inhibition of forskolin-stimulated adenylyl cyclase. The phosphonic acid derivative of GABA, 3-aminopropylphosphinic acid (3-APA), has been characterised as a GABA b receptor agonist. Whilst it is 10 times more potent than (-)-baclofen at displacing [3H]GABA from GABA b binding sites, it is equipotent with (-)-baclofen at inhibiting forskolin-stimulated adenylyl cyclase. Conversely, whilst (-)-baclofen is a full agonist with respect to the noradrenaline-stimulated system, 3-APA appeared to act as a partial agonist in this response. These contrasting findings may be indices of the possible existence of GABA b receptor subtypes. 4 CONTENTS ABSTRACT 2 List of figures 10 List of tables 13 Abbreviations 15 Publications arising from this thesis 18 Acknowledgements 19 CHAPTER 1 General Introduction 20 GABA as a neurotransmitter - historical perspective 21 Synthesis and distribution 21 Release 22 Uptake, inactivation and metabolism 22 GABA as an inhibitory neurotransmitter 23 The heterogeneity of GABA receptors 24 GABA a receptors 25 GABA b receptors 27 Autoradiographical receptor localisation 29 Characteristics of GABA b receptor activation 31 Electrophysiological studies 31 a) Calcium current modulation by GABA b receptors 31 b) Postsynaptic hippocampal actions 33 c) Presynaptic hippocampal actions 35 Second messenger systems 35 Evidence in favour of possible GABA b receptor heterogeneity 38 GABA b receptor antagonists 40 Aspects of the pharmacology of antidepressant drugs 45 Functional changes in beta-adrenoceptors following chronic antidepressant administration 46 5 Functional changes in serotonergic receptors following chronic antidepressant administration 47 The involvement of GABAergic mechanisms in depression 49 a) Clinical investigations 49 b) The role of GABA in animal models of depression 49 c) GABA b receptor-modulation following chronic antidepressant administration 50 Gastric motility and GABA b receptors 51 The evolution of 5-HT3 receptor antagonists from gastric motility stimulants 55 5-HT3 receptor antagonists 57 5-HT3 receptors and the central nervous system 59 Aims of the thesis 64 CHAPTER 2 General Methodology 66 Autoradiographical procedures 67 Tissue preparation 67 Localisation of GABA a and GABA b binding sites 67 a) Saturation analysis 68 b) Analysis of binding data 68 Localisation of beta-adrenoceptor binding sites 70 Localisation of 5-HT3 binding sites 70 Autoradiographical analysis 71 Membrane binding procedures 72 Preparation of whole brain synaptic membranes 72 Determination of GABA a and GABA b binding sites 72 Expression of specific radioligand binding 73 6 Adenylyl cyclase studies 73 Tissue preparation and adenylyl cyclase activation 73 Determination of cAMP concentrations 74 a) Preparation of cAMP binding protein 74 b) cAMP radioimmunoassay 75 Protein concentration determination 75 Radioligands, drugs and chemicals 76 Sources of radioligands 76 Sources of drugs and chemicals 77 CHAPTER 3 Localisation of central GABA receptors, beta-adrenoceptors and 5-HT3 receptors using receptor autoradiography 78 Introduction 79 Results 79 Autoradiographical localisation of GABA receptors 79 Characterisation of GABA b receptor agonists and antagonists in brain tissue 80 Characterisation of (-)-[125I]iodopindolol binding to beta- adrenoceptors in rat cortex 81 Colocalisation of GABA b and beta-adrenoceptor binding sites in rat frontal cortex 83 Localisation of [3H]BRL 43694 binding sites in rat hindbrain 83 Saturation analysis of [3H]BRL 43694 binding in the NTS 85 Localisation of [3H]zacopride, [3H]GR65630 and [3H]quipazine binding sites in rat hindbrain 84 Drug inhibition profiles for the displacement of [3H]BRL 43694 7 binding in the NTS 86 Colocalisation of GABA b and 5-HT3 receptor sites in rat hindbrain 86 Discussion 125 Structure activity comparisons of GABA b receptor agonists and antagonists in brain tissue 127 Characterisation of central beta-adrenoceptors 128 5-HT3 receptor distribution in mammalian hindbrain 128 Colocalisation of 5-HT3 binding sites with those for GABA b receptors in rat dorsal vagal complex 132 CHAPTER 4 Similarity of the distribution of GABA b and 5-HT3 receptors in the rat hindbrain 134 Introduction 135 Methods (surgical procedures) 136 Nodose ganglionectomy 136 Hemisection of the nucleus tractus solitarius 137 Results 137 Denervation studies with 5-HT3 receptors 137 Denervation studies with GABA b and GABA a receptors 138 Discussion 153 5-HT3 receptor association with vagal afferent terminals 153 Serotonergic mechanisms in cisplatin-induced emesis 155 Fine microstructure of the dorsal vagal complex 157 The association of GABA receptors with central vagal terminals 160 Gastrointestinal responses to central GABAergic receptor activation 161 Cardiovascular responses to central GABAergic receptor activation 163 Central respiratory control by GABA b receptors 165 8 CHAPTER 5 Autoradiographical analysis of GABA b receptors in rat frontal cortex following repeated antidepressant administration 167 Introduction 168 Methods Drug treatment protocols and GABA b receptor binding conditions 173 First Investigation 173 Second Investigation 173 Third Investigation 174 Fourth Investigation 174 Results 175 First Investigation 175 Second Investigation 175 Third Investigation 177 a) GABA b receptor-modulation by antidepressants 177 b) Beta-adrenoceptor-modulation by antidepressants 178 Fourth Investigation 179 a) Drug-induced modulation of GABA b receptor binding 179 b) Drug-induced modulation of beta-adrenoceptor binding 180 Discussion 211 Chronic antidepressant administration via osmotic minipumps 214 Discrete GABA b receptor up-regulation by desipramine 215 Beta-adrenoceptor modulation by antidepressants 216 Selective GABA b receptor-modulation
Recommended publications
  • ANNNNNNNNNNNNNNNNNNNN 100A 006 Left Eye Input Right Eye Input
    US 20190175049A1 ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2019 /0175049 A1 Welling ( 43 ) Pub . Date : Jun . 13 , 2019 ( 54 ) TECHNIQUES FOR ANALYZING (52 ) U . S . CI. NON -VERBAL MARKERS OF CONDITIONS CPC . .. A61B 5 /04842 (2013 . 01 ) ; A61B 5 / 7289 USING ELECTROPHYSIOLOGICAL DATA (2013 . 01) ; A61B 5 /0478 ( 2013 .01 ) ; A61B 5 /7225 ( 2013. 01 ) ; G06N 20 / 10 (2019 .01 ) (71 ) Applicant: Massachusetts Institute of Technology , Cambridge , MA (US ) ( 57 ) ABSTRACT (72 ) Inventor : Caroline Welling, Hanover, NH (US ) Embodiments related to analyzing brain activity of a subject to identify signs associated with binocular rivalry . Sensed ( 21 ) Appl. No. : 16 / 206, 639 electrical activity of a subject' s brain is received over a time period while the subject is exposed to a visual stimulus. The ( 22 ) Filed : Nov. 30 , 2018 sensed electrical activity comprises a first frequency band Related U . S . Application Data associated with a first frequency of a first image presented to the subject ' s left eye , a second frequency band associated (60 ) Provisional application No .62 / 593 , 535, filed on Dec . with a second frequency of a second image presented to the 1 , 2017 subject ' s right eye . A set of events in the time period is determined based on the frequency bands, wherein an event Publication Classification is associated with a change from a previous perceptual event (51 ) Int. Ci. to a new perceptual event. A metric for the subject is A61B 5 /0484 ( 2006 .01 ) determined based on the set of events . The metric is ana A61B 5 /00 ( 2006 .01 ) lyzed to determine whether the subject exhibits signs asso GO6N 20 / 10 (2006 .01 ) ciated with a condition that is associated with binocular A61B 5 /0478 ( 2006 .01 ) rivalry .
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Calcium Channel Blocker As a Drug Candidate for the Treatment of Generalised Epilepsies
    UNIVERSITAT DE BARCELONA Faculty of Pharmacy and Food Sciences Calcium channel blocker as a drug candidate for the treatment of generalised epilepsies Final degree project Author: Janire Sanz Sevilla Bachelor's degree in Pharmacy Primary field: Organic Chemistry, Pharmacology and Therapeutics Secondary field: Physiology, Pathophysiology and Molecular Biology March 2019 This work is licensed under a Creative Commons license ABBREVIATIONS AED antiepileptic drug AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ANNA-1 antineuronal nuclear antibody 1 BBB blood-brain barrier Bn benzyl BnBr benzyl bromide BnNCO benzyl isocyanate Boc tert-butoxycarbonyl Bu4NBr tetrabutylammonium bromide Ca+2 calcium ion CACNA1 calcium channel voltage-dependent gene cAMP cyclic adenosine monophosphate CCB calcium channel blocker cGMP cyclic guanosine monophosphate CH3CN acetonitrile Cl- chlorine ion Cmax maximum concentration CMV cytomegalovirus CTScan computed axial tomography DCM dichloromethane DIPEA N,N-diisopropylethylamine DMF dimethylformamide DMPK drug metabolism and pharmacokinetics DNET dysembryoplastic neuroepithelial tumours EEG electroencephalogram EPSP excitatory post-synaptic potential FDA food and drug administration Fe iron FLIPR fluorescence imaging plate reader fMRI functional magnetic resonance imaging GABA γ-amino-α-hydroxybutyric acid GAD65 glutamic acid decarboxylase 65 GAERS generalised absence epilepsy rat of Strasbourg GluR5 kainate receptor GTC generalised tonic-clonic H+ hydrogen ion H2 hydrogen H2O dihydrogen dioxide (water)
    [Show full text]
  • Cell Surface Mobility of GABAB Receptors Saad Bin
    Cell surface mobility of GABAB receptors Saad Bin Hannan September 2011 A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy of the University College London Department of Neuroscience, Physiology, and Pharmacology University College London Gower Street London WC1E 6BT UK Declaration ii ‘I, Saad Hannan confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.' ____________________ Saad Hannan September 2011 To Ammu, Abbu, Polu Abstract ivi Abstract Type-B γ-aminobutyric acid receptors (GABABRs) are important for mediating slow inhibition in the central nervous system and the kinetics of their internalisation and lateral mobility will be a major determinant of their signalling efficacy. Functional GABABRs require R1 and R2 subunit co-assembly, but how heterodimerisation affects the trafficking kinetics of GABABRs is unknown. Here, an α- bungarotoxin binding site (BBS) was inserted into the N-terminus of R2 to monitor receptor mobility in live cells. GABABRs are internalised via clathrin- and dynamin- dependent pathways and recruited to endosomes. By mutating the BBS, a new technique was developed to differentially track R1a and R2 simultaneously, revealing the subunits internalise as heteromers and that R2 dominantly-affects constitutive internalisation of GABABRs. Notably, the internalisation profile of R1aR2 heteromers, but not R1a homomers devoid of their ER retention motif (R1ASA), is similar to R2 homomers in heterologous systems. The internalisation of R1aASA was slowed to that of R2 by mutating a di-leucine motif in the R1 C-terminus, indicating a new role for heterodimerisation, whereby R2 subunits slow the internalization of surface GABABRs.
    [Show full text]
  • A Comparative Study of Progabide, Valproate, and Epilepsy
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.49.11.1251 on 1 November 1986. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1986;49:1251-1257 A comparative study of progabide, valproate, and placebo as add-on therapy in patients with refractory epilepsy P CRAWFORD, D CHADWICK From the Department ofNeurology, Walton Hospital, Liverpool, UK SUMMARY A three way single blind cross-over comparison of progabide, valproate and placebo, as adjunctive therapy, was undertaken in 64 patients with therapy-resistant partial and generalised seizures. The study was not completed because of the incidence of elevated hepatic enzymes on progabide. Analysis of efficacy showed progabide to be inferior to valproate against all seizure types, particularly against tonic-clonic seizures. Valproate was superior to placebo against all seizure types, partial and tonic-clonic seizures. Progabide did not differ significantly from placebo in any instance. In addition progabide caused elevation of hepatic enzymes which was symptomatic in one case, and was associated with an interaction with phenytoin symptoms which resulted in of guest. Protected by copyright. intoxication in some cases. Progabide is a pro-drug and a GABA agonist which treatment limb was of six months with a two week washout possesses anticonvulsant properties in a variety of and cross-over period between treatment phases. Patients experimental models of seizures and epilepsy.' with severe, partial or generalised epilepsies were eligible for Whether it possesses antiepileptic properties in man is admission to the study as long as they had a definite history controversial. A number of double blind of epilepsy confirmed by observation and EEG recording studies and suffered a minimum of one seizure per month during the against placebo have been reported, some of which six months prior to entry into the study.
    [Show full text]
  • Downloads/Drugs/…/Guidances/UCM078932
    UCLA UCLA Previously Published Works Title Homotaurine, a safe blood-brain barrier permeable GABAA-R-specific agonist, ameliorates disease in mouse models of multiple sclerosis. Permalink https://escholarship.org/uc/item/7kq6p5tv Journal Scientific reports, 8(1) ISSN 2045-2322 Authors Tian, Jide Dang, Hoa Wallner, Martin et al. Publication Date 2018-11-08 DOI 10.1038/s41598-018-32733-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Homotaurine, a safe blood-brain barrier permeable GABAA-R-specifc agonist, ameliorates disease in Received: 12 April 2018 Accepted: 11 September 2018 mouse models of multiple sclerosis Published: xx xx xxxx Jide Tian, Hoa Dang, Martin Wallner, Richard Olsen & Daniel L. Kaufman There is a need for treatments that can safely promote regulatory lymphocyte responses. T cells express GABA receptors (GABAA-Rs) and GABA administration can inhibit Th1-mediated processes such as type 1 diabetes and rheumatoid arthritis in mouse models. Whether GABAA-R agonists can also inhibit Th17-driven processes such as experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS), is an open question. GABA does not pass through the blood-brain barrier (BBB) making it ill-suited to inhibit the spreading of autoreactivity within the CNS. Homotaurine is a BBB-permeable amino acid that antagonizes amyloid fbril formation and was found to be safe but inefective in long-term Alzheimer’s disease clinical trials. Homotaurine also acts as GABAA-R agonist with better pharmacokinetics than that of GABA. Working with both monophasic and relapsing-remitting mouse models of EAE, we show that oral administration of homotaurine can (1) enhance CD8+CD122+PD-1+ and CD4+Foxp3+ Treg, but not Breg, responses, (2) inhibit autoreactive Th17 and Th1 responses, and (3) efectively ameliorate ongoing disease.
    [Show full text]
  • Isoguvacine Hydrochloride | Medchemexpress
    Inhibitors Product Data Sheet Isoguvacine hydrochloride • Agonists Cat. No.: HY-100810 CAS No.: 68547-97-7 Molecular Formula: C₆H₁₀ClNO₂ • Molecular Weight: 163.6 Screening Libraries Target: GABA Receptor Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling Storage: Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month SOLVENT & SOLUBILITY In Vitro H2O : ≥ 100 mg/mL (611.25 mM) DMSO : 25 mg/mL (152.81 mM; Need ultrasonic) * "≥" means soluble, but saturation unknown. Mass Solvent 1 mg 5 mg 10 mg Concentration Preparing 1 mM 6.1125 mL 30.5623 mL 61.1247 mL Stock Solutions 5 mM 1.2225 mL 6.1125 mL 12.2249 mL 10 mM 0.6112 mL 3.0562 mL 6.1125 mL Please refer to the solubility information to select the appropriate solvent. In Vivo 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (12.71 mM); Clear solution 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (12.71 mM); Clear solution 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (12.71 mM); Clear solution BIOLOGICAL ACTIVITY Description Isoguvacine hydrochloride is a GABA receptor agonist. IC₅₀ & Target GABA[1] In Vitro Isoguvacine binds to a mouse forebrain synaptic membrane preparation. The specific binding is displaceable by GABA, Page 1 of 2 www.MedChemExpress.com muscimol and bicuculline but not by picrotoxin or diaminobutyric acid.
    [Show full text]
  • Effects of Dexfenfluramine and 5-HT3 Receptor Antagonists on Stress-Induced Reinstatement of Alcohol Seeking in Rats
    Psychopharmacology (2006) 186: 82–92 DOI 10.1007/s00213-006-0346-y ORIGINAL INVESTIGATION Anh Dzung Lê . Douglas Funk . Stephen Harding . W. Juzytsch . Paul J. Fletcher . Yavin Shaham Effects of dexfenfluramine and 5-HT3 receptor antagonists on stress-induced reinstatement of alcohol seeking in rats Received: 29 October 2005 / Accepted: 3 February 2006 / Published online: 7 March 2006 # Springer-Verlag 2006 Abstract Rationale and objectives: We previously found 0.1 mg/kg, i.p) on reinstatement induced by 10 min of that systemic injections of the 5-HT uptake blocker intermittent footshock (0.8 mA) was determined. fluoxetine attenuate intermittent footshock stress-induced Results: Systemic injections of dexfenfluramine, ondan- reinstatement of alcohol seeking in rats, while inhibition of setron or tropisetron attenuated footshock-induced rein- 5-HT neurons in the median raphe induces reinstatement statement of alcohol seeking. Injections of dexfenflur- of alcohol seeking. In this study, we further explored the amine, ondansetron, or tropisetron had no effect on role of 5-HT in footshock stress-induced reinstatement of extinguished lever responding in the absence of alcohol seeking by determining the effects of the 5-HT footshock. Conclusions: The present results provide releaser and reuptake blocker dexfenfluramine, and the 5- additional support for the hypothesis that brain 5-HT HT receptor antagonists ondansetron and tropisetron, which systems are involved in stress-induced reinstatement of decrease alcohol self-administration and anxiety-like re- alcohol seeking. The neuronal mechanisms that potentially sponses in rats, on this reinstatement. Methods: Different mediate the unexpected observation that both stimulation groups of male Wistar rats were trained to self-administer of 5-HT release and blockade of 5-HT3 receptors attenuate alcohol (12% v/v) for 28–31 days (1 h/day, 0.19 ml footshock-induced reinstatement are discussed.
    [Show full text]
  • Stems for Nonproprietary Drug Names
    USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol
    [Show full text]
  • Gabaergic Signaling Linked to Autophagy Enhances Host Protection Against Intracellular Bacterial Infections
    ARTICLE DOI: 10.1038/s41467-018-06487-5 OPEN GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections Jin Kyung Kim1,2,3, Yi Sak Kim1,2,3, Hye-Mi Lee1,3, Hyo Sun Jin4, Chiranjivi Neupane 2,5, Sup Kim1,2,3, Sang-Hee Lee6, Jung-Joon Min7, Miwa Sasai8, Jae-Ho Jeong 9,10, Seong-Kyu Choe11, Jin-Man Kim12, Masahiro Yamamoto8, Hyon E. Choy 9,10, Jin Bong Park 2,5 & Eun-Kyeong Jo1,2,3 1234567890():,; Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the brain; however, the roles of GABA in antimicrobial host defenses are largely unknown. Here we demonstrate that GABAergic activation enhances antimicrobial responses against intracel- lular bacterial infection. Intracellular bacterial infection decreases GABA levels in vitro in macrophages and in vivo in sera. Treatment of macrophages with GABA or GABAergic drugs promotes autophagy activation, enhances phagosomal maturation and antimicrobial responses against mycobacterial infection. In macrophages, the GABAergic defense is mediated via macrophage type A GABA receptor (GABAAR), intracellular calcium release, and the GABA type A receptor-associated protein-like 1 (GABARAPL1; an Atg8 homolog). Finally, GABAergic inhibition increases bacterial loads in mice and zebrafish in vivo, sug- gesting that the GABAergic defense plays an essential function in metazoan host defenses. Our study identified a previously unappreciated role for GABAergic signaling in linking antibacterial autophagy to enhance host innate defense against intracellular bacterial infection. 1 Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea. 2 Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
    [Show full text]
  • Practice Guideline
    THE AMERICAN ASSOCIATION PSYCHIATRIC PRACTICE GUIDELINE FOR THE PHARMACOLOGICAL TREATMENT WITH OF ALCOHOL PATIENTS USE DISORDER lcohol use disorder (AUD) is a major public health problem in the United States. The estimated 12-month and lifetime prevalence values for AUD are 13.9% and THE AMERICAN PSYCHIATRIC ASSOCIATION A 29.1%, respectively, with approximately half of individuals with lifetime AUD having a severe disorder. AUD and its sequelae also account for significant excess mortality and cost the United States more than $200 billion annually. Despite its high prevalence and numerous negative consequences, AUD remains undertreated. In fact, fewer than 1 in 10 individuals in the United States with a 12-month diagnosis of AUD PRACTICE GUIDELINE receive any treatment. Nevertheless, effective and evidence-based interventions are available, and treatment is associated with reductions in the risk of relapse and AUD- FOR THE associated mortality. The American Psychiatric Association Practice Guideline for the Pharmacological Pharmacological Treatment of Treatment of Patients With Alcohol Use Disorder seeks to reduce these substantial psychosocial and public health consequences of AUD for millions of affected individu- Patients With Alcohol Use Disorder als. The guideline focuses specifically on evidence-based pharmacological treatments for AUD in outpatient settings and includes additional information on assessment and treatment planning, which are an integral part of using pharmacotherapy to treat AUD. In addition to reviewing the available evidence on the use of AUD pharmacotherapy, the guideline offers clear, concise, and actionable recommendation statements, each of which is given a rating that reflects the level of confidence that potential benefits of an intervention outweigh potential harms.
    [Show full text]