Surface-Wave Transmission Lines for Microwave Frequencies

Total Page:16

File Type:pdf, Size:1020Kb

Surface-Wave Transmission Lines for Microwave Frequencies 342 PHILIPS TECHNICAL REVIEW VOLUME26 Surface-wave transmission lines for microwave frequencies . I. The various types of transmission line 11. Applications of the dielectric line 621.372.826 In microwave techniques, the millimetre and submillimetre wavebands are coming to acquire a practical importance comparable to that at present occupied by the centimetre waveband. Components and measuring techniques for these extremely high frequencies are often a result of the marriage of known principles from transmission lines and optics. A special problem is the low-loss transmission of millimetre and submillimetre waves. There are various surface-wave transmission lines that can be usedfor this purpose. Since the transmission of the electromagnetic energy chiefly takes place in the space surrounding the line, not only the attenuation of these lines but also the radial extent of the field has to be taken into account. ' The dielectric line, on the basis of theoretical and practical results so far obtained, seems to be the most appropriate surface-wave line for transmitting electromagnetic energy in the . 1 mm wavelength range. I.-The various types of transmission line H. Severin In comparing various forms of transmission line the theoretical work showed to be the most promising. for electromagnetic waves with their practical applica- By way of introduetion a short summary is given bility in mind, two classes of problem must be taken of the properties of the conventional transmission into account. The first relates to the transmission pro- lines for high frequencies. For decimetre and centi- perties of the straight infinitely long line. Maxwell's metre waves coaxial cables and waveguides of rectang- equations have to be solved for the special boundary- ular cross-section are chiefly employed at present [11. values, giving the field configuration, the phase velo- The attenuation of these transmission lines increases city and the attenuation of the wave as a function with the square root of the frequency because the skin of guide dimensions and frequency. depth decreases with frequency [21, so that there are The second class of problem is of a more practical already considerable losses at centimetre wavelengths. nature. It concerns, for example, the possibilities of Since, on the other hand, the attenuation decreases exciting a certain mode, of matching various lines, of with increasing surface it can - to a certain extent - constructing components and measuring devices, such be reduced by enlarging the cross-section of the trans- as attenuators, directional couplers, slotted lines, etc.; mission line. This is one of the reasons for the pre- and also, for surface-wave lines, the method of mount- ferred application of waveguides for centimetre waves. ing and the avoidance of radiation losses at bends. The At a frequency of 10Gc/s-c-corresponding to a wave- theoretical and the practical problems are certainly of length of 3 cm - the attenuation of a standard copper equal importance in deciding which type of transmis- coaxial line without dielectric (outer conductor dia- sion line is the most favourable for a particular appli- meter 9.53 mm, inner conductor diameter 2.65 mm) cation. Nevertheless the theoretical problem can be said is 226 dB/km, whereas the attenuation of the standard to be of primary interest, because one cannot attempt copper rectangular waveguide for the 10 Gc/s fre- to treat the more practical questions until the trans- quency-band (inside dimensions 22.9 mm X 10.2 mm) mission properties are known. Part I of this paper is 96 dB/km. At a wavelength of 5 mm, the waveguide deals exclusivelywith the first class of problem, giv- for the 60 Gel» frequency-band (inside dimensions ing a survey of the various types of transmission line 3.76 mm X 1.88 mm) has an attenuation of 1300 dB/km. for surface waves. Part II follows with a survey of the In view of these attenuation values, the coaxialline more practical questions for the dielectric line, which and conventional waveguides are not suitable for longer distance transmission, because, with the pres- Prof. Dr. H. Severinçformerly a research worker at the Hamburg ent ,state of amplifier technique, the attenuation for laboratory of Philips Zentrallaboratorium GmbH, is IIOW Professor of High Frequency Techniques at the University of Bochum. sline transmission must be no greater than 3.5 dB/km. 1965, No. 11/12 SURFACE WAVE TRANSMISSION LINES, I 343 Even for short connections, e.g. antenna feeders, the magnetic field extends appreciably into the surround- attenuation is considerable, especially at high fre- ing space. In order to judge the applicability of these quencies. lines it is therefore not sufficient to know their atten- uation: the extent or the electro-magnetic field around The idea of increasing the conducting surface takes us from the line must also be known. A line supporting a wave the coaxial cable to the "Clogston-type" or "laminated cable" in which the inner and outer conductors consist of many concentric whose field extends considerably into the surrounding metallayers insulated from each other (31. If the thickness of the space is unsuitable for practical purposes, even if its individual layers is small c-ompared with the skin depth at the attenuation is extremely low. highest frequency to be transmitted, such a cable has a constant attenuation over a wide frequency range. In addition, the attenu- The single-wire transmission line (Sommerfeld line) ation is much smaller than that of a coaxial line of the same size. The laminated cable will perhaps find application as a broad-band The problem of propagating electromagnetic waves cable in the frequency range from 0.1 to 10 Mc/s, for example in along a single wire ("single-wire transmission line") carrier-frequency telephony or for television programme trans- was solved by Sommerfeld in 1899. Heinrich Hertz had mission, as soon as the difficulties of economic production are previously treated this problem without success. We overcome. know today that his experimental investigation failed For waveguides, increasing the conducting surface to reduce the losses leads to larger waveguide cross-sections. Apart from because of the large extent of the electro-magnetic being expensive, this gives rise to difficulties because of the sim- field around the wire. Because of the large field extent ultaneous excitation of unwanted higher-order modes, whose the surroundings, such as the laboratory walls, dis- number grows with increasing cross-section. The HOl-mode in turbed the field configuration. Theoretically 'Hertz circular waveguide proves to be superior to all other waveguide idealized the problem too much: he took the wire to modes because for equal attenuation it requires the smallest guide cross-section, and is thus accompanied by the smallest possible be infinitely thin and to have an infinite conductivity (J. number of unwanted modes. While for waveguide modes at high Sommerfeld's solution shows that in the limiting case frequencies the attenuation due to ohmic losses usually increases (J -+ 00 a surface wave along the wire cannot exist. with the square root of the frequency, the HOl-mode shows a For single-wire transmission line one can make the completely different behaviour: for this mode the attenuation same distinction as for waveguides between H- and approaches zero with increasing frequency. The ohmic losses in which either the magnetic field or the arise exclusively from circular wall currents due to the axial E-modes, H component of the magnetic field. Since the magnitude of the electric field E respectively has a component along the axial field component decreases with increasing frequency for direction of the wire. Sommerfeld's solution refers to all waveguide modes, the wall currents for the HOl-mode and the axially symmetrical E-mode, whose field is inde- hence the ohmic losses decrease with frequency. pendent of cp and consists of the components Er, Ez An immediate consequence of this behaviour is the fact that and Hrp if the wire coincides with the z-axis of a system in principle the attenuation at any frequency can be made as small as desired if the diameter of the waveguide is chosen large of cylindrical coordinates r, cp, z (fig. I). For all other enough (41. For example, at a carrier frequency of 50 Gc/s, E- and H-modes the major part of the field is inside the corresponding to a wavelength of 6 mm, an attenuation of about wire, as Hondros later showed. The attenuation of these 1.25 dB/km (13 % reduction in amplitude), which is typical for microwave links, is obtained by using a copper waveguide of 5 cm diameter. The following example illustrates the superiority of the HOl-mode for circular waveguide compared with the domi- nant Hll-mode. For the required attenuation of 1.25 dB/km the diameters required for the two modes at a frequency of 10 Gcl« are 11.2 cm and 43 cm respectively, and the number of possible modes is 40 for the HOl mode and more than 300 for the Hll-mode. The low attenuation ofthe surface wave transmission lines treated below is due to the fact that the electro- (11 w. Opechowski, Electromagnetic waves in waveguides, I and II,-Philips tech. Rev. 10, 13-25 and 46-54, 1948/49. - (2] The «skin depth" or "thickness of the equivalent conducting layer" is proportional to Itv! (f = frequency). For copper the skin depth atf = 1000 Mc/s is 2 X 10-3 mm. [31 A. M. Clogston, Reduction of skin effect losses by the use of laminated conductors, Bell Syst. tech. J. 30, 491-529, 1951. Fig. 1. Configuration of the transverse components Er and Hrp E. F. Vaage, Transmission properties of laminated Clogston of the electromagnetic field of the Sommerfeld wave.
Recommended publications
  • Compact Bilateral Single Conductor Surface Wave Transmission Line
    Compact bilateral single conductor Regarded as half mode CPW, a series of slotlines have been proposed whose characteristic impedance is easy to control [7]. The bilateral surface wave transmission line slotline with 50 ohm characteristic impedance is designed as shown in Fig. 2. The copper layers on both sides of the substrate are connected by Zhixia Xu, Shunli Li, Hongxin Zhao, Leilei Liu and the metalized via arrays, and the two via arrays can increase the perunit- Xiaoxing Yin length capacitance and decrease characteristic impedance to 50 ohm which is usually quite high for a conventional slotline. The height of via A compact bilateral single conductor surface wave transmission line h is 1.524 mm, the slot S is 0.3 mm; the space between via arrays d is (TL) is proposed, converting the quasi-transverse electromagnetic 0.4 mm; the space between neighbour vias a is 1 mm. (QTEM) mode of low characteristic impedance slotline into the As a single conductor TL, bilateral corrugated metallic strips are transverse magnetic (TM) mode of single-conductor TL. The propagation constant of the proposed TL is decided by geometric printed on both sides of the substrate and connected by via arrays the parameters of the periodic corrugated structure. Compared to configuration is shown in Fig. 3a. To excite the transverse magnetic conventional transitions between coplanar waveguide (CPW) and (TM) mode, the surface mode of the corrugated strip, from the quasi- single-conductor TLs, such as Goubau line (G-Line) and surface transverse electromagnetic (QTEM) mode, the mode of slotline, we plasmons TL, the proposed structure halves the size and this feature propose a compact bilateral transition structure, as shown in Fig.
    [Show full text]
  • Capturing Surface Electromagnetic Energy Into a DC Through Single-Conductor Transmission Line at Microwave Frequencies
    Progress In Electromagnetics Research M, Vol. 54, 29–36, 2017 Capturing Surface Electromagnetic Energy into a DC through Single-Conductor Transmission Line at Microwave Frequencies LouisW.Y.Liu*, Shangkun Ge, Qingfeng Zhang and Yifan Chen Abstract—This communication demonstrates the feasibility of rectifying microwave energy through one-wire with no earth return. In the proposed transmission system, a novel coaxial to Goubau line transition (referred thereafter as coaxial/G-line transition) was employed to transfer microwave power from TEM modes in a coaxial line to TM modes in a Goubau line. The captured signal at the receiving end of the Goubau line can be either directly used for communication or rectified into a DC. The proposed system can be used as an emergency source of power supply for cable cars, escalators and window cleaning gondolas in the event of accidents. According to our experimental results, a 0 dBm microwave signal can be transmitted through a single conductor of 13 cm in length with an insertion loss of less than 3 dB. When the input power was raised to 15 dBm, the electromagnetic energy at the receiving end can be rectified at 1.36 GHz into a DC with the efficiency at approximately 12.7%. 1. INTRODUCTION Emergency source of power is constantly required during an accident on a cable car, an escalator or a window cleaning gondola. During an accident, there may be a prolonged interruption of power supply to the people trapped inside a cable car, an escalator or a window cleaning gondola for several hours. The power to be required by the trapped individuals can be at least several million times the power of an RF signal received by a conventional cell phone.
    [Show full text]
  • An Active Receiving Antenna for Short-Range Wireless Automotive
    6. CONCLUSION AN ACTIVE RECEIVING ANTENNA FOR A new type of planar transmission line, modified from the tradi- tional Goubau line, has been proposed. Some different configura- SHORT-RANGE WIRELESS tions have been demonstrated and the dimensions of this new type AUTOMOTIVE COMMUNICATION of transmission line have been provided. The numerical results, Basim Al-Khateeb,1 Victor Rabinovich,2 and Barbara Oakley3 suitable for practical applications, were obtained by using the FEM 1 Daimler Chrysler Corporation to obtain the solutions. Comparisons with metallic rectangular 800 Chrysler Drive Auburn Hills, MI waveguide have been given. The analysis shows that this new type 2 of transmission line has advantages such as simplicity, ease of Tenatronics Ltd. 776 Davis Drive fabrication, and low loss, in comparison with other types of trans- Newmarket, Ontario, Canada mission lines at terahertz frequencies. 3 Department of Electrical and Systems Engineering Oakland University ACKNOWLEDGMENT Rochester, MI The authors are grateful to Natural Science and Engineering Re- search Council of Canada (NSERC) for financial support. Received 22 April 2004 REFERENCES ABSTRACT: This paper describes an easily manufactured, reduced- size, active receiving antenna for automotive applications, which in- 1. A.G. Engel, Jr. and P.B. Katehi, Low-loss monotithic transmission creases short-range wireless detection in the 315-MHz band. This com- lines for submillimeter and terahertz frequency applications, IEEE pact antenna has an advantage over currently available antennas Trans Microwave Theory Tech MTT-39 (1994), 1847–1854. because can be hidden in a vehicle’s interior. The active antenna con- 2. N.-H. Huynh and W. Heinrich, FDTD analysis of submillimeter-wave sists of a low-noise amplifier coupled to a low-profile planer meander- CPW with finite-width ground metallization, IEEE Microwave Guided line pattern printed on the dielectric substrate.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,461,706 B1 Bennett Et Al
    USOO9461706B1 (12) United States Patent (10) Patent No.: US 9,461,706 B1 Bennett et al. (45) Date of Patent: Oct. 4, 2016 (54) METHOD AND APPARATUS FOR 1,860,123 A 5/1932 Yagi EXCHANGING COMMUNICATION SIGNALS 2,129,711 A 9, 1938 Southworth 2,147,717 A 2f1939 Schelkunoff 2,187,908 A 1/1940 McCreary (71) Applicant: AT&T INTELLECTUAL 2,199,083. A 4, 1940 Schelkunoff PROPERTY I, LP, Atlanta, GA (US) 2,232,179 A 2/1941 King 2,283,935 A 5/1942 King (72) Inventors: Robert Bennett, Southold, NY (US); 2,398,095 A 4, 1946 Katzin Paul Shala Henry, Holmdel, NJ (US); Farhad Barzegar, Branchburg, NJ (Continued) (US); Irwin Gerszberg, Kendall Park, NJ (US); Donald J Barnickel, FOREIGN PATENT DOCUMENTS Flemington, NJ (US); Thomas M. AU 565039 B2 9, 1987 Willis, III, Tinton Falls, NJ (US) AU 7261000 A 4/2001 (73) Assignee: AT&T INTELLECTUAL (Continued) PROPERTY I, LP, Atlanta, GA (US) OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 “Cband & L/Sband Telemetry Horn Antennas.” mWAVE, U.S.C. 154(b) by 0 days. mwavellc.com, http://www.mwavellc.com/custom -Band-LS-- BandTelemetryHorn Antennas.php, Jul. 6, 2012. (21) Appl. No.: 14/815,019 (Continued) (22) Filed: Jul. 31, 2015 Primary Examiner — Khanh C Tran (51) Int. C. (74) Attorney, Agent, or Firm — Guntin & Gust, PLC: Ed H04B 3/00 (2006.01) Guntin H04B 3/54 (2006.01) (52) U.S. C. CPC ....................................... H04B 3/54 (2013.01) (57) ABSTRACT (58) Field of Classification Search Aspects of the Subject disclosure may include, for example, CPC ..........
    [Show full text]
  • Long Earthquake'waves
    ~ LONG EARTHQUAKE'WAVES Seisllloloo-istsLl are tuning their instnlments to record earth 1l10tiollS with periods of one Jninute to an hour and mllplitudes of less than .01 inch. These,,~aycs tell llluch about the earth's crust and HHltltle by Jack Oliver "lhe hi-H enthusiast who hitS strug· per cycle. A reI.ltlvely shorr earthquake earth'luake waves tmvel at .9 to 1.S 1 gled to ImprO\'e tlIe re;pollse of wave has a duration of 10 seconds. At miles per second, they lange in length hI:; e'jlllpment In the bass range at present the most infornl.1tive long waves from 10 mile" up to the 8,OOO-mde length .11 oUlld 10 c~'d(-s per ;econd wIll ha VI" a h,\v€ periods of 15 to 75 seconds from of the earth's ,hamete... TheIr amplitude, fellow-feeling for the selsmologi;t \vho CfEst to crest. \Vith more advanced in­ however, is of an entirely di/lerent 01 de.. : IS ,attempting to tune hiS installments to ,,11 uments seismologists hope sooo to one of these waves displaces a point on the longest earth'luake \\".\\'es. But where study 450-second waves. The longest so the sudace of the eal th at some dislil1lce IIl-n deals in cITIes per second, seisll1OIo" f.tr detected had ., penod of :3,400 sec­ from the shock by no more than a hun· gy measures its fre<luencle; 111 seconds onds-·nearly an hour! Since these long dredth of an inch, even when eXCited by t/) ~ ~ SUBTERRANEAN TOPOGRAPHY of the North American con· at which the depth of the boundary was established.
    [Show full text]
  • Surface Waves: What Are They? Why Are They Interesting?
    SURFACE WAVES: WHAT ARE THEY? WHY ARE THEY INTERESTING? Janice Hendry Roke Manor Research Limited, Old Salisbury Lane, Romsey, SO51 0ZN, UK [email protected] ABSTRACT Surface waves have been known about for many decades and quite in-depth research took place up until ~1960s . Since then, little work has been done in this area. It is unclear why, however today we have more powerful modelling methods which may enable us to understand their use better. It is known that high frequency (HF) surface waves follow the terrain and this has been utilised in some cases such as Raytheon's HF surface wave radar (HFSWR) for detecting ships over-the-horizon. It is thought with some more insight and knowledge of this phenomenon, surface waves could be extremely useful for both military and civil use, from communications to agriculture. WHAT ARE SURFACE WAVES? Over the many decades that surface waves have been researched, some confusion has built up over exactly what constitutes a surface wave. This was discussed by James Wait in an IEE Transaction in 1965 1 and was even a matter of discussion at the General Assembly of International Union of Radio Science (URSI) held in London in 1960. It was concluded that “there is no neat definition which would encompass all forms of wave which could glide or be guided along an interface”. However, the definitions which have been settled upon for this paper are as follows: Surface Wave Region : The region of interest in which the surface wave propagates. Surface Wave : A surface wave is one that propagates along an interface between two different media without radiation; such radiation being construed to mean energy converted from the surface wave field to some other form.
    [Show full text]
  • Sky-Wave Propagation
    ANTENNA AND WAVE PROPAGATION Introduction Electromagnetic Wave(Radio Waves) travel with a vel. of light. These waves comprises of both Electric and Magnetic Field. The two fields are at right-angles to each other and the direction of propagation is at right-angles to both fields. The Plane of the Electric Field defines the Polarisation of the wave. Field Strength Relationship Electric Field, E x y Magnetic Direction of Field, H z Propagation Electromagnetic Wave(Radio Waves) travel with a vel. of light. These waves comprises of both Electric and Magnetic Field. The two fields are at right-angles to each other and the direction of propagation is at right-angles to both fields. The Plane of the Electric Field defines the Polarisation of the wave. POLARIZATION The polarization of an antenna is the orientation of the electric field with respect to the Earth's surface. Polarization of e.m. Wave is determined by the physical structure of the antenna and by its orientation. Radio waves from a vertical antenna will usually be vertically polarized. Radio waves from a horizontal antenna are usually horizontally polarized. Classification of Radio Wave Propagation GROUND WAVE, SPACE WAVE, SKY WAVE Ground Waves or Surface Waves Ground Waves or Surface Waves ◦ Frequencies up to 2 MHz ◦ follows the curvature of the earth and can travel at distances beyond the horizon (upto some km) ◦ must have vertically polarized antennas ◦ strongest at the low- and medium-frequency ranges ◦ AM broadcast signals are propagated primarily by ground waves during the day and by sky waves at nightis a Surface Wave that propagates or travels close to the surface of the Earth.
    [Show full text]
  • Interpretation and Utilization of the Echo
    PROCEEDINGS OF THE IEEE, VOL. 62, NO. 6, JUNE 1974 673 Sea Backscatter at HF: Interpretation and Utilization of the Echo DONALD E. BARRICK, MEMBER, IEEE, JAMES M. HEADRICK, SENIOR MEMBER, IEEE, ROBERT W. BOGLE, DOUGLASS D. CROMBIE AND Abstract-Theories and concepts for utilization of HF sea echo are compared and tested against surface-wave measurements made from San Clemente Island in the Pacific in a joint NRL/ITS/NOAA Although the heights of ocean waves are generally small experiment. The use of first-order sea echo as a reference target for in terms of these radar wavelengths, the scattered echo is calibration of HF over-the-horizon radars is established. Features of the higher order Doppler spectrum can be employed to deduce the nonetheless surprisingly large and readily interpretable in principal parameters of the wave-height directional. spectrum (i.e., terms of its Doppler features. The fact that these heights are sea state); and it is shown that significant wave height can be read small facilitates the analysis of scatter using the perturbation from the spectral records. Finally, it is shown that surface currents approximation. This theory [2] produces an equation which and current (depth) gradients can be inferred from the same Doppler 1) agrees with the scattering mechanism deduced by Crombie sea-echo records. from experimental data; 2) properly predicts the positions of I. INTRODUCTION the dominant Doppler peaks; 3) shows how the dominant echo magnitude is related to the sea wave height; and 4) per­ mits an explanation of some of the less dominant, more com­ T WENTY YEARS ago Crombie [1] observed sea echo plex features of the sea echo through retention and use of the with an HF radar, and he correctly deduced the scatter­ higher order terms in the perturbation analysis.
    [Show full text]
  • Wireless Energy Harvesting by Direct Voltage Multiplication on Lateral Waves from a Suspended Dielectric Layer
    SPECIAL SECTION ON ENERGY EFFICIENT WIRELESS COMMUNICATIONS WITH ENERGY HARVESTING AND WIRELESS POWER TRANSFER Received September 2, 2017, accepted September 26, 2017, date of publication September 29, 2017, date of current version November 7, 2017. Digital Object Identifier 10.1109/ACCESS.2017.2757947 Wireless Energy Harvesting by Direct Voltage Multiplication on Lateral Waves From a Suspended Dielectric Layer LOUIS WY LIU 1, QINGFENG ZHANG 1, YIFAN CHEN2, MOHAMMED A. TEETI1, AND RANJAN DAS1,3 1Electrical and Electronics Engineering Department, Southern University of Science and Technology, Shenzhen 154108, China 2School of Engineering, University of Waikato, Hamilton 3240, New Zealand 3School of Engineering, IIT Bombay, Mumbai 400076, India Corresponding author: Qingfeng Zhang ([email protected]) This work was supported in part by the Guangdong Natural Science Funds for Distinguished Young Scholar under Grant 2015A030306032, in part by the Guangdong Special Support Program under Grant 2016TQ03X839, in part by the National Natural Science Foundation of China under Grant 61401191, in part by the Shenzhen Science and Technology Innovation Committee funds under Grant KQJSCX20160226193445, Grant JCYJ20150331101823678, Grant KQCX2015033110182368, Grant JCYJ20160301113918121, Grant JSGG20160427105120572, and in part by the Shenzhen Development and Reform Commission Funds under Grant [2015] 944. ABSTRACT This paper explores the feasibility of wireless energy harvesting by direct voltage multiplication on lateral waves. Whilst free space is undoubtedly a known medium for wireless energy harvesting, space waves are too attenuated to support realistic transmission of wireless energy. A layer of thin stratified dielectric material suspended in mid-air can form a substantially less attenuated pathway, which efficiently supports propagation of wireless energy in the form of lateral waves.
    [Show full text]
  • End Fire Radiators Are 3,155,975 1/1964 Chatelain
    United States Patent (19) 11 4,378,558 Lunden 45 Mar. 29, 1983 54 ENDFIRE ANTENNA ARRAYS EXCITED BY PROXIMITY COUPLNG TO SENGLE WIRE FOREIGN PATENT DOCUMENTS TRANSMISSION LINE 146804 3/1959 U.S.S.R. .............................. 343/785 OTHER PUBLICATIONS (75) Irventor: Clarence D. Lunden, Federal Way, Wash. "Antennas," Lamont V. Blake, John Wiley & Sons, pp. 196-201, 230-233,248-251. Assignee: The Boeing Company, Seattle, Wash. "Antenna Fundamentals,' pp. 24-29. (73) Jasik, Henry, Ed.; Antenna Engineering Handbook; 1961; pp. 16-34 through 16-36, 16-40 through 16-41, (21) Appl. No.: 174,453 16-56 and 16-57. 22 Filed: Aug. 1, 1980 Primary Examiner-Eli Lieberman Attorney, Agent, or Firm-Christensen, O'Connor, (51) Int. Cli.............................................. H01O 1/28 Johnson & Kindness 52) U.S. C. ................................... 343/814; 34.3/785; 57 ABSTRACT 343/DIG. 2; 333/240 (58) Field of Search ....................... 343/785, 895, 771; A lightweight, efficient, microwave power transmitting 333/240 antenna is disclosed, suitable for use in a space borne transmitter for beaming solar generated electrical power down to earth based receiving antennas. The 56) References Cited space borne antenna structure is formed by modules U.S. PATENT DOCUMENTS that are structurally integrated into a multimodule an 2,130,675 9/1938 Peterson .............................. 343/81 tenna array. Each module comprises a rectangular 2,192,532 3/1940 Katzin ................................. 34.3/8 framework of limited depth having rigid sides circum 2,624,003 12/1952 ams .................................... 343/771 scribing a generally open region in which a plurality of 2,685,068 A954 Goubau ................................
    [Show full text]
  • ULTRA WIDEBAND SURFACE WAVE COMMUNICATION J. A. Lacomb
    Progress In Electromagnetics Research C, Vol. 8, 95{105, 2009 ULTRA WIDEBAND SURFACE WAVE COMMUNICATION J. A. LaComb and P. M. Mileski Naval Undersea Warfare Center 1176 Howell St., Newport, RI 02841, USA R. F. Ingram Science Applications International Corporation (SAIC) 23 Clara Dr. Suite 206 Mystic, CT 06355, USA Abstract|Ultra Wideband (UWB), an impulse carrier waveform, was applied at HF-VHF frequencies to utilize surface wave propagation. Due to the low duty cycle of the pulse, the energy requirements are signi¯cantly reduced. UWB involves the propagation of transient pulses rather than continuous waves which makes the system easier to implement, inexpensive and small. The use of surface wave propagation (instead of commercial SHF UWB) extends the communication range. The waveform, transmitter, receiver, modulation and channel characteristics of the novel system design will be presented. 1. INTRODUCTION Ultra Wideband (UWB) technology is vastly di®erent from classical radio transmission. The extremely short pulses are generated at baseband and are transmitted without the use of a carrier. The short pulses of electromagnetic energy translate to very wide transmission bandwidths in the frequency domain. The Federal Communications Commission (FCC) de¯nes UWB as a signal with either a fractional bandwidth of 20% of the center frequency or 500 MHz. Due to the low duty cycle of the pulse the energy requirements are signi¯cantly reduced. Due to the low power spectral density the system has a low probability of intercept (LPI). Corresponding author: J. A. LaComb ([email protected]). 96 LaComb, Mileski, and Ingram The FCC has allocated 7,500 MHz of spectrum for unlicensed use of UWB in the 3.1 to 10.6 GHz frequency band [1].
    [Show full text]
  • High Frequency Surface Wave Radar
    Beyond the horizon: High Frequency Surface Wave Radar Frédéric Lamole1, François Jacquin1, Gilles Rigal2 1 Embedded Systems Dpt / HF division 5, rue Brindejonc des Moulinais, 31506 Toulouse Cedex 5 2 Embedded Systems Dpt / HF division Les Hauts de la Duranne, 370, rue René Descartes, 13857 Aix-en-Provence Cedex 3 ABSTRACT In this paper, we present a high-level view of the High Frequency Surface Wave Radar developed for the Radars for long distance maritime surveillance and SAR operations (RANGER) project ([1]). The over-the-horizon radar proposes a new system architecture, with new waveforms, new processing methods, and new antenna concepts to provide solutions to meet HFSWR (High Frequency Surface Wave Radar) challenges as increasing the long range distance detection for small vessels with improved accuracy. Keywords: Over-the-horizon (OTH) Radar; High Frequency (HF) Surface Wave Radar (SWR); maritime surveillance; Radar Cross Section (RCS) 1. INTRODUCTION The potential offered by HF surface wave radars for maritime surveillance and in particular for the entire Exclusive Economic Zone (EEZ), is a sea area for a state which has rights from its baseline out to 200 nautical miles from the coast defined by the United Nations Convention on the Law of the Sea in 1982[2], has recently been rediscovered, with the overhaul of national strategies related to security and surveillance of the maritime environment. Thus, over the past decade or so, the evolution of the strategic context has led to international instability, primarily affecting fragile states, promoting illicit and violent activities, generating potential risks for societies as: security threats, caused by trafficking (narcotics, psychotropic substances, weapons), illegal transport of migrants, maritime terrorism and piracy, have replaced the military threat.
    [Show full text]