Gonodactylus Smithii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stomatopod Interrelationships: Preliminary Results Based on Analysis of Three Molecular Loci
Arthropod Systematics & Phylogeny 91 67 (1) 91 – 98 © Museum für Tierkunde Dresden, eISSN 1864-8312, 17.6.2009 Stomatopod Interrelationships: Preliminary Results Based on Analysis of three Molecular Loci SHANE T. AHYONG 1 & SIMON N. JARMAN 2 1 Marine Biodiversity and Biodescurity, National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, New Zealand [[email protected]] 2 Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia [[email protected]] Received 16.iii.2009, accepted 15.iv.2009. Published online at www.arthropod-systematics.de on 17.vi.2009. > Abstract The mantis shrimps (Stomatopoda) are quintessential marine predators. The combination of powerful raptorial appendages and remarkably developed sensory systems place the stomatopods among the most effi cient invertebrate predators. High level phylogenetic analyses have been so far based on morphology. Crown-group Unipeltata appear to have diverged in two broad directions from the outset – one towards highly effi cient ‘spearing’ with multispinous dactyli on the raptorial claws (dominated by Lysiosquilloidea and Squilloidea), and the other towards ‘smashing’ (Gonodactyloidea). In a preliminary molecular study of stomatopod interrelationships, we assemble molecular data for mitochondrial 12S and 16S regions, combined with new sequences from the 16S and two regions of the nuclear 28S rDNA to compare with morphological hypotheses. Nineteen species representing 9 of 17 extant families and 3 of 7 superfamilies were analysed. The molecular data refl ect the overall patterns derived from morphology, especially in a monophyletic Squilloidea, a monophyletic Lysiosquilloidea and a monophyletic clade of gonodactyloid smashers. Molecular analyses, however, suggest the novel possibility that Hemisquillidae and possibly Pseudosquillidae, rather than being basal or near basal in Gonodactyloidea, may be basal overall to the extant stomatopods. -
Stomatopoda (Crustacea: Hoplocarida) from the Shallow, Inshore Waters of the Northern Gulf of Mexico (Apalachicola River, Florida to Port Aransas, Texas)
Gulf and Caribbean Research Volume 16 Issue 1 January 2004 Stomatopoda (Crustacea: Hoplocarida) from the Shallow, Inshore Waters of the Northern Gulf of Mexico (Apalachicola River, Florida to Port Aransas, Texas) John M. Foster University of Southern Mississippi, [email protected] Brent P. Thoma University of Southern Mississippi Richard W. Heard University of Southern Mississippi, [email protected] Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Foster, J. M., B. P. Thoma and R. W. Heard. 2004. Stomatopoda (Crustacea: Hoplocarida) from the Shallow, Inshore Waters of the Northern Gulf of Mexico (Apalachicola River, Florida to Port Aransas, Texas). Gulf and Caribbean Research 16 (1): 49-58. Retrieved from https://aquila.usm.edu/gcr/vol16/iss1/7 DOI: https://doi.org/10.18785/gcr.1601.07 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf and Caribbean Research Vol 16, 49–58, 2004 Manuscript received December 15, 2003; accepted January 28, 2004 STOMATOPODA (CRUSTACEA: HOPLOCARIDA) FROM THE SHALLOW, INSHORE WATERS OF THE NORTHERN GULF OF MEXICO (APALACHICOLA RIVER, FLORIDA TO PORT ARANSAS, TEXAS) John M. Foster, Brent P. Thoma, and Richard W. Heard Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, Mississippi 39564, E-mail [email protected] (JMF), [email protected] (BPT), [email protected] (RWH) ABSTRACT Six species representing the order Stomatopoda are reported from the shallow, inshore waters (passes, bays, and estuaries) of the northern Gulf of Mexico limited to a depth of 10 m or less, and by the Apalachicola River (Florida) in the east and Port Aransas (Texas) in the west. -
Adobe Photoshop
Peer-Reviewed Journal Tracking and Analyzing Disease Trends pages 167–336 EDITOR-IN-CHIEF D. Peter Drotman Managing Senior Editor EDITORIAL BOARD Polyxeni Potter, Atlanta, Georgia, USA Dennis Alexander, Addlestone Surrey, United Kingdom Senior Associate Editor Timothy Barrett, Atlanta, GA, USA Brian W.J. Mahy, Bury St. Edmunds, Suffolk, UK Barry J. Beaty, Ft. Collins, Colorado, USA Associate Editors Martin J. Blaser, New York, New York, USA Paul Arguin, Atlanta, Georgia, USA Christopher Braden, Atlanta, GA, USA Charles Ben Beard, Ft. Collins, Colorado, USA Carolyn Bridges, Atlanta, GA, USA Ermias Belay, Atlanta, GA, USA Arturo Casadevall, New York, New York, USA David Bell, Atlanta, Georgia, USA Kenneth C. Castro, Atlanta, Georgia, USA Corrie Brown, Athens, Georgia, USA Louisa Chapman, Atlanta, GA, USA Charles H. Calisher, Ft. Collins, Colorado, USA Thomas Cleary, Houston, Texas, USA Michel Drancourt, Marseille, France Vincent Deubel, Shanghai, China Paul V. Effl er, Perth, Australia Ed Eitzen, Washington, DC, USA David Freedman, Birmingham, AL, USA Daniel Feikin, Baltimore, MD, USA Peter Gerner-Smidt, Atlanta, GA, USA Kathleen Gensheimer, Cambridge, MA, USA Stephen Hadler, Atlanta, GA, USA Duane J. Gubler, Singapore Nina Marano, Atlanta, Georgia, USA Richard L. Guerrant, Charlottesville, Virginia, USA Martin I. Meltzer, Atlanta, Georgia, USA Scott Halstead, Arlington, Virginia, USA David Morens, Bethesda, Maryland, USA David L. Heymann, London, UK J. Glenn Morris, Gainesville, Florida, USA Charles King, Cleveland, Ohio, USA Patrice Nordmann, Paris, France Keith Klugman, Atlanta, Georgia, USA Tanja Popovic, Atlanta, Georgia, USA Takeshi Kurata, Tokyo, Japan Didier Raoult, Marseille, France S.K. Lam, Kuala Lumpur, Malaysia Pierre Rollin, Atlanta, Georgia, USA Stuart Levy, Boston, Massachusetts, USA Ronald M. -
The First Complete Mitochondrial Genome Sequences For
* Manuscript The First Complete Mitochondrial Genome Sequences For Stomatopod Crustaceans: Implications for Phylogeny Kirsten Swinstrom1,2, Roy Caldwell1, H. Matthew Fourcade2 and Jeffrey L. Boore1,2 1 Department of Integrative Biology, University of California Berkeley, Berkeley, CA 2 Evolutionary Genomics Department, DOE Joint Genome Institute and Lawrence Berkeley National Lab, Walnut Creek, CA For correspondence: Jeffrey Boore, DoE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, phone: 925-296-5691, fax: 925-296-5620, [email protected] 1 Abstract We report the first complete mitochondrial genome sequences of stomatopods and compare their features to each other and to those of other crustaceans. Phylogenetic analyses of the concatenated mitochondrial protein-coding sequences were used to explore relationships within the Stomatopoda, within the malacostracan crustaceans, and among crustaceans and insects. Although these analyses support the monophyly of both Malacostraca and, within it, Stomatopoda, it also confirms the view of a paraphyletic Crustacea, with Malacostraca being more closely related to insects than to the branchiopod crustaceans. Key words: Stomatopod; mitochondrial genome; Crustacea; Arthropod phylogeny; mitochondrial DNA; Gonodactylus chiragra; Lysiosquillina maculata; Squilla empusa 2 Introduction Mitochondrial DNA (mtDNA) sequences have been used extensively in phylogenetic analyses to examine relationships among populations or higher taxa. Most of these studies are limited because they use only one or a few genes. More recently however, many complete mitochondrial genomes have been sequenced (Boore, 1999). In particular, a number of phylogenetic analyses using gene order or protein-coding sequences from complete mitochondrial genomes have been conducted to examine relationships within the phylum Arthropoda (e.g. Boore et al., 1998; Garcia-Machado et al., 1999; Wilson et al., 2000; Yamauchi et al., 2002; Nardi et al., 2003). -
The Evolution of Social Monogamy and Biparental Care in Stomatopod Crustaceans
The Evolution of Social Monogamy and Biparental Care in Stomatopod Crustaceans By Mary Louisa Wright A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell Professor Eileen Lacey Professor George Roderick Spring 2013 ABSTRACT The Evolution of Social Monogamy and Biparental Care in Stomatopod Crustaceans By Mary Louisa Wright Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair Although social monogamy and biparental care have been extensively studied in birds, mammals, and fish, the evolutionary origins and maintenance of these phenomena are not well- understood, particularly in invertebrate taxa. The evolution of social monogamy is of interest because current theory predicts that both males and females will usually gain more fitness from mating with multiple partners. Furthermore, biparental care should only occur when males and females both gain more fitness benefits from providing parental care than from investing time and energy into mate searching. Given these expectations, under what environmental and social conditions will social monogamy and biparental care arise and do the same conditions maintain monogamy and biparental care on an evolutionary time scale? Long-term social monogamy, which occurs when a male and female pair for longer than a single breeding cycle, has been reported in eight genera of Lysiosquilloid stomatopods. Furthermore, the Lysiosquilloidea also contains the only marine crustacean genus (Pullosquilla) in which biparental care has been systematically studied. This dissertation examines the evolutionary maintenance and origins of both biparental care and long-term social monogamy in the Lysiosquilloidea, using experimental manipulations, ecological surveys, and comparative, phylogenetically-based methods. -
Mantis Shrimp - Wikipedia
Mantis shrimp - Wikipedia https://en.wikipedia.org/wiki/Mantis_shrimp Mantis shrimp Mantis shrimps , or stomatopods , are marine crustaceans of the Mantis shrimp order Stomatopoda . Some species have specialised calcified "clubs" that can strike with great power, while others have sharp forelimbs used Temporal range: 400–0 Ma to capture prey. They branched from other members of the class Pre Є Є O S D C P T J K Pg N Malacostraca around 340 million years ago. [2] Mantis shrimps typically grow to around 10 cm (3.9 in) in length. A few can reach up to 38 cm (15 in). [3] The largest mantis shrimp ever caught had a length of 46 cm (18 in); it was caught in the Indian River near Fort Pierce, Florida, in the United States.[4] A mantis shrimp's carapace (the bony, thick shell that covers crustaceans and some other species) covers only the rear part of Odontodactylus scyllarus the head and the first four segments of the thorax. Varieties range from shades of brown to vivid colors, as more than 450 species of mantis Scientific classification shrimps are known. They are among the most important predators in Kingdom: Animalia many shallow, tropical and subtropical marine habitats. However, Phylum: Arthropoda despite being common, they are poorly understood, as many species spend most of their lives tucked away in burrows and holes. [5] Subphylum: Crustacea Called "sea locusts" by ancient Assyrians, "prawn killers" in Australia, [6] Class: Malacostraca and now sometimes referred to as "thumb splitters"—because of the Subclass: Hoplocarida [7] animal's ability to inflict painful gashes if handled incautiously Order: Stomatopoda —mantis shrimps have powerful claws that are used to attack and kill Latreille, 1817 prey by spearing, stunning, or dismembering. -
Power Amplification Strategies Across Animals
The University of Akron IdeaExchange@UAkron Williams Honors College, Honors Research The Dr. Gary B. and Pamela S. Williams Honors Projects College Spring 2021 Power Amplification Strategies Across Animals Rayhan Asif [email protected] Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects Part of the Biological and Chemical Physics Commons, Biomechanics Commons, Comparative and Evolutionary Physiology Commons, Entomology Commons, Motor Control Commons, and the Systems and Integrative Physiology Commons Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Recommended Citation Asif, Rayhan, "Power Amplification Strategies Across Animals" (2021). Williams Honors College, Honors Research Projects. 1340. https://ideaexchange.uakron.edu/honors_research_projects/1340 This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College, Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. Evolution of Power Amplification Methods Rayhan Asif The University of Akron Abstract Animals use muscles for movement, but some have evolved mechanisms to exceed maximum power used in a motion known as power amplification. In this literature review, I analyzed and compared the evolution of structures capable of power amplification between species. Structures capable of power amplification were broken down into the basic components of the engine, amplifier, and tool. -
Duffy 2010 Encyclopedia of Animal Behavior-1.Pdf
This article was originally published in the Encyclopedia of Animal Behavior published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Duffy J.E. (2010) Crustacean Social Evolution. In: Breed M.D. and Moore J., (eds.) Encyclopedia of Animal Behavior, volume 1, pp. 421-429 Oxford: Academic Press. © 2010 Elsevier Ltd. All rights reserved. Author's personal copy Crustacean Social Evolution J. E. Duffy, Virginia Institute of Marine Science, Gloucester Point, VA, USA ã 2010 Elsevier Ltd. All rights reserved. Introduction shed periodically during growth. Each of the segments in the primitive ancestral crustacean body bore a pair of The Crustacea represent one of the most spectacular appendages, which have been modified during the evolu- evolutionary radiations in the animal kingdom, whether tion of the various crustacean groups into a wide range of measured by species richness or diversity in morphology structures used in feeding, locomotion, sensation, and or lifestyles. Its members range from microscopic mites of communication. -
Arthropod Phylogeny Based on Eight Molecular Loci and Morphology
letters to nature melanogaster (U37541), mosquito Anopheles quadrimaculatus (L04272), mosquito arthropods revealed by the expression pattern of Hox genes in a spider. Proc. Natl Acad. Sci. USA 95, Anopheles gambiae (L20934), med¯y Ceratitis capitata (CCA242872), Cochliomyia homi- 10665±10670 (1998). nivorax (AF260826), locust Locusta migratoria (X80245), honey bee Apis mellifera 24. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTALW: Improving the sensitivity of progressive (L06178), brine shrimp Artemia franciscana (X69067), water ¯ea Daphnia pulex multiple sequence alignment through sequence weighting, position-speci®c gap penalties and weight (AF117817), shrimp Penaeus monodon (AF217843), hermit crab Pagurus longicarpus matrix choice. Nucleic Acids Res. 22, 4673±4680 (1994). (AF150756), horseshoe crab Limulus polyphemus (AF216203), tick Ixodes hexagonus 25. Foster, P. G. & Hickey, D. A. Compositional bias may affect both DNA-based and protein-based (AF081828), tick Rhipicephalus sanguineus (AF081829). For outgroup comparison, phylogenetic reconstructions. J. Mol. Evol. 48, 284±290 (1999). sequences were retrieved for the annelid Lumbricus terrestris (U24570), the mollusc 26. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic Katharina tunicata (U09810), the nematodes Caenorhabditis elegans (X54252), Ascaris analysis. Mol. Biol. Evol. 17, 540±552 (2000). suum (X54253), Trichinella spiralis (AF293969) and Onchocerca volvulus (AF015193), and 27. Muse, S. V. & Kosakovsky Pond, S. L. Hy-Phy 0.7 b (North Carolina State Univ., Raleigh, 2000). the vertebrate species Homo sapiens (J01415) and Xenopus laevis (M10217). Additional 28. Strimmer, K. & von Haeseler, A. Quartet puzzlingÐa quartet maximum-likelihood method for sequences were analysed for gene arrangements: Boophilus microplus (AF110613), Euhadra reconstructing tree topologies. -
Ultraviolet Filters in Stomatopod Crustaceans: Diversity, Ecology and Evolution Michael J
© 2015. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2015) 218, 2055-2066 doi:10.1242/jeb.122036 RESEARCH ARTICLE Ultraviolet filters in stomatopod crustaceans: diversity, ecology and evolution Michael J. Bok*,§, Megan L. Porter‡ and Thomas W. Cronin ABSTRACT 1988; Marshall et al., 1991a) and at least five receptors sensitive to Stomatopod crustaceans employ unique ultraviolet (UV) optical filters various spectral ranges of ultraviolet (UV) light (Kleinlogel and in order to tune the spectral sensitivities of their UV-sensitive Marshall, 2009; Marshall and Oberwinkler, 1999). Underlying photoreceptors. In the stomatopod species Neogonodactylus oerstedii, these diverse visual sensitivities is an array of optical and retinal we previously found four filter types, produced by five distinct structural modifications (Horridge, 1978; Marshall et al., 1991a; mycosporine-like amino acid pigments in the crystalline cones of their Schiff et al., 1986), the expression of a great number of opsins specialized midband ommatidial facets. This UV-spectral tuning array resulting in the most visual pigments yet described in a single eye produces receptors with at least six distinct spectral sensitivities, (Cronin and Marshall, 1989b; Cronin et al., 1993; Porter et al., 2009, despite expressing only two visual pigments. Here, we present a 2013), and the tuning of spectral sensitivity via serial filtering broad survey of these UV filters across the stomatopod order, effects due to more distal visual pigments as well as photostable examining their spectral absorption properties in 21 species from colored pigments (Cronin and Marshall, 1989a; Cronin et al., seven families in four superfamilies. We found that UV filters are 1994a,b, 2014; Marshall, 1988; Marshall et al., 1991b; Porter et al., present in three of the four superfamilies, and evolutionary character 2010). -
Exceptional Diversity of Opsin Expression Patterns in Neogonodactylus Oerstedii (Stomatopoda) Retinas
Exceptional diversity of opsin expression patterns in Neogonodactylus oerstedii (Stomatopoda) retinas Megan L. Portera,b,1,2, Hiroko Awataa,1, Michael J. Boka,c, and Thomas W. Cronina aDepartment of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250; bDepartment of Biology, University of Hawai’iat Manoa, Honolulu, HI 96822; and cSchool of Biological Sciences, University of Bristol, BS8 1TQ Bristol, United Kingdom Edited by Claude Desplan, New York University, New York, NY, and approved February 27, 2020 (received for review October 4, 2019) Stomatopod crustaceans possess some of the most complex animal Most of the spectral diversity found in stomatopod retinas visual systems, including at least 16 spectrally distinct types of exists in the four dorsal-most ommatidial MB rows (MB rows 1 photoreceptive units (e.g., assemblages of photoreceptor cells). Here to 4). In MB rows 1 to 4, the seven proximal photoreceptor cells we fully characterize the set of opsin genes expressed in retinal tissues (R1–7) are subdivided into two separate photoreceptive units, and determine expression patterns of each in the stomatopod Neo- formed by sets of three or four retinula cells. Therefore, in MB gonodactylus oerstedii. Using a combination of transcriptome and rows 1 to 4 each ommatidium is formed from three successive RACE sequencing, we identified 33 opsin transcripts expressed in each photoreceptive layers comprising the distal UVS R8 photore- N. oerstedii eye, which are predicted to form 20 long-wavelength– ceptor, and middle and proximal photoreceptive layers sensitive sensitive, 10 middle-wavelength–sensitive, and three UV-sensitive to the visible spectrum (Fig. -
World Catalogue and Bibliography of the Recent Stomatopoda
WORLD CATALOGUE AND BIBLIOGRAPHY OF THE RECENT STOMATOPODA compiled and distributed by Hans-Georg Müller Wissenschaftler Verlag, Laboratory for Tropical Ecosystems Research & Information Service P.O. Box 2268 D-35532 Wetzlar, Germany Stomatopod crustaceans are common members of benthic ecosystems in tropical and subtropical marine and brackish waters throughout the world. Few species are known from temperate seas. In the northern hemisphere some species were reported in Japan as far north as Hokkaido, and in the U.S.A. as far north as Massachusetts. In the eastern Atlantic area the northern limit is the sea around Ireland. The southern limits of their distribution are the south coasts of Australia and South Africa. Larval development occurs in the plankton. Stomatopods are raptorial predators, which construct burrows in level bottoms, or live in crevices and holes of hard substrates. The present compilation gives detailed information to all the 412 species known up to now. The reality: Taxonomy is a confusing subject, especially when somebody is not a taxonomic spezialist for the respective animal group and only attempts to determine species within the scope of a non-taxonomic study. New species and subspecies are described, others are synonymized, or subspecies/varieties are raised to species level. Moreover, as a matter of fact, taxonomists often have different oppinions to assign a species to a certain genus, with the result, that often different names are given for the same species. Descriptions are sometimes to poor to allow a reliable determination. Fortunately, several revisions, reviews and redescriptions are available for the Stomatopoda, though numerous short publications are scattered over many journals.