Prostate Cancer Stromal Cells and Lncap Cells Coordinately Activate

Total Page:16

File Type:pdf, Size:1020Kb

Prostate Cancer Stromal Cells and Lncap Cells Coordinately Activate Endocrine-Related Cancer (2009) 16 1139–1155 Prostate cancer stromal cells and LNCaP cells coordinately activate the androgen receptor through synthesis of testosterone and dihydrotestosterone from dehydroepiandrosterone Atsushi Mizokami, Eitetsu Koh, Kouji Izumi, Kazutaka Narimoto, Masashi Takeda, Seijiro Honma1, Jinlu Dai 2, Evan T Keller 2 and Mikio Namiki Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takaramachi, Kanazawa City 920-8640, Japan 1Teikoku Hormone MFG. Co., 1604 Shimosakunobe, Takatsu-ku, Kawasaki, Kanagawa 213, Japan 2Departments of Urology and Pathology, University of Michigan, Ann Arbor, Michigan, USA (Correspondence should be addressed to A Mizokami; Email: [email protected]) Abstract One of the mechanisms through which advanced prostate cancer (PCa) usually relapses after androgen deprivation therapy (ADT) is the adaptation to residual androgens in PCa tissue. It has been observed that androgen biosynthesis in PCa tissue plays an important role in this adaptation. In the present study, we investigated how stromal cells affect adrenal androgen dehydroepian- drosterone (DHEA) metabolism in androgen-sensitive PCa LNCaP cells. DHEA alone had little effect on prostate-specific antigen (PSA) promoter activity and the proliferation of LNCaP cells. However, the addition of prostate stromal cells or PCa-derived stromal cells (PCaSC) increased DHEA-induced PSA promoter activity via androgen receptor activation in the LNCaP cells. Moreover, PCaSC stimulated the proliferation of LNCaP cells under physiological concentrations of DHEA. Biosynthesis of testosterone or dihydrotestosterone from DHEA in stromal cells and LNCaP cells was involved in this stimulation of LNCaP cell proliferation. Androgen biosynthesis from DHEA depended upon the activity of various steroidogenic enzymes present in stromal cells. Finally, the dual 5a-reductase inhibitor dutasteride appears to function not only as a 5a-reductase inhibitor but also as a 3b-hydroxysteroid dehydrogenase inhibitor in LNCaP cells. Taken together, this coculture assay system provides new insights of coordinate androgen biosynthesis under the microenvironment of PCa cells before and after ADT, and offers a model system for the identification of important steroidogenic enzymes involved in PCa progression and for the development of the corresponding inhibitors of androgen biosynthesis. Endocrine-Related Cancer (2009) 16 1139–1155 Introduction progresses into what is termed an androgen non- Prostate cancer (PCa) is the most common malig- responsive phenotype. nancy and the second leading cause of cancer-related Multiple molecular mechanisms that could account death of men in the United States (Jemal et al. 2008). for the development of resistance to ADT have been Since advanced PCa is initially dependent upon proposed (Feldman & Feldman 2001), which typically androgens, androgen deprivation therapy (ADT) is invoke the androgen receptor (AR) as a key mediator in the first choice for advanced PCa. Unfortunately, after the progression of PCa (Takeda et al. 1996, Taplin & an initial response to ADT, PCa eventually loses Balk 2004). Moreover, alterations of AR itself, which responsiveness to the androgen blockade and are either absent or at low frequency in the original Endocrine-Related Cancer (2009) 16 1139–1155 Downloaded from Bioscientifica.comDOI: 10.1677/ERC-09-0070 at 09/25/2021 04:31:42AM 1351–0088/09/016–001139 q 2009 Society for Endocrinology Printed in Great Britain Online version via http://www.endocrinology-journals.orgvia free access A Mizokami et al.: Acceleration of DHEA activity androgen-dependent state, result in an androgen- expression of AKR1C3 (type 5 17b-HSD) in PCa hypersensitive situation where stimulation of PCa tissue, while Stanbrough et al. (2006) confirmed that growth occurs at castrate levels of androgens (Taplin ADT-resistant PCa and bone marrow metastases & Balk 2004). One of the AR alterations that occur is expressed increased levels of multiple genes respon- AR mutation that results in promiscuous ligand sible for androgen metabolism (HSD3B2, AKR1C3, specificity (Veldscholte et al. 1990). Therefore, in SRD5A1, AKR1C2, AKR1C1, and UGT2B15). These addition to its normal ligands, testosterone and studies provide support for the concept that PCa tissues dihydrotestosterone (DHT), both androstenediol, a can perform local biosynthesis of testosterone and precursor of testosterone, and estradiol can activate DHT resulting in activation of the AR (Labrie 1991). the AR and stimulate the proliferation of LNCaP cells, It remains unclear; however, in which cell types which have a mutated AR (Mizokami et al. 2004, testosterone and DHT are converted from DHEA to Arnold et al. 2005). Testosterone and the more active other androgens in PCa tissue, although the products androgen DHT are important factors in PCa pro- from DHEA and the relevant steroidogenic enzymes gression. These hormones are still present in PCa tissue are definitively present in the prostate. In this study, after ADT. Specifically, when PCa patients are treated we explored the hypothesis that PCa stromal cells with ADT, serum testosterone and DHT decrease to contribute to the biosynthesis of testosterone and less than one-tenth of pretreatment levels (Labrie et al. DHT in PCa. We demonstrated that testosterone 1985). However, testosterone and DHT in PCa tissue and DHT synthesized from DHEA in stromal cells are still present at 20–40% of pretreatment values activated AR in PCa epithelial cells in a paracrine (Labrie et al. 1985, Belanger et al. 1989, Forti et al. fashion and thus contribute to the development of ADT 1989, Mizokami et al. 2004, Nishiyama et al. 2004, resistance in PCa. Titus et al. 2005). These remaining androgens that are still present post-therapy may continue to promote AR activation and account for the observation that Materials and methods combination therapy with a LHRH agonist, to block Isolation of stromal cells from prostate androgen production, and an antiandrogen, to block carcinoma tissue ligand binding to the AR, is more effective for PCa treatment than either therapy alone (Labrie et al. 1985, All studies were approved by the Institutional Review Akaza 2007, Labrie 2007). Board. We obtained informed consent for experimental Testosterone and DHT in PCa tissue after medical or use of all specimens obtained from prostate needle surgical castration are synthesized locally in the biopsy or surgical procedure. The characteristics of prostate from dehydroepiandrosterone (DHEA) of PCa patients are described in Table 1. Stromal cells adrenal origin (Labrie et al. 1985, Belanger et al. were isolated using a modification of a previously 1989, Forti et al. 1989, Mizokami et al. 2004, described method (Krill et al. 1997). Briefly, small Nishiyama et al.2004, Titus et al. 2005). The pieces of PCa tissue were minced with scissors and metabolism from DHEA to DHT in peripheral target washed twice with PBS. The fragments were then tissues depends upon the level of expression of various digested in 0.25% trypsin–EDTA (Invitrogen) for steroidogenic enzymes in the specific cell types of 30 min at 37 8C. After digestion, the dispersed stromal these tissues (Labrie et al. 2005). Adrenal DHEA is cells were cultured in RPMI supplemented with converted to testosterone by 17b-hydroxysteroid 1% penicillin/streptomycin and 10% FCS (Sigma; dehydrogenase (17b-HSD) and 3b-HSD. Testosterone RPMI–10% FCS) on 6 cm dishes. Bone-derived is then converted to DHT by 5a-steroid reductase (SRD5A) in the prostate (Andersson & Russell 1990, Table 1 Characteristics of prostate cancer (PCa) patients on Andersson et al. 1991, Labrie et al. 2005, Luu-The diagnosis et al. 2008). Currently, 2 types of 3b-HSD, 15 types of Stromal PSA (ng/ml) Gleason Stage on 17b-HSDs, and 3 types of SRD5A have been identified cells on diagnosis score diagnosis and localized in various peripheral tissues, including PCaSC-1 4799 5C5 T3a, N0, M1 the prostate, with specific expression patterns in each PCaSC-2 263 4C4 T3b, N0, M0 tissue (Luu-The et al. 2008, Uemura et al. 2008). For PCaSC-5 76.9 4C3 T3a, N0, M1 example, 3b-HSD and type 5 17b-HSD were localized PCaSC-6 46.4 4C4 T3a, N1, M0 in basal cells of alveoli, stromal cells, and endothelial PCaSC-7 648 4C3 T4, N1, M1 C cells of blood vessels of the prostate (Pelletier et al. PCaSC-8 246 4 5 T4, N0, M1 PCaSC-9 180 5C4 T3b, N0, M0 2001). Fung et al. (2006) have observed increased Downloaded from Bioscientifica.com at 09/25/2021 04:31:42AM via free access 1140 www.endocrinology-journals.org Endocrine-Related Cancer (2009) 16 1139–1155 stromal cells 1 (BDSC-1) were obtained from the 11th with 20 nM non-target (NT) siRNA, AR siRNA-1, or rib of a 48-year-old man during left adrenalectomy for AR siRNA-2 (Invitrogen) using RNAiMAX (Invi- pheochromocytoma. BDSC-2 were obtained from the trogen) for 12 h, and LNCaP cells were transfected 11th rib of a 58-year-old man during left nephrour- with pGL3PSAp-5.8 for 12 h. Then after changing the eterectomy for localized ureteral cancer. These bone medium, transfected LNCaP cells were cocultured samples were cut into bone chips and further processed with or without PrSC. Consequently, cells were treated with a bone grinder (Lu et al. 2004). Bone chips were with or without 100 nM DHEA (C) for 24 h. As a then cultured in RPMI–10% FCS like prostate-derived positive control, cells were treated with 0.1 nM DHT stromal cells. for 24 h. For knockdown of AR expression in PrSC by RNA interference, we transfected 3!105 PrSC on a 0 Cell culture and cell proliferation assay 6 cm dish with 50 nM RNAi or AR RNAi (5 -CAUA- GUGACACCCAGAAGCUUCAUC-30; Invitrogen) LNCaP cells were cultured in DMEM including phenol for 48 h with Lipofectamine RNAiMAX. Transfected red–5% FCS (DMEM–5% FCS). Normal prostate- cells were counted, and 5!104 siRNA-transfected derived stromal cells, PrSC, commercially available PrSC were cocultured with 5!104 LNCaP cells (Cambrex, East Rutherford, NJ, USA) were cultured transfected with pGL3PSAp-5.8 12 h before coculture.
Recommended publications
  • P53 and PTEN Expression Contribute to the Inhibition of EGFR Downstream Signaling Pathway by Cetuximab
    Cancer Gene Therapy (2009) 16, 498–507 r 2009 Nature Publishing Group All rights reserved 0929-1903/09 $32.00 www.nature.com/cgt ORIGINAL ARTICLE P53 and PTEN expression contribute to the inhibition of EGFR downstream signaling pathway by cetuximab S Bouali1, A-S Chre´tien1, C Ramacci1, M Rouyer1, S Marchal2, T Galenne3, P Juin3, P Becuwe4 and J-L Merlin1 1Centre Alexis Vautrin, Unite´ de Biologie des Tumeurs, EA ‘‘Predicther’’ Nancy Universite´, Vandœuvre-le`s- Nancy cedex, France; 2Centre Alexis Vautrin, CRAN UMR 7039 CNRS-UHP-INPL, Vandœuvre-le`s-Nancy cedex, France; 3INSERM U601, CHU de Nantes, Institut de Biologie, Nantes, France and 4Laboratoire de Biologie Cellulaire, Faculte´ des Sciences, EA ‘‘Predicther’’ Nancy Universite´, Vandœuvre-le`s-Nancy, France Cetuximab (Erbitux) is an anti-epidermal growth factor receptor (EGFR) monoclonal antibody whose activity is related to the inhibition of EGFR downstream signaling pathways. P53 and phosphatase and tensin homologue deleted on chromosome 10 (PTEN) have been reported to control the functionality of PI3K/AKT signaling. In this study we evaluated whether reintroducing P53 using non-viral gene transfer enhances PTEN-mediated inhibition of PI3K/AKT signaling by cetuximab in PC3 prostate adenocarcinoma cell line bearing p53 and pten mutations. Signaling phosphoproteins expression was analyzed using Bio-Plex phosphoprotein array and western blot. Apoptosis induction was evaluated from BAX expression, caspase-3 activation and DNA fragmentation analyses. The results presented show that p53 and pten gene transfer additionally mediated cell growth inhibition and apoptosis induction by restoral of signaling functionality, which enabled the control of PI3K/AKT and MAPKinase signaling pathways by cetuximab in PC3 cells.
    [Show full text]
  • Indirect Antitumor Effects of Bisphosphonates on Prostatic Lncap Cells Co-Cultured with Bone Cells
    ANTICANCER RESEARCH 29: 1089-1094 (2009) Indirect Antitumor Effects of Bisphosphonates on Prostatic LNCaP Cells Co-cultured with Bone Cells TOMOAKI TANAKA, HIDENORI KAWASHIMA, KEIKO OHNISHI, KENTARO MATSUMURA, RIKIO YOSHIMURA, MASAHIDE MATSUYAMA, KATSUYUKI KURATSUKURI and TATSUYA NAKATANI Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan Abstract. Bisphosphonates are strong inhibitors of effectively inhibit bone absorption are available for osteoclastic bone resorption in both benign and malignant reducing the risk of skeletal complications in bone bone diseases. The nitrogen-containing bisphosphonates metastases of prostate cancer as well as those of other solid (N-BPs) have strong cytotoxicity via inhibition of protein tumors characterized by osteoclastic lesions. prenylation in the mevalonate pathway, and also demonstrate Bisphosphonates are potent inhibitors of osteoclast activity direct cytostatic and proapoptotic effects on prostate cancer and survival, thereby reducing osteoclast-mediated bone cells. We confirmed the usefulness of a co-culture system absorption (1, 4-6). The chemical structure of bisphosphonates comprised of prostatic LNCaP cells, ST2 cells (mouse- contributes to their mechanism of action: Non-nitrogen- derived osteoblasts) and MLC-6 cells (mouse-derived containing compounds (e.g. etidronate, clodronate) are osteoclasts) in vitro. N-BPs (pamidronate and zoledronic metabolized to cytotoxic analogues of ATP (7), while newer acid) inhibited both androgen receptor transactivation and nitrogen-containing bisphosphonates (N-BPs; pamidronate, tumor cell proliferation by suppressing the activities of both ibandronate, zoledronic acid) have strong cytotoxic effects on osteoclasts and osteoblasts with low-dose exposure. This cells via inhibition of protein prenylation in the mevalonate indirect inhibition of prostate cancer cells via bone cells pathway (8, 9).
    [Show full text]
  • Cell Line Lncap'
    ICANCER RESEARCH58. 76-83. January 1. 1998J Caspase-7 Is Activated during Lovastatin-induced Apoptosis of the Prostate Cancer Cell Line LNCaP' Marco Marcelli,2 Glenn R. Cunningham, S. Joe Haidacher, Sebastian J. Padayatty, Lydia Sturgis, Carolina Kagan, and Larry Denner Departments of Medicine (M. M.. G. R. C., S. J. H.. S. f. P.1 and Cell Biology [M. M., G. R. C.], Veterans Affairs Medical Center and Baylor College of Medicine, Department of Cell Biology (L S., C K., L DI, Texas Biotechnology C'orporation, Houston, Texas 77030 ABSTRACT androgen-dependent and androgen-independent cells even before therapy (4). The initial response following androgen ablation is The goals of this work were to establish a reproducible and effective thought to be due to the induction of apoptosis of androgen-dependent model of apoptosis in a cell line derived from advanced prostate cancer prostate cancer cells (5). Because androgen-independent cells are and to study the role of the caspase family of proteases in mediating insensitive to androgen ablation, they remain alive even in the absence apoptosis in this system. The study involved the use of the prostate cancer cell line LNCaP. Apoptosis was induced using the hydroxymethyl glutaryl of androgens (6). Hence, after the initial response to androgen ablation CoA reductase inhibitor, lovastatin, and was evaluated by agarose gel due to the death of androgen-dependent cells, the tumor progresses to electrophoresis of genomic DNA, morphological criteria, and terminal an androgen-independent state, and the patient is no longer curable deoxynucleotidyl traasferase-mediated nick end labeling. Caspases were (7).
    [Show full text]
  • On the Biological Properties of Prostate Cancer Cells by Modulation of Inflammatory and Steroidogenesis Pathway Genes
    International Journal of Molecular Sciences Article The Impact of Ang-(1-9) and Ang-(3-7) on the Biological Properties of Prostate Cancer Cells by Modulation of Inflammatory and Steroidogenesis Pathway Genes Kamila Domi ´nska 1,* , Karolina Kowalska 2 , Kinga Anna Urbanek 2 , Dominika Ewa Habrowska-Górczy ´nska 2 , Tomasz Och˛edalski 1 and Agnieszka Wanda Piastowska Ciesielska 2 1 Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; [email protected] 2 Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; [email protected] (K.K.); [email protected] (K.A.U.); [email protected] (D.E.H.-G.); [email protected] (A.W.P.C.) * Correspondence: [email protected] Received: 12 July 2020; Accepted: 26 August 2020; Published: 28 August 2020 Abstract: The local renin–angiotensin system (RAS) plays an important role in the pathophysiology of the prostate, including cancer development and progression. The Ang-(1-9) and Ang-(3-7) are the less known active peptides of RAS. This study examines the influence of these two peptide hormones on the metabolic activity, proliferation and migration of prostate cancer cells. Significant changes in MTT dye reduction were observed depending on the type of angiotensin and its concentration as well as time of incubation. Ang-(1-9) did not regulate the 2D cell division of either prostate cancer lines however, it reduced the size of LNCaP colonies formed in soft agar, maybe through down-regulation of the HIF1a gene.
    [Show full text]
  • Active Estrogen Synthesis and Its Function in Prostate Cancer-Derived Stromal Cells
    ANTICANCER RESEARCH 35: 221-228 (2015) Active Estrogen Synthesis and its Function in Prostate Cancer-derived Stromal Cells KAZUAKI MACHIOKA1, ATSUSHI MIZOKAMI1, YURI YAMAGUCHI2, KOUJI IZUMI1, SHINICHI HAYASHI3 and MIKIO NAMIKI1 1Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan; 2Division of Breast Surgery, Saitama Cancer Center, Saitama, Japan; 3Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Japan Abstract. Background: It remains unclear whether estrogen Castration-naïve prostate cancer (PCa) develops into is produced in prostate cancer (PCa) and how it functions in castration-resistant prostate cancer (CRPC) during androgen PCa. Materials and Methods: To examine the production of deprivation therapy (ADT) by various mechanisms. estrogen in PCa cells, the concentration of estrogen in the Especially, the androgen receptor (AR) signaling axis plays a medium in which LNCaP cells and PCa-derived stromal cells key role in this specific development. PCa cells mainly adapt (PCaSC) were co-cultured, was measured by liquid themselves to the environment of lower androgen chromatography-mass spectrometry/mass spectrometry (LC- concentrations and change into androgen-hypersensitive cells MS/MS), while aromatase (CYP19) mRNA expression was or androgen-independent cells. Androgens of adrenal origin confirmed by real-time polymerase chain reaction (RT-PCR) and their metabolites synthesized in the microenvironment in methods. To verify whether estrogen is synthesized from an intracrine/paracrine fashion act on surviving PCa cells and testosterone in PCaSC functions, PCaSC were co-cultured secrete prostate specific antigen (PSA). Therefore, new with breast cancer MCF-7-E10 cells, which were stably- recently developed medicines, abiraterone acetate that transfected with ERE-GFP, in the presence of testosterone.
    [Show full text]
  • Cell Adhesion and Chemotaxis in Prostate Cancer Metastasis to Bone: a Minireview
    Prostate Cancer and Prostatic Diseases (2000) 3, 6±12 ß 2000 Macmillan Publishers Ltd All rights reserved 1365±7852/00 $15.00 www.nature.com/pcan Review Cell adhesion and chemotaxis in prostate cancer metastasis to bone: a minireview CR Cooper1* & KJ Pienta1 1University of Michigan Comprehensive Cancer Center, Department of Internal Medicine, Ann Arbor, MI 48109, USA Bone metastasis is a common phenomenon in patients with advanced prostate cancer. The molecular and cellular mechanisms involved in this process are not well understood. Past reviews on this subject primarily focused on prostate tumor growth in the bone marrow and the effects this growth has on bone homeostasis (ie osteoblastic and osteolytic). Cell chemotaxis and adhesion are also important for site-speci®c metastasis. In this review we have focused on chemotactic and cell adhesion molecules potentially involved in prostate cancer metastasis to bone. In addition, recently developed animal models for prostate cancer metastasis to bone are discussed. Prostate Cancer and Prostatic Diseases (2000) 3, 6±12. Keywords: cell adhesion molecules; cytokines; human bone marrow endothelial cells; chemoattractants; prostate cancer cells Introduction cells.7 The inactivation of parathyroid hormone-related protein (PTH-rp) by prostate-speci®c antigen may pro- Prostate cancer bone metastasis is a major clinical prob- mote the osteoblastic reaction seen in prostate cancer lem and is commonly associated with intractable pain, patients. Yoneda has proposed that the minor osteolytic pathological
    [Show full text]
  • A Novel Anti-Androgen, Compound 30, Suppresses Castration-Resistant and MDV3100-Resistant Prostate Cancer Growth in Vitro and in Vivo
    Author Manuscript Published OnlineFirst on March 14, 2013; DOI: 10.1158/1535-7163.MCT-12-0798 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. A novel anti-androgen, Compound 30, suppresses castration-resistant and MDV3100-resistant prostate cancer growth in vitro and in vivo Hidetoshi Kuruma1, Hiroaki Matsumoto1, Masaki Shiota1, Jennifer Bishop, Francois Lamoureux1, Christian Thomas1, David Briere2, Gerrit Los2, Martin Gleave1, Andrea Fanjul2 and Amina Zoubeidi1 1The Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada, V6H 3Z6 2Pfizer Oncology Research Unit, Worldwide Research & Development, 10646 Science Center Drive, San Diego, California, United States, 92121. Running Title: Efficacy of Compound 30 in MDV3100-resistant prostate cancer Key words: Castration-resistant prostate cancer, anti-androgen, MDV3100, Compound 30, androgen receptor, MR49F Financial support: Pfizer Global Research & Development (United States) and the Prostate Cancer Foundation USA (A. Zoubeidi) Corresponding author: Amina Zoubeidi, Ph.D. The Vancouver Prostate Centre, Department of Urologic Science University of British Columbia: 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada. [email protected] Disclosure: A. Fanjul, D. Briere and G. Los are employee of Pfizer. The other authors disclosed no potential conflicts of interest. Manuscript Type: Chemical (Small Molecule) Discovery and Clinical Development Total number of figures: 5 Word Count: 4,937 1 Downloaded from mct.aacrjournals.org on September 29, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on March 14, 2013; DOI: 10.1158/1535-7163.MCT-12-0798 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Repression of Cell Proliferation and Androgen Receptor Activity in Prostate Cancer Cells by 2’-Hydroxyflavanone
    ANTICANCER RESEARCH 33: 4453-4462 (2013) Repression of Cell Proliferation and Androgen Receptor Activity in Prostate Cancer Cells by 2’-Hydroxyflavanone MITSUO OFUDE1, ATSUSHI MIZOKAMI1, MISAKO KUMAKI1, KOUJI IZUMI1, HIROYUKI KONAKA1, YOSHIFUMI KADONO1, YASUHIDE KITAGAWA1, MINKYOUNG SHIN1, JIAN ZHANG2, EVAN T. KELLER3 and MIKIO NAMIKI1 1Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan; 2Center for Translational Medical Research, Guangxi Medical University, Guangxi, P.R. China; 3Department of Urology, School of Medicine, University of Michigan, Ann Arbor, MI, U.S.A. Abstract. Background: Prevention of the development of line hormonal therapy using medical castration, such as castration-resistant from hormone-naïve prostate cancer is luteinizing hormone releasing hormone (LH-RH) agonists, an important issue in maintaining the quality of life of the LH-RH antagonist, and antiandrogen for advanced PCa. patients. We explored the effect of 2’-hydroxyflavanone on After an initial response to ADT, however, PCa eventually proliferation and androgen responsiveness using prostate loses responsiveness to ADT and progresses into what is cancer cell lines. Materials and Methods: To investigate the termed castration-resistant PCa (CRPC). effect of 2’-hydroxyflavanone on proliferation, prostate The AR axis also plays an important part in the process cancer cells were treated with 2’-hydroxyflavanone. when hormone- sensitive PCa become CRPC. Although Androgen-responsiveness in LNCaP cells was confirmed by serum testosterone decreases to less than 5% before starting luciferase assay after transfection of luciferase reporter ADT, PCa adapts to low serum testosterone level by several driven by prostate specific antigen promoter. To detect mechanisms.
    [Show full text]
  • Osteoblast-Derived Factors Induce Androgen-Independent Proliferation and Expression of Prostate-Specific Antigen in Human Prostate Cancer Cells
    1860 Vol. 10, 1860–1869, March 1, 2004 Clinical Cancer Research Osteoblast-Derived Factors Induce Androgen-Independent Proliferation and Expression of Prostate-Specific Antigen in Human Prostate Cancer Cells Natalie Blaszczyk,1 Bassam A. Masri,4 cotreated with both OCM and androgen. OCM targeted the 1 1 Nasrin R. Mawji, Takeshi Ueda, NH2-terminal domain of the AR. The effect of OCM on transcriptional activity of the AR was inhibited by an anti- Gavan McAlinden,4 Clive P. Duncan,4 1 2 androgen. Neutralizing antibodies to IL-6 blocked prolifer- Nicholas Bruchovsky, Hans-Udo Schweikert, ation and expression of PSA by OCM. 2 3 Doris Schnabel, Edward C. Jones, and Conclusion: Osteoblasts secrete factors, such as IL-6, Marianne D. Sadar1 that cause androgen-independent induction of PSA gene 1Department of Cancer Endocrinology, British Columbia Cancer expression and proliferation of prostate cancer cells by a Agency, Vancouver, British Columbia, Canada; 2Department of mechanism that partially relies on the AR. Identifying such Internal Medicine, University of Bonn, Bonn, Germany; and molecular mechanisms may lead to improved clinical man- 3 4 Anatomical Pathology and Orthopaedic Surgery, Vancouver agement of metastatic prostate cancer. General Hospital, British Columbia, Canada INTRODUCTION ABSTRACT Localized carcinoma of the prostate (CaP) can potentially Purpose: Prostate cancer metastasizes to the skeleton to be cured by surgery or radiation therapy. However, the only form osteoblastic lesions. Androgen ablation is the current treatment available for advanced metastatic disease is the with- treatment for metastatic prostate cancer. This therapy drawal of androgens, which are essential for the survival of is palliative, and the disease will return in an androgen- prostate epithelial cells (for review, see Ref.
    [Show full text]
  • Human Prostate Cancer in a Clinically Relevant Xenograft Mouse Model: Identification of B(1,6)-Branched Oligosaccharides As a Marker of Tumor Progression
    Published OnlineFirst January 18, 2012; DOI: 10.1158/1078-0432.CCR-11-2900 Clinical Cancer Imaging, Diagnosis, Prognosis Research Human Prostate Cancer in a Clinically Relevant Xenograft Mouse Model: Identification of b(1,6)-Branched Oligosaccharides as a Marker of Tumor Progression Tobias Lange1, Sebastian Ullrich1, Imke Muller€ 1, Michael F. Nentwich1,2, Katrin Stubke€ 1, Susanne Feldhaus1, Christine Knies1, Olaf J.C. Hellwinkel3, Robert L. Vessella7, Claudia Abramjuk8, Mario Anders4, Jennifer Schroder-Schwarz€ 4, Thorsten Schlomm3,6, Hartwig Huland6, Guido Sauter5, and Udo Schumacher1 Abstract Purpose: To establish xenograft mouse models of metastatic and nonmetastatic human prostate cancer and to apply these models to the search for aberrant glycosylation patterns associated with tumor progression in vivo and in patients. Experimental Design: Prostate cancer cells (LNCaP, PC-3, LuCaP 23.1, and DU-145) were xeno- À À À À grafted subcutaneously into immunodeficient pfp / /rag2 / mice. Tumor growth and metastasis formation were quantified and as altered glycosylation patterns have been associated with metastasis formation in several other malignancies, prostate cancer cells were profiled by a quantitative real-time PCR (qRT-PCR) glycosylation array and compared with normal human prostate cells. The activity of upregulated glycosyltransferases was analyzed by their sugar residues end products using lectin histochemistry on primary tumors and metastases in the animal experiments and on 2,085 clinical samples. Results: PC-3 cells produced the largest number of spontaneous lung metastases, followed by LNCaP and LuCaP 23.1, whereas DU-145 was nonmetastatic. qRT-PCR revealed an upregulation of b1,6-N- acetylglucosaminyltransferase-5b (Mgat5b) in all prostate cancer cell lines.
    [Show full text]
  • Androgen Receptor As a Licensing Factor for DNA Replication in Androgen-Sensitive Prostate Cancer Cells
    Androgen receptor as a licensing factor for DNA replication in androgen-sensitive prostate cancer cells Ivan V. Litvinov*†, Donald J. Vander Griend*‡, Lizamma Antony*, Susan Dalrymple*, Angelo M. De Marzo‡§, Charles G. Drake‡¶, and John T. Isaacs*†‡ʈ *Chemical Therapeutics Program, ¶Division of Immunology and Hematopoiesis, The Sidney Kimmel Comprehensive Cancer Center, †Cellular and Molecular Medicine Graduate Program, §Department of Pathology, and the ‡Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231 Edited by Owen N. Witte, University of California, Los Angeles, CA, and approved August 11, 2006 (received for review April 16, 2006) Androgen receptor (AR) protein expression and function are critical AR-stimulated growth (11). As part of this malignant conversion, for survival and proliferation of androgen-sensitive (AS) prostate AR undergoes a molecular switch from its ability to suppress cancer cells. Besides its ability to function as a transcription factor, proliferation of normal prostatic epithelia to directly stimulating the experimental observations suggest that AR becomes a licensing proliferation of prostate cancer cells (4, 11, 12). Such a molecular factor for DNA replication in AS prostate cancer cells and thus must switch requires gain-of-function changes in AR signaling. Recent be degraded during each cell cycle in these cells to allow reinitia- studies documented that one such gain-of-function event involves tion of DNA replication in the next cell cycle. This possibility was DNA rearrangement such that the androgen response element is tested by using the AS human prostate cancer cell lines, LNCaP, translocated to confer androgen responsiveness upon promoters for CWR22Rv1, and LAPC-4.
    [Show full text]
  • Switch from Antagonist to Agonist of the Androgen Receptor Blocker Bicalutamide Is Associated with Prostate Tumour Progression I
    British Journal of Cancer (1999) 81(2), 242–251 © 1999 Cancer Research Campaign Article no. bjoc.1999.0684 Switch from antagonist to agonist of the androgen receptor blocker bicalutamide is associated with prostate tumour progression in a new model system Z Culig1,*, J Hoffmann4,*, M Erdel2, IE Eder1, A Hobisch1, A Hittmair3, G Bartsch1, G Utermann2, MR Schneider4, K Parczyk4 and H Klocker1 Departments of 1Urology, 2Medical Biology and Human Genetics and 3Pathology, University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria; 4Research Laboratories of Schering AG, D-13342 Berlin, Germany Summary Advanced prostate cancer is treated by androgen ablation and/or androgen receptor (AR) antagonists. In order to investigate the mechanisms relevant to the development of therapy-resistant tumours, we established a new tumour model which closely resembles the situation in patients who receive androgen ablation therapy. Androgen-sensitive LNCaP cells were kept in androgen-depleted medium for 87 passages. The new LNCaP cell subline established in this manner, LNCaP-abl, displayed a hypersensitive biphasic proliferative response to androgen until passage 75. Maximal proliferation of LNCaP-abl cells was achieved at 0.001 nM of the synthetic androgen methyltrienolone (R1881), whereas 0.01 nM of this compound induced the same effect in parental cells. At later passages (> 75), androgen exerted an inhibitory effect on growth of LNCaP-abl cells. The non-steroidal anti-androgen bicalutamide stimulated proliferation of LNCaP-abl cells. AR protein expression in LNCaP-abl cells increased approximately fourfold. The basal AR transcriptional activity was 30-fold higher in LNCaP-abl than in LNCaP cells. R1881 stimulated reporter gene activity in LNCaP-abl cells even at 0.01 nM, whereas 0.1 nM of R1881 was needed for induction of the same level of reporter gene activity in LNCaP cells.
    [Show full text]