Status and physics prospects for the International AXion Observatory IAXO Igor G Irastorza Universidad de Zaragoza

WkhWorkshop "Vist as in AiAxion Physi cs” AilApril 2012 Institute for Nuclear Theory, Seattle, University of Washington Outline

 Outline: – Axions: motivation,motivation, theory,theory, cosmologycosmology.. – SlSolar axi ons & Talk partially based on the axion helioscope concept JCAP 06 (2011) 013 ––PreviousPrevioushelioscopes & CAST ––IAXOIAXO project:project: technicalprospects for a new helioscope . Magnet . XX--rayrayoptics . Low background detectors – Sensitivity prospects – Status of project ––ConclusionsConclusions

INT Washington, April 2012 Igor G. Irastorza / Universidad de 2 Zaragoza AXION motivation

 Strong CP problem: why strong interactions seem not to violate CP? – CP violating term in QCD is not forbidden . But neutron electric dipole moment not observed.  Natural answer if Peccei-Quinn mechanism exist. – New U(1) gl lob al symmet ry  spontlbktaneously broken.

 As a result, new pseudoscalar, neutral and very light particle is predicted, the axion.  It couples to the photon in every model. PRIMAKOFF EFFECT

INT Washington, April 2012 Igor G. Irastorza / Universidad de 3 Zaragoza AXION motivation: Cosmology

 Axions are produced in the earlyyy Universe by a number of processes: – Axion realignment – Decay of axion strings NONNON--RELATIVISTICRELATIVISTIC – Decay of axion walls (COLD) AXIONS

 In general, Range of axion masses of 10--66 ––1010--33 eV are of interest for the axionto be the (main component of the) CDM.

– Thermal production RELATIVISTIC (HOT) AXIONS

 In order to have substantial relativistic axiondensity, the axionmass must be close to 1 eV.eV. (ma >1.02 eV gives densities too much in excess to be

compatible with latest CMB data) Hannestad et al, JCAP 0804 (2008) 019 [0803.1585 (astro-ph)]

INT Washington, April 2012 Igor G. Irastorza / Universidad de 4 Zaragoza Axion parameter space

Astroppyhysical hints for ALPs

Axions as HDM

CDM CDM CDM White “anthropic window” Defects dominate “classical window” Dwarfs hep-ph/1202-5851 Vaxuum mis. + defects INT Washington, April 2012 Igor G. Irastorza / Universidad de 5 Zaragoza Beyond axions

Hidden photons Miniccagedharged AXIONS Chamaleons / paraphotons ALPS particles

WISPs (WklWeakly itinteracti ng Slim PtilParticle)

 Diverse theory motivation ––HigherHigher scale symmsymm.. breaking ––StringStringtheory – DM / DE candidates – Astrophysical hints

 Generic Axion- Axion-likelikeparticles ((ALPsALPs)) parameterspace 

INT Washington, April 2012 Igor G. Irastorza / Universidad de 6 Zaragoza Detecting axions  Relic Axions ––AxionsAxionsthat are part of galactic dark matter halo: . AAionxion Halosc opes

 Solar Axions – Emitted by the core. . Crystal detectors . Axion Helioscopes (CAST  IAXO)

 AiAxions ithlbin the lab . “Light shinning through wall” experiments . Vacuum birrefringence experiments

INT Washington, April 2012 Igor G. Irastorza / Universidad de 7 Zaragoza Solar Axions

 SlSolar axi ons prod uced db by ph otonoton--toto-- axion conversion of the solar plasma photons

 Solar axion flux [van Bibber PRD 39 (89)] [CAST JCAP 04(2007)010]

Solar physics + Primakoff effect

Only one unknown

parameter ga

Igor G. Irastorza / Universidad de INT Washington, April 2012 Zaragoza 8 Axion Helioscope principle

 Axion helioscope [Sikivie [Sikivie,, PRL 51 ((83)]83)]

AXION PHOTON CONVERSION

INT Washington, April 2012 Igor G. Irastorza / Universidad de 9 Zaragoza COHERENCE 1 Axion Helioscopes  Previous helioscopes: – First implementation at Brookhaven (just few hours of data) [Lazarus et at. PRL 69 (92)] – TOKYO Helioscope (SUMICO): 2 .3 m long 4 T magnet

 Presently running: – CERN Axion Solar (CAST) INT Washington, April 2012 Igor G. Irastorza / Universidad de 10 Zaragoza CAST experiment @ CERN  Decommissioned LHC test magnet (L=10m, B=9 T)  Moving platform ±8°V ±40°H (to allow up to 50 days / year of alignment)  4 magnet bores to look for X rays  3 X rays detector prototypes being used.  X ray Focusing System to increase signal/noise ratio.

LHC test magnet

Micromegas TPC (<2007) & 2 Micromegas CCD/Telescope (>2008)

INT Washington, April 2012 Igor G. Irastorza / Universidad de 11 Zaragoza Low background x-ray detectors

 Microbulk Micromegas ––LowLowradioactivity materials [[Astropart.PhAstropart.Ph.. 2011,34,354] ––HighHighgranularity readout  powerful offline discrimination of events in gas X-ray window – Shielding techniques

Shielding Readout Copper & pattern kapton

56 mm

INT Washington, April 2012 Igor G. Irastorza / Universidad de 12 Zaragoza Micromegas detectors @CAST@ CAST  Since 2008 2 new Micromegas detectors replaced the multiwire TPC in the sunset side. – Better shielding  At sunrise side. The Micromegas detector substantially upgraded: – microbulk, shielding, monitoring, frontal calibration, flow controller,  In overall  increasingly better Sunset backgrounds & sensitivity Micromegas

Sunrise Micromegas

INT Washington, April 2012 Igor G. Irastorza / Universidad de 13 Zaragoza Micromegas detectors @CAST@ CAST

 New detectors for 2012 New Sunset design – New microbulkMicromegas for sunset side – Improved shielding . Thickness . Coverage ––SomeSome components replaced ((radiopurityradiopurity)) – Possible muon veto  Tests of lowbackground strategies developed  Setup to be mounted at CAST Test mounting neetxt weekee ! See talk (Zaragoza) T. Dafni INT Washington, April 2012 Igor G. Irastorza / Universidad de 14 Zaragoza CAST X -ray telescope

 CAST innovationof the “helioscope concept”

 Wolter I typegrazing incident optics (prototype (prototype for ABRIXAS mission)mission)  From Ø43 mm ( magnet bore)  Ø3mmspot3 mm spot improves signal to background ratio

INT Washington, April 2012 Igor G. Irastorza / Universidad de 15 Zaragoza CAST X -ray telescope

Tracking data Signal simulation  Spot from the telescope on the CCD detector  Determination of the spot position by calibrations and precise alignment of tltelescope.  Counts inside the spot compatible with background level

INT Washington, April 2012 Igor G. Irastorza / Universidad de 16 Zaragoza 16 Buffer gas to go to higher masses

X ray detector Transverse magnetic field (B) X ray axions A

L Extending the coherence to higher axion masses... •Coherence condition ( qL << 1) is recovered for a narrow mass range around m

3 Ne: number of electrons/cm : gas density (g/cm 3) See talk J. Ruz INT Washington, April 2012 Igor G. Irastorza / Universidad de 17 Zaragoza Latest CAST results

 Results from first 3He (2008) data (red line).  Masses 0. 39 – 0650.65 eV excluded down to 2-25x2.5 x 10--1010 GeV--11 S. Aune et al. (CAST collaboration)  Touching KSVZ benchmark models for the first PRL 107 (2011) 261302 (arXiv:1106.3919v1) time  He3 data up to 1.15 eV taken, being analyzed.

INT Washington, April 2012 Igor G. Irastorza / Universidad de 18 Zaragoza Latest CAST results: preliminary

 All 3He data (2008 -11) in progress.  Masses up to 1.15 eV  Final He3 result paper in preparation

INT Washington, April 2012 Igor G. Irastorza / Universidad de 19 Zaragoza Future prospects

 CAST Near term future: – CAST will revisit phase II He4 in 2012 and again the vacuum phase I in 2013 -14 with better detectors  better sensitivity. – Search in parallel for exotica: chamaleons,chamaleons, paraphotons,paraphotons, non standard axions (visible wavelenghts)

 Longer term future: – Studies for a new generation axion helioscope (>1 order of magnitude more sensitive than CAST):

The International Axion Observatory IAXO

INT Washington, April 2012 Igor G. Irastorza / Universidad de 20 Zaragoza The International Axion Observator y IAXO: towards a new generationaxion helioscope

Ingredients of a successful helioscope  CAST is established as a reference result in experimental axion physics CAST PRL2004 cited experimental paper in axion physics  No other technique can realistically improve CAST in such wide mass Large & powerful magnet... range.

 Next step  IAXO, a new gener ation aionaxion helioscope ...X-ray optics,...

 Build up on CAST innovations to impro ve the helioscope techniq ue …

...and low background detectors

INT Washington, April 2012 Igor G. Irastorza / Universidad de Zaragoza 21 Axion Helioscopes FOM

 3 elements drive the sensitivity of anaxion helioscope

X-RAY X-RAY MAGNET OPTICS DETECTORS

INT Washington, April 2012 Igor G. Irastorza / Universidad de 22 Zaragoza IAXO sensitivity scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4

IGI et al. JCAP 016 (2011)

INT Washington, April 2012 Igor G. Irastorza / Universidad de 23 Zaragoza New magnet for IAXO

 CAST enjjyoys one of the best existing magnets than one can “recycle” for axion physics (LHC test magnet)

 Only way to make a step further is to built a new magnet, specially conceived for IAXO.

 After prel. study best option seems to be a toroidal configuration: – Much bigger aperture than CAST: ~0.5~0.5--11 m per bore – Relatively Light (no iron yoke) – Bores at room temperature (?) Cross section of the magnet

INT Washington, April 2012 Igor G. Irastorza / Universidad de 24 Zaragoza Inspired by ATLAS… ?

INT Washington, April 2012 Igor G. Irastorza / Universidad de 25 Zaragoza IAXO magnet: 1st concept

Total R = 2 m Bore diameter = 600 mm N bores = 8 Average B in bore = 4 T (in critical surface) MFOM = 770

 IAXO scenario2 conservative  Surpass IAXO scenario3 is possible  Further optimization ongoing See talk I. Shilon INT Washington, April 2012 Igor G. Irastorza / Universidad de 26 Zaragoza X-ray optics for IAXO

 CAST xx--rayray optics “recycled” from xx--rayray astronomy – High technology, expensive, “unique” objects, due to exquisite imaging properties required for x-x-rayray astronomy.

 IAXO optics: – Exquisite imaging not required – BUT, large area (~ 22m m2) to be covered. Require fabrication of dedicated optics  cost effective solution. – Good throughput (0.3 ––0.5)0.5) – Small point (~1 cm2)

 Pursued solution: thermallythermally--formedformed glass su bstr ates optic s – Successfully used in NUSTAR – Leverage existing infrastructure. Minimize costs & risks

INT Washington, April 2012 Igor G. Irastorza / Universidad de 27 Zaragoza Thermally-formed glass substrates

 NASA has recently built NuSTAR,NuSTAR, a hard x-ray telescope

 NuSTAR uses thin glass substrates coated with multilayers to enhance reflectivity up to 80 keV

 The speci ali zed t ooli ng t o sh ape th e NSTARNuSTAR optics assembl y machi ne substrates and assemble the optics is now available NuSTAR telescope

 Hardware can be easily configured to make optics with a variety of designs and sizes

 Key institutions in NuSTAR optics: LLNL, See talk UClU. Columbi biDTUDa, DTU Denmark kAlliIAXO!. All in IAXO ! M. Pivovaroff 28 INT Washington, April 2012 Igor G. Irastorza / Universidad de Zaragoza Ultralow-b detectors for IAXO

 Goal: at least 10--77 c/c/keVkeV/cm/cm2/s, dt10down to 10-8 c/kVkeV/cm2/if/s if simulations possible.  Work ongggoing: – Experimental tests with current detectors at CERN, Saclay & Zaragoza – Especially: underground setup at Canfranc Lab – Simulation works to build up a background model ––DesiDesign a new detector with improvements implemented R&D low background Micromegas  Latest Micromegas: x20 improved History of background improvement of Micromegas detectors at CAST background ––ShieldingShielding 2003 Nominal values at CAST – Radiopurity. New manufacturingtechnique 2004 2006 (microbulk readouts) ––MoreMore powerful offline cuts 2008-10  Tests in controlled conditions underground at Canfranc: – Better shielding coverage – Thicker shielding

Backgrounds around 2x10-7 c/keV/s/cm2 with improved shielding ~ x30 better than CAST Pathfinder detector+optics

 CllbCollaborati on SlSaclayay,, Zaragoza, LLNL, DTU, U. Columbia  Small xx--raray optics (~5 cm aperture) ––FabricatedFabricatedpurposely using thermally formed glass substrates  Micromegas low background detector: – Apply lessons learned in R&D: compactnesscompactness,, better shieldingshielding,, radiopurit yy,…,… ––GoalGoal:: 10--77 c/c/keVkeV/s/cm2/s/cm2 or better

 To be operated in CAST in 2013  Tests of techniques and know-know-howhow for IAXO See talk T. Dafni INT Washington, April 2012 Igor G. Irastorza / Universidad de 31 Zaragoza IAXO: Possible CtlConceptual DiDesign (LLNL)

Igor G. Irastorza / Universidad de INT Washington, April 2012 32 Zaragoza IAXO: Possible CtlConceptual DiDesign (LLNL)

Igor G. Irastorza / Universidad de INT Washington, April 2012 33 Zaragoza IAXO: Possible CtlConceptual DiDesign (LLNL)

X‐ray optics

Igor G. Irastorza / Universidad de INT Washington, April 2012 34 Zaragoza IAXO: Possible CtlConceptual DiDesign (LLNL)

Detectors & shieldings

Igor G. Irastorza / Universidad de INT Washington, April 2012 35 Zaragoza IAXO sensitivity prospects

 Factor 8 to 30 better in 6 ga (4000 to 10 in signal strength!!)

Conservative scenario Realistic scenario

Optimistic scenarios

INT Washington, April 2012 Igor G. Irastorza / Universidad de 36 Zaragoza IAXO sensitivity prospects

Much larger QCD axion region explored

IAXO

IAXO ppprospects

In combination with dark Astrophysical matter axion searches a hints for ALPs big part of the QCD axion modldel region could ldb be explored next decade.

INT Washington, April 2012 Igor G. Irastorza / Universidad de 37 Zaragoza The cooling of white dwarfts (Isern et al. 2008,2010)  Luminosity function (WD’s (WD’sper unit magnitudemagnitude)) altered by axion cooling  Claim of detection of new cooling mechanism (Isern 2008 )  AxionAxion--electronelectron coupling of ~1x10--1313 ( axion massesof 2-2-55 meVor larger) fits data .

DFSZ axion (cos=1)

INT Washington, April 2012 Igor G. Irastorza / Universidad de 38 Zaragoza The cooling of white dwarfs

 meV masses seem out of reach of EXTRA bremstrahlung emission ~50 times even an improved axion helioscope… helioscope… larger than standard Primakoff emission BUT  Axion-electron coupling provides extra axion emission from the SunSun……  Extra emission concentrated at lower energies (~1 keV)

 Such axion could produce a detectable signal in IAXO

INT Washington, April 2012 Igor G. Irastorza / Universidad de 39 Zaragoza Further physics cases

 Mooere specifi c ALP orrWIWISS(P (weakl y inteeacractin gslim partic l e) model s could be searched for at thelow energy frontier of particlephysics: physics: – Paraphotons / hidden photons – Chamaleons ––NonNon--standardstandardscenarios of axion production

 If equipped with microwave cavitiescavities,, dark matter halo axionscould be searched forfor..  under study [[BakerBaker et al. PRD 85]

 IAXO as a true ““axionaxionfacility” facility” open to the community: community:  Groupssinvitedinvitedto contribute and enrichthe science ppgrogramme of IAXO.

INT Washington, April 2012 Igor G. Irastorza / Universidad de 40 Zaragoza IAXO: project status & timetable

 ProtoProto--collaborationcollaboration being formed. formed. – Most CAST groups ––NewNew groups + extended expertises ((magnetmagnet,, optics).optics). ––OOpen for new interested ggproups  Conceptual DesignReport in preparation  Letter of Intent to be submitted to CERN soon

 CAST

 IAXO

INT Washington, April 2012 Igor G. Irastorza / Universidad de 41 Zaragoza European Astroparticle IAXO in ASPERA Roadmap

 Latest draft of the ASPERA roadmap 2011

INT Washington, April 2012 Igor G. Irastorza / Universidad de 42 Zaragoza Conclusions  CAST is the most powerful axion helioscope toto--date.date. – Established as a reference result in axion physics. ––FirstFirstCAST PRL most cited axion experimental result ever. ever. ––ExpertiseExpertise gathered in magnet,magnet, optics,optics, low back detectors

 IAXO: International Axion Observatory. Observatory. ––AA new generationaxion helioscope – First results (JCAP 016) sh ow good prospects to improve CAST 11--1.51.5 orders of magnitude in ga. ––FirstFirstsolid steps towards conceptual design

 In combination with dark matter axion searches (ADMX) a bigpart of the QCD axion model region could be explored next decadedecade..  Potential for other physics cases: white dwarfts e-coupled axions?, relic axionsaxions?,?, ALPs?…ALPs?…  IAXO as a ““axionaxion/ALP/ALP research facility”. facility”.  New groups to enlarge and enrich IAXO.

INT Washington, April 2012 Igor G. Irastorza / Universidad de 43 Zaragoza