Link Prediction Based on Deep Convolutional Neural Network
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Discover the Golden Paths, Unique Sequences and Marvelous Associations out of Your Big Data Using Link Analysis in SAS® Enterprise Miner TM
MWSUG 2016 – Paper AA04 Discover the golden paths, unique sequences and marvelous associations out of your big data using Link Analysis in SAS® Enterprise Miner TM Delali Agbenyegah, Alliance Data Systems, Columbus, OH Candice Zhang, Alliance Data Systems, Columbus, OH ABSTRACT The need to extract useful information from large amount of data to positively influence business decisions is on the rise especially with the hyper expansion of retail data collection and storage and the advancement in computing capabilities. Many enterprises now have well established databases to capture Omni channel customer transactional behavior at the product or Store Keeping Unit (SKU) level. Crafting a robust analytical solution that utilizes these rich transactional data sources to create customized marketing incentives and product recommendations in a timely fashion to meet the expectations of the sophisticated shopper in our current generation can be daunting. Fortunately, the Link Analysis node in SAS® Enterprise Miner TM provides a simple but yet powerful analytical tool to extract, analyze, discover and visualize the relationships or associations (links) and sequences between items in a transactional data set up and develop item-cluster induced segmentation of customers as well as next-best offer recommendations. In this paper, we discuss the basic elements of Link Analysis from a statistical perspective and provide a real life example that leverages Link Analysis within SAS Enterprise Miner to discover amazing transactional paths, sequences and links. INTRODUCTION A financial fraud investigator may be interested in exploring the relationship between the financial transactions of suspicious customers, the BNI may want to analyze the social network of individuals identified as terrorists to conduct further investigation or a medical doctor may be interested in understanding the association between different medical treatments on patients and their corresponding results. -
Link Analysis Using SAS Enterprise Miner
Link Analysis Using SAS® Enterprise Miner™ Ye Liu, Taiyeong Lee, Ruiwen Zhang, and Jared Dean SAS Institute Inc. ABSTRACT The newly added Link Analysis node in SAS® Enterprise MinerTM visualizes a network of items or effects by detecting the linkages among items in transactional data or the linkages among levels of different variables in training data or raw data. This node also provides multiple centrality measures and cluster information among items so that you can better understand the linkage structure. In addition to the typical linkage analysis, the node also provides segmentation that is induced by the item clusters, and uses weighted confidence statistics to provide next-best-offer lists for customers. Examples that include real data sets show how to use the SAS Enterprise Miner Link Analysis node. INTRODUCTION Link analysis is a popular network analysis technique that is used to identify and visualize relationships (links) between different objects. The following questions could be nontrivial: Which websites link to which other ones? What linkage of items can be observed from consumers’ market baskets? How is one movie related to another based on user ratings? How are different petal lengths, width, and color linked by different, but related, species of flowers? How are specific variable levels related to each other? These relationships are all visible in data, and they all contain a wealth of information that most data mining techniques cannot take direct advantage of. In today’s ever-more-connected world, understanding relationships and connections is critical. Link analysis is the data mining technique that addresses this need. In SAS Enterprise Miner, the new Link Analysis node can take two kinds of input data: transactional data and non- transactional data (training data or raw data). -
Evolving Networks and Social Network Analysis Methods And
DOI: 10.5772/intechopen.79041 ProvisionalChapter chapter 7 Evolving Networks andand SocialSocial NetworkNetwork AnalysisAnalysis Methods and Techniques Mário Cordeiro, Rui P. Sarmento,Sarmento, PavelPavel BrazdilBrazdil andand João Gama Additional information isis available atat thethe endend ofof thethe chapterchapter http://dx.doi.org/10.5772/intechopen.79041 Abstract Evolving networks by definition are networks that change as a function of time. They are a natural extension of network science since almost all real-world networks evolve over time, either by adding or by removing nodes or links over time: elementary actor-level network measures like network centrality change as a function of time, popularity and influence of individuals grow or fade depending on processes, and events occur in net- works during time intervals. Other problems such as network-level statistics computation, link prediction, community detection, and visualization gain additional research impor- tance when applied to dynamic online social networks (OSNs). Due to their temporal dimension, rapid growth of users, velocity of changes in networks, and amount of data that these OSNs generate, effective and efficient methods and techniques for small static networks are now required to scale and deal with the temporal dimension in case of streaming settings. This chapter reviews the state of the art in selected aspects of evolving social networks presenting open research challenges related to OSNs. The challenges suggest that significant further research is required in evolving social networks, i.e., existent methods, techniques, and algorithms must be rethought and designed toward incremental and dynamic versions that allow the efficient analysis of evolving networks. Keywords: evolving networks, social network analysis 1. -
On Some Aspects of Link Analysis and Informal Network in Social Network Platform
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IJCSMC, Vol. 2, Issue. 7, July 2013, pg.371 – 377 RESEARCH ARTICLE On Some Aspects of Link Analysis and Informal Network in Social Network Platform Subrata Paul Department of Computer Science and Engineering, M.I.T.S. Rayagada, Odisha 765017, INDIA [email protected] Abstract— This paper presents a review on the two important aspects of Social Network, namely Link Analysis and Informal Network. Both of these characteristic plays a vital role in analysis of direction of information flow and reliability of the information passed or received. They can be easily visualized or can be studied using the concepts of graph theory. We have deliberately omitted discussing about general definitions of social network and representing the relationship between actors as a graph with nodes and edges. This paper starts with a formal definition of Informal Network and continues with some of its major aspects. Moreover its application is explained with a real life example of a college scenario. In the later part of the paper, some aspects of Informal Network have been presented. The similar kind of real life scenario is also being drawn out here to represent application of informal network. Lastly, this paper ends with a general conclusion on these two topics. Key Terms: - Social Network; Link Analysis; Information Overload; Formal Network; Informal Network I. INTRODUCTION Link analysis is a data-analysis technique used to evaluate relationships (connections) between nodes. Relationships may be identified among various types of nodes (objects), including organizations, people and transactions. -
Comparison of Different Generalizations of Clustering Coefficient and Local Efficiency for Weighted Undirected Graphs
LETTER Communicated by Mika Rubinov Comparison of Different Generalizations of Clustering Coefficient and Local Efficiency for Weighted Undirected Graphs Yu Wang Eshwar Ghumare [email protected] Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium Rik Vandenberghe [email protected] Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium, and Alzheimer Research Centre, KU Leuven, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium Patrick Dupont [email protected] Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium; Alzheimer Research Centre, KU Leuven, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium; and Medical Imaging Research Center, KU Leuven and University Hospitals Leuven, Leuven 3000, Belgium Binary undirected graphs are well established, but when these graphs are constructed, often a threshold is applied to a parameter describing the connection between two nodes. Therefore, the use of weighted graphs is more appropriate. In this work, we focus on weighted undirected graphs. This implies that we have to incorporate edge weights in the graph mea- sures, which require generalizations of common graph metrics. After re- viewing existing generalizations of the clustering coefficient and the local efficiency, we proposed new generalizations for these graph measures. To be able to compare different generalizations, a number of essential and useful properties were defined that ideally should be satisfied. We ap- plied the generalizations to two real-world networks of different sizes. As a result, we found that not all existing generalizations satisfy all es- sential properties. Furthermore, we determined the best generalization for the clustering coefficient and local efficiency based on their properties and the performance when applied to two networks. -
Scale- Free Networks in Cell Biology
Scale- free networks in cell biology Réka Albert, Department of Physics and Huck Institutes of the Life Sciences, Pennsylvania State University Summary A cell’s behavior is a consequence of the complex interactions between its numerous constituents, such as DNA, RNA, proteins and small molecules. Cells use signaling pathways and regulatory mechanisms to coordinate multiple processes, allowing them to respond to and adapt to an ever-changing environment. The large number of components, the degree of interconnectivity and the complex control of cellular networks are becoming evident in the integrated genomic and proteomic analyses that are emerging. It is increasingly recognized that the understanding of properties that arise from whole-cell function require integrated, theoretical descriptions of the relationships between different cellular components. Recent theoretical advances allow us to describe cellular network structure with graph concepts, and have revealed organizational features shared with numerous non-biological networks. How do we quantitatively describe a network of hundreds or thousands of interacting components? Does the observed topology of cellular networks give us clues about their evolution? How does cellular networks’ organization influence their function and dynamical responses? This article will review the recent advances in addressing these questions. Introduction Genes and gene products interact on several level. At the genomic level, transcription factors can activate or inhibit the transcription of genes to give mRNAs. Since these transcription factors are themselves products of genes, the ultimate effect is that genes regulate each other's expression as part of gene regulatory networks. Similarly, proteins can participate in diverse post-translational interactions that lead to modified protein functions or to formation of protein complexes that have new roles; the totality of these processes is called a protein-protein interaction network. -
NODEXL for Beginners Nasri Messarra, 2013‐2014
NODEXL for Beginners Nasri Messarra, 2013‐2014 http://nasri.messarra.com Why do we study social networks? Definition from: http://en.wikipedia.org/wiki/Social_network: A social network is a social structure made up of a set of social actors (such as individuals or organizations) and a set of the dyadic ties between these actors. Social networks and the analysis of them is an inherently interdisciplinary academic field which emerged from social psychology, sociology, statistics, and graph theory. From http://en.wikipedia.org/wiki/Sociometry: "Sociometric explorations reveal the hidden structures that give a group its form: the alliances, the subgroups, the hidden beliefs, the forbidden agendas, the ideological agreements, the ‘stars’ of the show". In social networks (like Facebook and Twitter), sociometry can help us understand the diffusion of information and how word‐of‐mouth works (virality). Installing NODEXL (Microsoft Excel required) NodeXL Template 2014 ‐ Visit http://nodexl.codeplex.com ‐ Download the latest version of NodeXL ‐ Double‐click, follow the instructions The SocialNetImporter extends the capabilities of NodeXL mainly with extracting data from the Facebook network. To install: ‐ Download the latest version of the social importer plugins from http://socialnetimporter.codeplex.com ‐ Open the Zip file and save the files into a directory you choose, e.g. c:\social ‐ Open the NodeXL template (you can click on the Windows Start button and type its name to search for it) ‐ Open the NodeXL tab, Import, Import Options (see screenshot below) 1 | Page ‐ In the import dialog, type or browse for the directory where you saved your social importer files (screenshot below): ‐ Close and open NodeXL again For older Versions: ‐ Visit http://nodexl.codeplex.com ‐ Download the latest version of NodeXL ‐ Unzip the files to a temporary folder ‐ Close Excel if it’s open ‐ Run setup.exe ‐ Visit http://socialnetimporter.codeplex.com ‐ Download the latest version of the socialnetimporter plug in 2 | Page ‐ Extract the files and copy them to the NodeXL plugin direction. -
The Role of Homophily Yohsuke Murase 1, Hang-Hyun Jo 2,3,4, János Török5,6,7, János Kertész6,5,4 & Kimmo Kaski4,8
www.nature.com/scientificreports OPEN Structural transition in social networks: The role of homophily Yohsuke Murase 1, Hang-Hyun Jo 2,3,4, János Török5,6,7, János Kertész6,5,4 & Kimmo Kaski4,8 We introduce a model for the formation of social networks, which takes into account the homophily or Received: 17 August 2018 the tendency of individuals to associate and bond with similar others, and the mechanisms of global and Accepted: 27 February 2019 local attachment as well as tie reinforcement due to social interactions between people. We generalize Published: xx xx xxxx the weighted social network model such that the nodes or individuals have F features and each feature can have q diferent values. Here the tendency for the tie formation between two individuals due to the overlap in their features represents homophily. We fnd a phase transition as a function of F or q, resulting in a phase diagram. For fxed q and as a function of F the system shows two phases separated at Fc. For F < Fc large, homogeneous, and well separated communities can be identifed within which the features match almost perfectly (segregated phase). When F becomes larger than Fc, the nodes start to belong to several communities and within a community the features match only partially (overlapping phase). Several quantities refect this transition, including the average degree, clustering coefcient, feature overlap, and the number of communities per node. We also make an attempt to interpret these results in terms of observations on social behavior of humans. In human societies homophily, the tendency of similar individuals getting associated and bonded with each other, is known to be a prime tie formation factor between a pair of individuals1. -
Comm 645 Handout – Nodexl Basics
COMM 645 HANDOUT – NODEXL BASICS NodeXL: Network Overview, Discovery and Exploration for Excel. Download from nodexl.codeplex.com Plugin for social media/Facebook import: socialnetimporter.codeplex.com Plugin for Microsoft Exchange import: exchangespigot.codeplex.com Plugin for Voson hyperlink network import: voson.anu.edu.au/node/13#VOSON-NodeXL Note that NodeXL requires MS Office 2007 or 2010. If your system does not support those (or you do not have them installed), try using one of the computers in the PhD office. Major sections within NodeXL: • Edges Tab: Edge list (Vertex 1 = source, Vertex 2 = destination) and attributes (Fig.1→1a) • Vertices Tab: Nodes and attribute (nodes can be imported from the edge list) (Fig.1→1b) • Groups Tab: Groups of nodes defined by attribute, clusters, or components (Fig.1→1c) • Groups Vertices Tab: Nodes belonging to each group (Fig.1→1d) • Overall Metrics Tab: Network and node measures & graphs (Fig.1→1e) Figure 1: The NodeXL Interface 3 6 8 2 7 9 13 14 5 12 4 10 11 1 1a 1b 1c 1d 1e Download more network handouts at www.kateto.net / www.ognyanova.net 1 After you install the NodeXL template, a new NodeXL tab will appear in your Excel interface. The following features will be available in it: Fig.1 → 1: Switch between different data tabs. The most important two tabs are "Edges" and "Vertices". Fig.1 → 2: Import data into NodeXL. The formats you can use include GraphML, UCINET DL files, and Pajek .net files, among others. You can also import data from social media: Flickr, YouTube, Twitter, Facebook (requires a plugin), or a hyperlink networks (requires a plugin). -
Graph and Network Analysis
Graph and Network Analysis Dr. Derek Greene Clique Research Cluster, University College Dublin Web Science Doctoral Summer School 2011 Tutorial Overview • Practical Network Analysis • Basic concepts • Network types and structural properties • Identifying central nodes in a network • Communities in Networks • Clustering and graph partitioning • Finding communities in static networks • Finding communities in dynamic networks • Applications of Network Analysis Web Science Summer School 2011 2 Tutorial Resources • NetworkX: Python software for network analysis (v1.5) http://networkx.lanl.gov • Python 2.6.x / 2.7.x http://www.python.org • Gephi: Java interactive visualisation platform and toolkit. http://gephi.org • Slides, full resource list, sample networks, sample code snippets online here: http://mlg.ucd.ie/summer Web Science Summer School 2011 3 Introduction • Social network analysis - an old field, rediscovered... [Moreno,1934] Web Science Summer School 2011 4 Introduction • We now have the computational resources to perform network analysis on large-scale data... http://www.facebook.com/note.php?note_id=469716398919 Web Science Summer School 2011 5 Basic Concepts • Graph: a way of representing the relationships among a collection of objects. • Consists of a set of objects, called nodes, with certain pairs of these objects connected by links called edges. A B A B C D C D Undirected Graph Directed Graph • Two nodes are neighbours if they are connected by an edge. • Degree of a node is the number of edges ending at that node. • For a directed graph, the in-degree and out-degree of a node refer to numbers of edges incoming to or outgoing from the node. -
Clustering Coefficient
School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, “Networks: An Introduction” Part 8: Small-World Network Model 2 Small World-Phenomenon l Milgram’s experiment § Given a target individual - stockbroker in Boston - pass the message to a person you know on a first name basis who you think is closest to the target l Outcome § 20% of the the chains were completed § Average chain length of completed trials ~ 6.5 l Dodds, Muhamad and Watts have repeated this experiment using e-mail communications § Completion rate is lower, average chain length is lower too 3 Small World-Phenomenon l Are these numbers accurate? § What bias do the uncompleted chains introduce? inter-country intra-country Source: An Experimental Study of Search in Global Social Networks: Peter Sheridan Dodds, Roby Muhamad, and 4 Duncan J. Watts (8 August 2003); Science 301 (5634), 827. Clustering in real networks l What would you expect if networks were completely cliquish? § Friends of my friends are also my friends § What happens to small paths? l Real-world networks (e.g., social networks) exhibit high levels of transitivity/clustering § But they also exhibit short paths too 5 Clustering coefficient l The network models that we have seen until now (random graph, configuration model and preferential attachment) do not show any significant clustering coefficient § For instance the random graph model has a clustering coefficient of c/n-1, which vanishes in -
Link Analysis
Link Analysis from Bing Liu. “Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data”, Springer and other material. Data and Web Mining - S. Orlando 1 Contents § Introduction § Network properties § Social network analysis § Co-citation and bibliographic coupling § PageRank § HITS § Summary Data and Web Mining - S. Orlando 2 Introduction § Early search engines mainly compare content similarity of the query and the indexed pages, i.e., – they use information retrieval methods, cosine, TF- IDF, ... § From 1996, it became clear that content similarity alone was no longer sufficient. – The number of pages grew rapidly in the mid-late 1990’s. • Try the query “Barack Obama”. Google estimates about 140,000,000 relevant pages. • How to choose only 30-40 pages and rank them suitably to present to the user? – Content similarity is easily spammed. • A page owner can repeat some words (TF component of ranking) and add many related words to boost the rankings of his pages and/or to make the pages relevant to a large number of queries. Data and Web Mining - S. Orlando 3 Introduction (cont …) § Starting around 1996, researchers began to work on the problem. They resort to hyperlinks. – In Feb, 1997, Yanhong Li (Scotch Plains, NJ) filed a hyperlink based search patent. The method uses words in anchor text of hyperlinks. § Web pages on the other hand are connected through hyperlinks, which carry important information. – Some hyperlinks: organize information at the same site. – Other hyperlinks: point to pages from other Web sites. Such out-going hyperlinks often indicate an implicit conveyance of authority to the pages being pointed to.