Neuroscience Discoveries and Clinical Practice Resource List

Total Page:16

File Type:pdf, Size:1020Kb

Neuroscience Discoveries and Clinical Practice Resource List TENTH ANNUAL INTERPROFESSIONAL Spring Symposium Neuroscience Discoveries and Clinical Practice Resource List A list of resources prepared by UNE Library Services Books Addiction Neuroethics: The Ethics of Cognitive Neuroscience Addiction Neuroscience Research and Marie T. Banich and Rebecca J. Compton Treatment Wadsworth, Cengage Learning, 2010 Adrian Carter Academic Press, 2011 Addiction Neuroethics: The Promises and Cognitive Neuroscience of Aging: Linking Perils of Neuroscience Research on Addiction Cognitive and Cerebral Aging Adrian Carter Roberto Cabeza, Lars Nyberg, & Denise Park Cambridge University Press, 2012 Oxford University Press, 2009 Advances in the Neuroscience of Addiction The Compass of Pleasure: How Our Brains Cynthia M. Kuhn, George F. Koob Make Fatty Foods, Orgasm, Exercise, CRC Press, 2010 Marijuana, Generosity, Vodka, Learning, and Gambling Feel So Good David J. Linden Viking, c2011 Art Therapy and Clinical Neuroscience Creating Modern Neuroscience : The Revolu- Noah Hass-Cohen and Richard Carr tionary 1950s Jessica Kingsley Publishers, 2008 Gordon M. Shepherd Oxford University Press, 2010 The Behavioral Neuroscience of Empathy: From Bench to Bedside Adolescence Jean Decety Linda Patia Spear MIT, 2011 W. W. Norton, c2010 Brain Culture: Neuroscience and Essential Neuroscience Popular Media Allan Siegel and Hreday N. Sapru Davi Johnson Thornton Wolters Kluwer/Lippincott Williams & Wilkins Rutgers University Press, 2011 Health, c2011 Braintrust: What Neuroscience Tells Us Foundations of Behavioral Neuroscience about Morality Neil R. Carlson Patricia S. Churchland Prentice Hall, 2010 Princeton University Press, 2011 Cajal’s Butterflies of the Soul: Science From Brain to Mind: Using Neuroscience to and Art Guide Change in Education Javier DeFelipe James E. Zull Oxford University Press, 2010 Stylus, 2011 Clinical Neuroscience: Psychopathology Fundamentals of Computational and the Brain Neuroscience Kelly G. Lambert and Craig H. Kinsley Thomas P. Trappenberg Oxford University Press, 2011 Oxford University Press, 2010 All books and films included in this brochure are available at the UNE Libraries. For more information about these books and films, and for additional reports, journal articles and websites on neuroscience discoveries, please see the UNE Libraries ‘Course Guide’ on Neuroscience Discoveries and Clinical Practice at www.une.edu/library/gethelp/courseguide. The Healing Power of Emotion: Affective Neurogenesis in the Adult Brain II: Neuroscience, Development & Clinical Clinical Implications Practice Edited by Tatsunori Seki … et al. Diana Fosher Springer Verlag, 2011 W.W. Norton, 2009 Integrative Neuroscience and Personalized Neuroplasticity and Rehabilitation Medicine Sarah A. Raskin Evian Gordon and Stephen H. Koslow Guilford Press, 2011 Oxford University Press, 2011 The Mind and the Brain: Neuroplasticity and Neuroplasticity Following Skill and Strength the Power of Mental Force Training Jeffrey M. Schwartz and Sharon Begley Alan J. Pearce and Dawson J. Kidgell Regan Books/HarperCollins, 2003 Nova Science, 2009 Mindsight: The New Science of Personal Neuroplasticity in the Auditory Brainstem: Transformation From Physiology to the Drug Therapy Daniel J. Siegel Angelo Salami Bantam Books, 2010 Nova Science, 2011 Neural Mechanisms of Anesthesia Neuropsychology of Autism Joseph E. Antognini Deborah A. Fein Humana Press, 2010 Oxford University Press, 2011 Neuroanatomy Through Clinical Cases Neuroscience (Lippincott’s Illustrated Hal Blumenfeld Reviews Series) Sinaur Associates, 2010 Claudia Krebs Wolters Kluwer/Lippincott Williams & Wilkins Health, 2012 The Neurobiology of Disease: Contributions Neuroscience for Dummies from Neuroscience to Clinical Neurology Frank Amthor H. Bostock, P.A. Kirkwood & A.H. Pullen FD, 2011 Cambridge University Press, 2011 The Neurobiology of Orthodontics: Treatment Neuroscience: Fundamentals for of Malocclusion Through Neuroplasticity Rehabilitation Margaritis Z. Pimenidis Laurie Lundy-Ekman Springer, 2010 Saunders/Elsevier, c2007 Neurochemistry, Neuropharmacology and Neuroscience of Decision Making Behavior: Outlines on the Mechanism of Oshin Vartanian and David R. Mandel Brain Function Psychology Press, 2011 Darakhshan Haleem VDM Verlag, 2010 All books and films included in this brochure are available at the UNE Libraries. For more information about these books and films, and for additional reports, journal articles and websites on neuroscience discoveries, please see the UNE Libraries ‘Course Guide’ on Neuroscience Discoveries and Clinical Practice at www.une.edu/library/gethelp/courseguide. Books The Neuroscience of Psychotherapy: Healing The Scientific American Brave New Brain the Social Brain Judith Horstman Louis J. Cozolino Jossey-Bass, 2010 W.W. Norton, 2010 Neuroscience Nursing: Evidence-Based The Social Neuroscience of Empathy Practice Jean Decety and William Ickes Sue Woodward and Ann-Marie Mestecky MIT Press, 2009 Blackwell Pub, 2011 Neuroscience, the newest force in counseling and psychotherapy IN Theories of Suppressing the Mind: Anesthetic Counseling and Psychotherapy: Modulation of Memory and Consciousness A Multicultural Perspective Edited by Anthony Hudetz and Robert Pearce Allen E. Ivey, Michael J. D’Andrea and Mary Humana, 2010 Bradford Ivey Sage, 2011 The Newborn Brain: Synaptic Self: How Our Brains Become Neuroscience and Clinical Applications Who We Are Edited by Hugo Lagercrantz ... et al Joseph LeDoux Cambridge University Press, c2010 Penguin, 2003 Oxford Handbook of Developmental Topics in Integrative Neuroscience: Behavioral Neuroscience From Cells to Cognition Mark S. Blumberg, John H. Freeman and James R. Pomerantz Scott R. Robinson Cambridge University Press, 2010 Oxford University Press, 2010 The Patient’s Brain : The Neuroscience Vulnerability to Depression: From Cognitive Behind the Doctor-Patient Relationship Neuroscience to Prevention and Treatment Fabrizio Benedetti Rick E. Ingram, Ruth Ann Atchley, Zindel V. Oxford University Press, 2011 Segal Guilford Press, 2011 Pictures of the Mind: What the New What Is Addiction? Neuroscience Tells Us About Who We Are Edited by Don Ross ... et al. Miriam Boleyn-Fitzgerald MIT Press, c2010 FT Press, 2010 Poverty and Brain Development During Wisdom: From Philosophy to Neuroscience Childhood: An Approach from Cognitive Stephen S. Hall Psychology and Neuroscience Alfred A. Knopf, 2010 Sebastián J. Lipina and Jorge A. Colombo American Psychological Association, c2009 Psychiatry and Clinical Your Brain and Business: Neuroscience: A Primer The Neuroscience of Great Leaders Charles F. Zorumski and Eugene H. Rubin Srinivasan S. Pillay Oxford University Press, c2011 FT Press, 2011 All books and films included in this brochure are available at the UNE Libraries. For more information about these books and films, and for additional reports, journal articles and websites on neuroscience discoveries, please see the UNE Libraries ‘Course Guide’ on Neuroscience Discoveries and Clinical Practice at www.une.edu/library/gethelp/courseguide. Films Addiction: Do You Remember My Left Foot a 14-part series Love? [Cerebral palsy] [Alcoholism, Substance- [Alzheimer’s disease] 1989 related disorders] 1985 2007 Age Old Friends The Elephant Man The Notebook [Alzheimer’s disease] [Physical deformity] [Alzheimer’s disease] 1989 1980 2004 Aurora Borealis Eternal Sunshine of One Flew Over the [Alzheimer’s disease] the Spotless Mind Cuckoo’s Nest 2006 [Memory ] [Mental disability] 2004 1975 Awakenings Firefly Dreams Pride of the Yankees [Encephalitis] [Alzheimer’s disease] [ALS, Gehrig’s disease] 1990 2004 1942 Forrest Gump Away From Her [Mental disability] Rain Man [Alzheimer’s disease] 1994 [Autism] 2007 1988 How to Kill Your Bang the Drum Slowly Neighbor’s Dog Ryan’s Daughter [Hodgkins disease] [Alzheimer’s disease] [Mental disability] 1974 2001 1970 Brain Fitness I Never Sang for My [Neuroscience] Father The Savages PBS, 2008 [Alzheimer’s disease] [Alzheimer’s disease] 1970 2007 Brian’s Song Iris A Song for Martin [Terminal cancer] [Alzheimer’s disease] [Alzheimer’s disease] 1971 2002 2001 Charly The Mask Sundowning [Mental disability] [Physical deformity] [Alzheimer’s disease] 1968 1995 2005 The Diving Bell and Memento What’s Eating Gilbert the Butterfly [Memory loss] Grape? [Quadriplegia] 2001 [Mental disability] 2008 1993 All books and films included in this brochure are available at the UNE Libraries. For more information about these books and films, and for additional reports, journal articles and websites on neuroscience discoveries, please see the UNE Libraries ‘Course Guide’ on Neuroscience Discoveries and Clinical Practice at www.une.edu/library/gethelp/courseguide. Traumatic Brain Injury and Epilepsy PERSONAL NARRATIVES TEXTS Adam’s Fall, Traumatic Brain Injury, Acquired Brain Injury: An Integrative the First 365 Days Neuro-Rehabilitation Approach Robert V. Bullough Edited by Jean Elbaum & Deborah M. Benson Sunstone Press, 2011 Springer, 2010 Epilepsy in Our Experience: Accounts of Anxiety and Mood Disorders Following Health Care Professionals Traumatic Brain Injury: Clinical Assessment Edited by Steven C. Schachter and Psychotherapy Oxford University Press, 2008 Rudi Coetzer Karnac, 2010 Epilepsy in Our Words: Personal Acts Assisting Survivors of Traumatic Brain Injury: of Living with Seizures The Role of Speech-Language Pathologists Edited by Steven C. Schachter Edited by Karen Hux Oxford University Press, 2008 Pro ed, 2010 Head Cases: Stories of Brain Injury Closed head injury IN The Causes of Epilepsy: and
Recommended publications
  • Targeting Neuroplasticity for Balance Or Gait Deficit
    August 2021 Volume 1 Issue 8 CADTH Horizon Scan The Portable Neuromodulation Stimulator: Targeting Neuroplasticity for Balance or Gait Deficit Health Technology Update Authors: Sara D. Khangura ISSN: 2563-6596 Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services. While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up to date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document. The views and opinions of third parties published in this document do not necessarily state or reflect those of CADTH.
    [Show full text]
  • The Creation of Neuroscience
    The Creation of Neuroscience The Society for Neuroscience and the Quest for Disciplinary Unity 1969-1995 Introduction rom the molecular biology of a single neuron to the breathtakingly complex circuitry of the entire human nervous system, our understanding of the brain and how it works has undergone radical F changes over the past century. These advances have brought us tantalizingly closer to genu- inely mechanistic and scientifically rigorous explanations of how the brain’s roughly 100 billion neurons, interacting through trillions of synaptic connections, function both as single units and as larger ensem- bles. The professional field of neuroscience, in keeping pace with these important scientific develop- ments, has dramatically reshaped the organization of biological sciences across the globe over the last 50 years. Much like physics during its dominant era in the 1950s and 1960s, neuroscience has become the leading scientific discipline with regard to funding, numbers of scientists, and numbers of trainees. Furthermore, neuroscience as fact, explanation, and myth has just as dramatically redrawn our cultural landscape and redefined how Western popular culture understands who we are as individuals. In the 1950s, especially in the United States, Freud and his successors stood at the center of all cultural expla- nations for psychological suffering. In the new millennium, we perceive such suffering as erupting no longer from a repressed unconscious but, instead, from a pathophysiology rooted in and caused by brain abnormalities and dysfunctions. Indeed, the normal as well as the pathological have become thoroughly neurobiological in the last several decades. In the process, entirely new vistas have opened up in fields ranging from neuroeconomics and neurophilosophy to consumer products, as exemplified by an entire line of soft drinks advertised as offering “neuro” benefits.
    [Show full text]
  • Brain Stimulation and Neuroplasticity
    brain sciences Editorial Brain Stimulation and Neuroplasticity Ulrich Palm 1,2,* , Moussa A. Chalah 3,4 and Samar S. Ayache 3,4 1 Department of Psychiatry and Psychotherapy, Klinikum der Universität München, 80336 Munich, Germany 2 Medical Park Chiemseeblick, Rasthausstr. 25, 83233 Bernau-Felden, Germany 3 EA4391 Excitabilité Nerveuse & Thérapeutique, Université Paris Est Créteil, 94010 Créteil, France; [email protected] (M.A.C.); [email protected] (S.S.A.) 4 Service de Physiologie—Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique—Hôpitaux de Paris, 94010 Créteil, France * Correspondence: [email protected] Electrical or magnetic stimulation methods for brain or nerve modulation have been widely known for centuries, beginning with the Atlantic torpedo fish for the treatment of headaches in ancient Greece, followed by Luigi Galvani’s experiments with frog legs in baroque Italy, and leading to the interventional use of brain stimulation methods across Europe in the 19th century. However, actual research focusing on the development of tran- scranial magnetic stimulation (TMS) is beginning in the 1980s and transcranial electrical brain stimulation methods, such as transcranial direct current stimulation (tDCS), tran- scranial alternating current stimulation (tACS), and transcranial random noise stimulation (tRNS), are investigated from around the year 2000. Today, electrical, or magnetic stimulation methods are used for either the diagnosis or exploration of neurophysiology and neuroplasticity functions, or as a therapeutic interven- tion in neurologic or psychiatric disorders (i.e., structural damage or functional impairment of central or peripheral nerve function). This Special Issue ‘Brain Stimulation and Neuroplasticity’ gathers ten research articles Citation: Palm, U.; Chalah, M.A.; and two review articles on various magnetic and electrical brain stimulation methods in Ayache, S.S.
    [Show full text]
  • How Drugs Affect the Brain and Medication‐Assisted Treatment
    How Drugs Affect the Brain And Medication‐Assisted Treatment Presented by Carl M. Dawson, M.S., MAC, LPC, Q‐SAP Learning Objectives After completing this section, participants will be able to: • Understand the scientific modalities neuroscientists use when studying addictions (Bio‐Psycho‐Social model of addictions, genetics and neuroplasticity) • Explore basic facts regarding the development and function of the human brain • Identify three “Feel Good” chemicals released by the brain (dopamine, serotonin, norepinephrine) • Discuss how addictive behaviors and drugs routinely “hijack” the human brain How Neuroscientists Study Addiction • All addictions (alcohol, drugs, gambling, porn, video games, food) activate the same neurological pleasure (reward) routes (pathways) in the brain • Addictionology uses the “Bio‐Psycho‐Social” model when studying addictions • Research has identified a strong genetic basis for all addiction behaviors (There is no single “addiction” gene, there are approx. 90 genes associated with addictions) How Neuroscientists Study Addiction • Remember: “Our genetics load the gun, but the environment pulls the trigger” • Addictions aren't only hijacking the brain’s activities but they have the ability to modify the neurological structures and activities of the brain (neuroplasticity) Neuroplasticity: is a term used in the field of neuroscience that defines the brain's ability to adapt, adjust and change based upon the strength and reward of the experience ‐ “Neurons that Fire Together, Wire Together” Donald O. Hebb (1904‐1985) Basic Facts and Regions of the Human Brain The average human brain weighs approximately three (3 lbs.) pounds, consisting of 60% protein (fat), possessing approximately 85 to 110 billion neurons and produces 15 watts of electricity, traveling at a speed of one‐half to 250 miles per hour Approximate Ages of the Human Brain 7,000 7,000 480,000 6 to 10 mil.
    [Show full text]
  • The Brain That Changes Itself
    The Brain That Changes Itself Stories of Personal Triumph from the Frontiers of Brain Science NORMAN DOIDGE, M.D. For Eugene L. Goldberg, M.D., because you said you might like to read it Contents 1 A Woman Perpetually Falling . Rescued by the Man Who Discovered the Plasticity of Our Senses 2 Building Herself a Better Brain A Woman Labeled "Retarded" Discovers How to Heal Herself 3 Redesigning the Brain A Scientist Changes Brains to Sharpen Perception and Memory, Increase Speed of Thought, and Heal Learning Problems 4 Acquiring Tastes and Loves What Neuroplasticity Teaches Us About Sexual Attraction and Love 5 Midnight Resurrections Stroke Victims Learn to Move and Speak Again 6 Brain Lock Unlocked Using Plasticity to Stop Worries, OPsessions, Compulsions, and Bad Habits 7 Pain The Dark Side of Plasticity 8 Imagination How Thinking Makes It So 9 Turning Our Ghosts into Ancestors Psychoanalysis as a Neuroplastic Therapy 10 Rejuvenation The Discovery of the Neuronal Stem Cell and Lessons for Preserving Our Brains 11 More than the Sum of Her Parts A Woman Shows Us How Radically Plastic the Brain Can Be Appendix 1 The Culturally Modified Brain Appendix 2 Plasticity and the Idea of Progress Note to the Reader All the names of people who have undergone neuroplastic transformations are real, except in the few places indicated, and in the cases of children and their families. The Notes and References section at the end of the book includes comments on both the chapters and the appendices. Preface This book is about the revolutionary discovery that the human brain can change itself, as told through the stories of the scientists, doctors, and patients who have together brought about these astonishing transformations.
    [Show full text]
  • Michael M. Merzenich
    Michael M. Merzenich BORN: Lebanon, Oregon May 15, 1942 EDUCATION: Public Schools, Lebanon, Oregon (1924–1935) University of Portland (Oregon), B.S. (1965) Johns Hopkins University, Ph.D. (1968) University of Wisconsin Postdoctoral Fellow (1968–1971) APPOINTMENTS: Assistant and Associate Professor, University of California at San Francisco (1971–1980) Francis A. Sooy Professor, University of California at San Francisco (1981–2008) President and CEO, Scientifi c Learning Corporation (1995–1996) Chief Scientifi c Offi cer, Scientifi c Learning Corporation (1996–2003) Chief Scientifi c Offi cer, Posit Science Corporation (2004–present) President and CEO, Brain Plasticity Institute (2008–present) HONORS AND AWARDS (SELECTED): Cortical Discoverer Prize, Cajal Club (1994) IPSEN Prize (Paris, 1997) Zotterman Prize (Stockholm, 1998) Craik Prize (Cambridge, 1998) National Academy of Sciences, U.S.A. (1999) Lashley Award, American Philosophical Society (1999) Thomas Edison Prize (Menlo Park, NJ, 2000) American Psychological Society Distinguished Scientifi c Contribution Award (2001) Zülch Prize, Max-Planck Society (2002) Genius Award, Cure Autism Now (2002) Purkinje Medal, Czech Academy (2003) Neurotechnologist of the Year (2006) Institute of Medicine (2008) Michael M. Merzenich has conducted studies defi ning the functional organization of the auditory and somatosensory nervous systems. Initial models of a commercially successful cochlear implant (now distributed by Boston Scientifi c) were developed in his laboratory. Seminal research on cortical plasticity conducted in his laboratory contributed to our current understanding of the phenomenology of brain plasticity across the human lifetime. Merzenich extended this research into the commercial world by co-founding three brain plasticity-based therapeutic software companies (Scientifi c Learning, Posit Science, and Brain Plasticity Institute).
    [Show full text]
  • Protocol Title: Cracking Addiction
    Protocol Title: Cracking addiction: does BRAIN Stimulation-induced neuroplasticity reverse prefrontal cortex hypoactivity in cocaine and neW stImulanTs addiCtion in Humans (BRAIN SWITCH)? Abbreviated title: Transcranial Magnetic Stimulation for Cocaine Addiction Protocol Number: 1496 Date of Approval: June 29, 2017 Principal Investigator Name, Degree Branch/Institute Phone E-mail Massimo di Dept. of +39 0871358928 [email protected] Giannantonio, Neuroscience, MD Imaging and Clinical Sciences (ITAB) – University of Chieti Co- Principal Investigator Name, Degree Branch/Institute Phone E-mail Giovanni Dept. of +39 08713556914 [email protected] Martinotti, M.D., Neuroscience, Ph.D. Imaging and Clinical Sciences (ITAB) – University of Chieti Villa Maria Pia Clinic - Rome Associate Investigators Name, Degree Branch/Institute Phone E-mail Chiara MNB/NINDS +39 3281264713 [email protected] Montemitro, M.D. Mauro MNB/NINDS +39 3391979487 [email protected] Pettorruso, M.D. Lamberto Office of +39 3474727282 [email protected] Manzoli, Ph.D. Biostatistics/ University of Ferrara Referral Contact Name, Degree Branch/Institute Phone E-mail Mauro Pettorruso, MNB/NINDS +39 3391979487 [email protected] M.D. 1 Accountable Investigator Name, Degree Branch/Institute Phone E-mail Giovanni Dept. of +39 08713556914 [email protected] Martinotti, M.D., Neuroscience, Ph.D. Imaging and Clinical Sciences (ITAB) – University of Chieti Villa Maria Pia Clinic - Rome 2 A. Précis Background: Cocaine use disorder (CUD) are a major public health concern, associated with high relapse rates, significant disability and substantial mortality. In Italy, it has been recently estimated that up to 4.8% of subjects between the ages of 15-64 have assumed cocaine at least once, whereas 1.3% subjects currently have a diagnosis of CUD.
    [Show full text]
  • Gut Microbiota and Neuroplasticity
    cells Review Gut Microbiota and Neuroplasticity Julia Murciano-Brea 1,2, Martin Garcia-Montes 1,2, Stefano Geuna 3 and Celia Herrera-Rincon 1,2,* 1 Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; [email protected] (J.M.-B.); [email protected] (M.G.-M.) 2 Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain 3 Department of Clinical and Biological Sciences, School of Medicine, University of Torino, 10124 Torino, Italy; [email protected] * Correspondence: [email protected]; Tel.: +34-91394-4888 Abstract: The accumulating evidence linking bacteria in the gut and neurons in the brain (the microbiota–gut–brain axis) has led to a paradigm shift in the neurosciences. Understanding the neurobiological mechanisms supporting the relevance of actions mediated by the gut microbiota for brain physiology and neuronal functioning is a key research area. In this review, we discuss the literature showing how the microbiota is emerging as a key regulator of the brain’s function and behavior, as increasing amounts of evidence on the importance of the bidirectional communication between the intestinal bacteria and the brain have accumulated. Based on recent discoveries, we suggest that the interaction between diet and the gut microbiota, which might ultimately affect the brain, represents an unprecedented stimulus for conducting new research that links food and mood. We also review the limited work in the clinical arena to date, and we propose novel approaches for deciphering the gut microbiota–brain axis and, eventually, for manipulating this relationship to boost mental wellness.
    [Show full text]
  • UNIVERSITY of MISSOURI HEALTH CARE Neurosciences Hello and Welcome to Neurosciences at University of Missouri Health Care
    UNIVERSITY OF MISSOURI HEALTH CARE Neurosciences Hello and welcome to Neurosciences at University of Missouri Health Care. We would like to take this opportunity to introduce you to our different programs and professionals, as well as highlight some of our team’s capabilities and accomplishments. Over the last several years, we have seen an increase in demand for care of patients with neurological disease — whether it be stroke, brain tumors, sleep, epilepsy, Parkinson’s Disease or another condition. As a result of these increases, our neurology and neurosurgery teams have worked together to build up existing programs; recruit new faculty, nurses and other staff; acquire new equipment and look for new approaches to improve patient access to care. Recently, our epilepsy program has been recertified as a Level IV Center – the highest rating available. Our stroke center has also been recertified as a Comprehensive Stroke Center. We now have three stroke neurologists and three endovascular providers to care for strokes, aneurysms and other vascular diseases of the brain, and new endovascular techniques are being incorporated into our armamentarium. For our patients with brain tumors, we’ve added a medical neuro-oncologist and intra-operative CT scanner, and we offer a number of clinical trials in addition to our advanced surgical procedures. Our neuroscience intensive care unit has also been expanded to 14 beds. As a part of an academic health system, we are committed to training the next generation of doctors. We offer residency programs in neurology and neurosurgery with medical students regularly rotating in on both services. We offer fellowship programs in neurocritical care, sleep medicine, clinical neurophysiology, stroke and neuroendovascular procedures.
    [Show full text]
  • Neural Plasticity in the Brain During Neuropathic Pain
    biomedicines Review Neural Plasticity in the Brain during Neuropathic Pain Myeong Seong Bak 1, Haney Park 1 and Sun Kwang Kim 1,2,* 1 Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea; [email protected] (M.S.B.); [email protected] (H.P.) 2 Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea * Correspondence: [email protected]; Tel.: +82-2-961-0491 Abstract: Neuropathic pain is an intractable chronic pain, caused by damage to the somatosensory nervous system. To date, treatment for neuropathic pain has limited effects. For the development of efficient therapeutic methods, it is essential to fully understand the pathological mechanisms of neuropathic pain. Besides abnormal sensitization in the periphery and spinal cord, accumulating evidence suggests that neural plasticity in the brain is also critical for the development and mainte- nance of this pain. Recent technological advances in the measurement and manipulation of neuronal activity allow us to understand maladaptive plastic changes in the brain during neuropathic pain more precisely and modulate brain activity to reverse pain states at the preclinical and clinical levels. In this review paper, we discuss the current understanding of pathological neural plasticity in the four pain-related brain areas: the primary somatosensory cortex, the anterior cingulate cortex, the periaqueductal gray, and the basal ganglia. We also discuss potential treatments for neuropathic pain based on the modulation of neural plasticity in these brain areas. Keywords: neuropathic pain; neural plasticity; primary somatosensory cortex; anterior cingulate cortex; periaqueductal grey; basal ganglia Citation: Bak, M.S.; Park, H.; Kim, S.K.
    [Show full text]
  • The Portable Neuromodulation Stimulator (Pons)
    The Portable Neuromodulation Stimulator (PoNS™) FACT SHEET What is the PoNS? The Portable Neuromodulation Stimulator (PoNS) device is an investigational medical device being studied for the treatment of neurological symptoms caused by disease or trauma. The PoNS is currently being studied in the United States for the treatment of balance disorder related to mild to moderate Traumatic Brain Injury (mTBI), and in Canada for the treatment of gait and balance disorder for patients with Multiple Sclerosis (MS). It represents the first in a series of non-invasive devices -- based on the patented PoNS platform -- designed to amplify the brain’s powerful ability to heal itself. This is part of a new approach being studied for “symptom treatment” for the rising number of patients who have experienced loss of function as a result of neurological disease or trauma. What is the potential impact of the PoNS? As a result of their disease or injury, many patients are left with disrupted neural networks in the brain that are unable to carry neural impulses completely or efficiently. Neural impulses are the signals responsible for directing the functions of the body, such as movement control or sensory perception. Researchers believe that significantly increasing the activation of these neurons through electrical stimulation, combined with targeted functional therapy, may help reorganize and reactivate the networks responsible for those functions. While physicians and patients turn to available options to manage a host of neurological symptoms today, for millions living with these chronic disorders, there exists limited treatment options that actually help patients rehabilitate lost functions. The PoNS device is being studied as new potential option for the treatment of these chronic neurological symptoms of disease or trauma.
    [Show full text]
  • SHU-CHEN LI, Ph.D. Prof. of Lifespan Developmental Neuroscience
    1 SHU-CHEN LI, Ph.D. Prof. of Lifespan Developmental Neuroscience Publication List (updated in Dec 2020) Current H-index: 50 (based on Web of Knowledge); 63 (based on Google Scholar) Refereed Journal Articles In press Chen, H.-Y., Dix, A., Goh, J. O. S., Smolka, M., Thurm, F., & Li, S.-C. (in press). Effects and mechanisms of information saliency in enhancing value-based decision-making in younger and older adults. Neurobiology of Aging. Baeuchl, C., Kroemer, N., Pooseh, S., Petzold, J., Bitzer, B., Thurm, F., Li, S.-C., & Smolka, M. (in press). Reward modulates the association between sensory noise and brain activity during perceptual decision making. Neuropsychologia. Friederike, T., Dobroskok, A., Backhaus, M., Li, S.-C., Grittner, U., Antonenko, D., Agnes, F. (in press). Cognitive training and brain stimulation in prodromal Alzheimer’s disease (AD-Stim) – Study Protocol for a Double Blind Randomized Controlled Phase IIb (Monocenter) Trial. Alzeheimer’s Research & Therapy. 2020 Thurm, F., Li, S.-C., & Hämmerer, D. (2020). Maturation- and aging-related differences in electrophysiological correlates of error detection and error awareness. Neuropsychologia, 143, 1- 10. Zink, N., Kang, K.Y.L., Li, S.-C., & Beste, C. (2020). Anodal transcranial direct current stimulation (atDCS) enhances the efficiency of functional brain network communication during auditory attentional control. Journal of Neurophysiology, 124, 207-217. Chiao, J. Y., Li, S.-C., Turner, T., & Lee-Tauler, S. Y. (2020). Cultural neuroscience and the research domain criteria: implications for global mental health. Neuroscience and Biobehavioral Reviews, 116, 109-119. Koch, C., Li, S.-C., Polk, T., & Schuck, N. W. (2020). Effects of aging on encoding walking direction in the human brain.
    [Show full text]