12 Binary Space Partitions the Painter's Algorithm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computational Geometry
Computational Geometry Third Edition Mark de Berg · Otfried Cheong Marc van Kreveld · Mark Overmars Computational Geometry Algorithms and Applications Third Edition 123 Prof. Dr. Mark de Berg Dr. Marc van Kreveld Department of Mathematics Department of Information and Computer Science and Computing Sciences TU Eindhoven Utrecht University P.O. Box 513 P.O. Box 80.089 5600 MB Eindhoven 3508 TB Utrecht The Netherlands The Netherlands [email protected] [email protected] Dr. Otfried Cheong, ne´ Schwarzkopf Prof. Dr. Mark Overmars Department of Computer Science Department of Information KAIST and Computing Sciences Gwahangno 335, Yuseong-gu Utrecht University Daejeon 305-701 P.O. Box 80.089 Korea 3508 TB Utrecht [email protected] The Netherlands [email protected] ISBN 978-3-540-77973-5 e-ISBN 978-3-540-77974-2 DOI 10.1007/978-3-540-77974-2 ACM Computing Classification (1998): F.2.2, I.3.5 Library of Congress Control Number: 2008921564 © 2008, 2000, 1997 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. -
CS 274 Computational Geometry
6/25/2018 CS 274: Computational Geometry - Shewchuk - UC Berkeley (Untitled, Till Rickert, Shift 2005 Calendar.) CS 274 Computational Geometry Jonathan Shewchuk Autumn 2009 Mondays and Wednesdays, 2:30-4:00 pm Beginning August 26 320 Soda Hall Combinatorial geometry: Polygons, polytopes, triangulations, planar and spatial subdivisions. Constructions: triangulations of polygons, convex hulls, intersections of halfspaces, Voronoi diagrams, Delaunay triangulations, arrangements of lines and hyperplanes, Minkowski sums; relationships among them. Geometric duality and polarity. Numerical predicates and constructors. Upper Bound Theorem, Zone Theorem. Algorithms and analyses: Sweep algorithms, incremental construction, divide-and-conquer algorithms, randomized algorithms, backward analysis, geometric robustness. Construction of triangulations, convex hulls, halfspace intersections, Voronoi diagrams, Delaunay triangulations, arrangements, and Minkowski sums. Geometric data structures: Doubly-connected edge lists, quad-edges, face lattices, trapezoidal maps, conflict graphs, history DAGs, spatial search trees (a.k.a. range search), binary space partitions, quadtrees and octrees, visibility graphs. Applications: Line segment intersection and overlay of subdivisions for cartography and solid modeling. Triangulation for graphics, interpolation, and terrain modeling. Nearest neighbor search, small-dimensional linear programming, database queries, point location queries, windowing queries, discrepancy and sampling in ray tracing, robot motion planning. -
Triangulations
TRIANGULATIONS PETR FELKEL FEL CTU PRAGUE [email protected] https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg] and [Mount] Version from 20.11.2014 Talk overview Polygon triangulation – Monotone polygon triangulation – Monotonization of non-monotone polygon Delaunay triangulation (DT) of points – Input: set of 2D points – Properties – Incremental Algorithm – Relation of DT in 2D and lower envelope (CH) in 3D and relation of VD in 2D to upper envelope in 3D Felkel: Computational geometry (2 / 67) Polygon triangulation problem Triangulation (in general) = subdividing a spatial domain into simplices Application – decomposition of complex shapes into simpler shapes – art gallery problem (how many cameras and where) We will discuss – Triangulation of a simple polygon – without demand on triangle shapes Complexity of polygon triangulation – O(n) alg. exists [Chazelle91], but it is too complicated – practical algorithms run in O(n log n) Felkel: Computational geometry (3 / 67) Terminology Simple polygon = region enclosed by a closed polygonal chain that does not intersect itself Visible points ! = two points on the boundary are visible if the interior of the line segment joining them lies entirely in the interior of the polygon Diagonal = line segment joining any pair of visible vertices Felkel: Computational geometry (4 / 67) Terminology A polygonal chain C is strictly monotone with respect to line L, if any line orthogonal to L intersects C in at most one point A chain C is monotone with respect to line L, if any -
Triangulations
TRIANGULATIONS PETR FELKEL FEL CTU PRAGUE [email protected] https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg] and [Mount] Version from 30.11.2017 Talk overview Polygon triangulation – Monotone polygon triangulation – Monotonization of non-monotone polygon Delaunay triangulation (DT) of points – Input: set of 2D points – Properties – Incremental Algorithm – Relation of DT in 2D and lower envelope (CH) in 3D and relation of VD in 2D to upper envelope in 3D Felkel: Computational geometry (2 / 79) Polygon triangulation problem Triangulation (in general) = subdividing a spatial domain into simplices Application – decomposition of complex shapes into simpler shapes – art gallery problem (how many cameras and where) We will discuss – Triangulation of a simple polygon – without demand on triangle shapes Complexity of polygon triangulation – O(n) alg. exists [Chazelle91], but it is too complicated – practical algorithms run in O(n log n) Felkel: Computational geometry (3 / 79) Terminology Simple polygon = region enclosed by a closed polygonal chain that does not intersect itself Visible points ! = two points on the boundary are visible if the interior of the line segment joining them lies entirely in the interior of the polygon Diagonal = line segment joining any pair of visible vertices Felkel: Computational geometry (4 / 79) Terminology A polygonal chain C is strictly monotone with respect to line L, if any line orthogonal to L intersects C in at most one point A chain C is monotone with respect to line L, if any -
Computational Geometry
Computational Geometry Third Edition Mark de Berg · Otfried Cheong Marc van Kreveld · Mark Overmars Computational Geometry Algorithms and Applications Third Edition 123 Prof. Dr. Mark de Berg Dr. Marc van Kreveld Department of Mathematics Department of Information and Computer Science and Computing Sciences TU Eindhoven Utrecht University P.O. Box 513 P.O. Box 80.089 5600 MB Eindhoven 3508 TB Utrecht The Netherlands The Netherlands [email protected] [email protected] Dr. Otfried Cheong, ne´ Schwarzkopf Prof. Dr. Mark Overmars Department of Computer Science Department of Information KAIST and Computing Sciences Gwahangno 335, Yuseong-gu Utrecht University Daejeon 305-701 P.O. Box 80.089 Korea 3508 TB Utrecht [email protected] The Netherlands [email protected] ISBN 978-3-540-77973-5 e-ISBN 978-3-540-77974-2 DOI 10.1007/978-3-540-77974-2 ACM Computing Classification (1998): F.2.2, I.3.5 Library of Congress Control Number: 2008921564 © 2008, 2000, 1997 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. -
CS 274 Computational Geometry
6/25/2018 CS 274: Computational Geometry - Shewchuk - UC Berkeley (Untitled, Till Rickert, Shift 2005 Calendar.) CS 274 Computational Geometry Jonathan Shewchuk Spring 2005 Mondays and Wednesdays, 1:00-2:30 pm 320 Soda Hall Combinatorial geometry: Polygons, polytopes, triangulations, planar and spatial subdivisions. Constructions: triangulations of polygons, convex hulls, intersections of halfspaces, Voronoi diagrams, Delaunay triangulations, arrangements of lines and hyperplanes, Minkowski sums; relationships among them. Geometric duality and polarity. Numerical predicates and constructors. Upper Bound Theorem, Zone Theorem. Algorithms and analyses: Sweep algorithms, incremental construction, divide-and-conquer algorithms, randomized algorithms, backward analysis, geometric robustness. Construction of triangulations, convex hulls, halfspace intersections, Voronoi diagrams, Delaunay triangulations, arrangements, Minkowski sums. Geometric data structures: Doubly-connected edge lists, quad-edges, face lattices, trapezoidal maps, history DAGs, spatial search trees (a.k.a. range search), binary space partitions, visibility graphs. Applications: Line segment intersection and overlay of subdivisions for cartography and solid modeling. Triangulation for graphics, interpolation, and terrain modeling. Nearest neighbor search, small-dimensional linear programming, database queries, point location queries, windowing queries, discrepancy and sampling in ray tracing, robot motion planning. Here are Homework 1, Homework 2, Homework 3, Homework 4, and -
Ruler of the Plane - Games of Geometry
Ruler of the plane - Games of geometry Citation for published version (APA): Beekhuis, S., Buchin, K., Castermans, T., Hurks, T., & Sonke, W. (2017). Ruler of the plane - Games of geometry. In B. Aronov, & M. J. Katz (Eds.), 33rd International Symposium on Computational Geometry (SoCG) (pp. 631-635). (Leibniz International Proceedings in Informatics (LIPIcs); Vol. 77). Schloss Dagstuhl - Leibniz- Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2017.63 Document license: CC BY DOI: 10.4230/LIPIcs.SoCG.2017.63 Document status and date: Published: 01/06/2017 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. -
Computational Geometry
Computational Geometry Algorithms and Applications Bearbeitet von Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars Neuausgabe 2008. Buch. xii, 386 S. Hardcover ISBN 978 3 540 77973 5 Format (B x L): 18,9 x 24,6 cm Gewicht: 916 g Weitere Fachgebiete > Geologie, Geographie, Klima, Umwelt > Geologie und Nachbarwissenschaften > Geoinformatik Zu Leseprobe schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Contents 1 Computational Geometry 1 Introduction 1.1 An Example: Convex Hulls 2 1.2 Degeneracies and Robustness 8 1.3 Application Domains 10 1.4 Notes and Comments 13 1.5 Exercises 15 2 Line Segment Intersection 19 Thematic Map Overlay 2.1 Line Segment Intersection 20 2.2 The Doubly-Connected Edge List 29 2.3 Computing the Overlay of Two Subdivisions 33 2.4 Boolean Operations 39 2.5 Notes and Comments 40 2.6 Exercises 41 3 Polygon Triangulation 45 Guarding an Art Gallery 3.1 Guarding and Triangulations 46 3.2 Partitioning a Polygon into Monotone Pieces 49 3.3 Triangulating a Monotone Polygon 55 3.4 Notes and Comments 59 3.5 Exercises 60 4 Linear Programming 63 Manufacturing with Molds 4.1 The Geometry of Casting 64 4.2 Half-Plane Intersection 66 4.3 Incremental Linear