Particles Causing Lung Disease by Kaye H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lipoid Pneumonia
PRACA ORYGINALNA Piotr Buda1, Anna Wieteska-Klimczak1, Anna Własienko1, Agnieszka Mazur2, Jerzy Ziołkowski2, Joanna Jaworska2, Andrzej Kościesza3, Dorota Dunin-Wąsowicz4, Janusz Książyk1 1Department of Pediatrics, The Children’s Memorial Health Institute, Warsaw, Poland Head: Prof. J. Książyk, MD, PhD 2Department of of Pediatric Pneumonology and Allergology, Medical University of Warsaw, Poland Head: M. Kulus, MD, PhD 3Department of Radiology, CT unit, The Children’s Memorial Health Institute, Warsaw, Poland Head: E. Jurkiewicz MD, PhD 4Department of Neurology and Epileptology, The Children’s Memorial Health Institute, Warsaw, Poland Head: S. Jóźwiak, MD, PhD Lipoid pneumonia — a case of refractory pneumonia in a child treated with ketogenic diet Tłuszczowe zapalenie płuc u dziecka leczonego dietą ketogenną — przypadek kliniczny The Authors declare no financial disclosure. Abstract Lipoid pneumonia (LP) is a chronic inflammation of the lung parenchyma with interstitial involvement due to the accu mulation of endoge- nous or exogenous lipids. Exogenous LP (ELP) is associated with the aspiration or inhalation of oil present in food, oil-based medications or radiographic contrast media. The clinical manifestations of LP range from asymptomatic cases to severe pulmonary involvement, with respiratory failure and death, according to the quantity and duration of the aspiration. The diagnosis of exogenous lipoid pneumonia is based on a history of exposure to oil and the presence of lipid-laden macrophages on sputum or bronchoalveolar lavage (BAL) analysis. High-resolution computed tomography (HRCT) is the imaging technique of choice for evaluation of patients with suspected LP. The best therapeutic strategy is to remove the oil as early as possible through bronchoscopy with multiple BALs and interruption in the use of mineral oil. -
Hypersensitivity Pneumonitis: Challenges in Diagnosis and Management, Avoiding Surgical Lung Biopsy
395 Hypersensitivity Pneumonitis: Challenges in Diagnosis and Management, Avoiding Surgical Lung Biopsy Ferran Morell, MD1,2 Ana Villar, MD2,3 Iñigo Ojanguren, MD2,3 Xavier Muñoz, MD2,3 María-Jesús Cruz, PhD2,3 1 Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Catalonia, Spain Address for correspondence Ferran Morell, MD, Vall d’Hebron Institut 2 Ciber de Enfermedades Respiratorias (CIBERES), Barcelona, Spain de Recerca (VHIR), PasseigValld’Hebron, 119-129, 08035 Barcelona, 3 Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Catalonia, Spain (e-mail: [email protected]). Barcelona, Spain Semin Respir Crit Care Med 2016;37:395–405. Abstract This review presents an update of the currently available information related to Keywords hypersensitivity pneumonitis, with a particular focus on the contribution of several ► hypersensitivity techniques in the diagnosis of this condition. The methods discussed include proper pneumonitis elaboration of a complete medical history, targeted auscultation, detection of specific ► bronchoalveolar immunoglobulin G antibodies against the most common antigens causing this disease, lavage skin tests, antigen-specific lymphocyte activation assays, bronchoalveolar lavage, and ► fi speci c inhalation cryobiopsy. Special emphasis is placed on the relevant contribution of specificinhalation challenge challenge (bronchial challenge test). Surgical lung biopsy is presented as the ultimate ► bronchial challenge recourse, to be used when the diagnosis cannot be reached through the other methods test covered. -
Practitioners' Section
474 PRACTITIONERS’ SECTION LIPOID PNEUMONIA: AN UNCOMMON ENTITY G. C. KHILNANI, V. HADDA ABSTRACT Lipoid pneumonia is a rare form of pneumonia caused by inhalation or aspiration of fat-containing substances like petroleum jelly, mineral oils, certain laxatives, etc. It usually presents as an insidious onset, chronic respiratory illness simulating interstitial lung diseases. Rarely, it may present as an acute respiratory illness, especially when the exposure to fatty substance(s) is massive. Radiological findings are diverse and can mimic many other diseases including carcinoma, acute or chronic pneumonia, ARDS, or a localized granuloma. Pathologically it is a chronic foreign body reaction characterized by lipid-laden macrophages. Diagnosis of this disease is often missed as it is usually not considered in the differential diagnoses of community-acquired pneumonia; it requires a high degree of suspicion. In suspected cases, diagnosis may be confirmed by demonstrating the presence of lipid-laden macrophages in sputum, bronchoalveolar lavage fluid, or fine needle aspiration cytology/biopsy from the lung lesion. Treatment of this illness is poorly defined and constitutes supportive therapy, repeated bronchoalveolar lavage, and corticosteroids. Key words: Lipid-laden macrophages, lipoid pneumonia, mineral oil aspiration DOI: 10.4103/0019-5359.57639 PMID: 19901490 INTRODUCTION like parafÞ noma, cholesterol pneumonia, lipid granulomatosis, all denoting its association Lipoid pneumonia (LP) is a rare form of with the inhalation or ingestion of various pneumonia caused by inhalation or aspiration substances like petroleum jelly, mineral oils, of a fatty substance. It was Þ rst described in “nasal drops,” and even intravenous injection of 1925 by Laughlin and later by others in the olive oil.[5-13] Many of us are unfamiliar with this Þ rst half of the twentieth century.[1-4] Since then, condition, a fact that may be responsible for the there are many reports with different names underdiagnosis of LP. -
Evaluation of Metal and Noise Exposures at an Aircraft Powerplant Parts Manufacturer
Evaluation of Metal and Noise Exposures at an Aircraft Powerplant Parts Manufacturer HHE Report No. 2018-0001-3349 April 2019 Authors: Karl D. Feldmann, MS, CIH David A. Jackson, MD Analytical Support: Jennifer Roberts, Maxxam Analytics Desktop Publisher: Jennifer Tyrawski Editor: Cheryl Hamilton Industrial Hygiene Field Assistance: Scott Brueck, Jessica Li, Kevin Moore Logistics: Donnie Booher, Kevin Moore, Mihir Patel Medical Field Assistance: Deborah Sammons, Miriam Siegel Statistical Support: Miriam Siegel Keywords: North American Industry Classification System (NAICS) Code 336412 (Aircraft Engine and Engine Parts Manufacturing), Oregon, Welding, Tungsten Inert Gas, TIG Welding, Inconel, Stainless Steel, Chromium, Hexavalent Chromium, Hex Chrome, Chrome Six, Chrome 6, Chrome IV, Crvi, Cr(VI), Nickel, Cobalt, Biomonitoring, BEI, Noise Disclaimer The Health Hazard Evaluation Program investigates possible health hazards in the workplace under the authority of the Occupational Safety and Health Act of 1970 [29 USC 669a(6)]. The Health Hazard Evaluation Program also provides, upon request, technical assistance to federal, state, and local agencies to investigate occupational health hazards and to prevent occupational disease or injury. Regulations guiding the Program can be found in Title 42, Code of Federal Regulations, Part 85; Requests for Health Hazard Evaluations [42 CFR Part 85]. Availability of Report Copies of this report have been sent to the employer and employee representative at the facility. The state and local health department and the Occupational Safety and Health Administration Regional Office have also received a copy. This report is not copyrighted and may be freely reproduced. Recommended Citation NIOSH [2019]. Evaluation of metal and noise exposures at an aircraft powerplant parts manufacturer. -
9.1 Appendix a Minimum Respiratory Protection for Cutting and Welding Processes
Safety Policy and Procedure Policy Number 015 Authorized By: The Cianbro Companies Alan Burton Title: Welding and Cutting Hazard Assessment Program Effective Date: 09/16/95 Page 1 of 12 1 Status 1.1 Update of existing policy, effective 06/03/11. 2 Purpose 2.1 To provide guidelines and requirements to protect team members from the hazards associated with welding, cutting, and burning operations. 3 Applicability 3.1 This policy applies to all subsidiary companies and departments of the Cianbro Companies. 3.2 All organizations are required to comply with the provisions of this policy and procedure. Any deviation, unless spelled out specifically in the policy, requires the permission of the Safety Director or designee. 4 Definitions 4.1 Adequate Ventilation: Used in this policy means any of the following: Local exhaust ventilation is used to capture fumes or in open area with adequate air movement or adequate dilution ventilation with directional air flow away from team member. 4.2 Air Arc (Carbon Arc): A cutting process by which metals are melted by the heat of an arc using a carbon electrode. Molten metal is forced away from the cut by a blast of forced air. 4.3 Bug-O BUG-O Systems Inc.: A manufacturer of a system of drives, carriages, rails and attachments designed to automate welding guns, cutting torches and other hand held tools. 4.4 Cad Welding: An exothermic (gives off heat) welding process that fuses conductors together to form a molecular bond with a current-carrying capacity equal to that of the conductor. Typically used in grounding systems. -
Journal Pre-Proof
Journal Pre-proof Presenting Clinico-radiologic Features, Causes, and Clinical Course of Exogenous Lipoid Pneumonia in Adults Bilal F. Samhouri, MD, Yasmeen K. Tandon, MD, Thomas E. Hartman, MD, Yohei Harada, MD, Hiroshi Sekiguchi, MD, Eunhee S. Yi, MD, Jay H. Ryu, MD PII: S0012-3692(21)00433-5 DOI: https://doi.org/10.1016/j.chest.2021.02.037 Reference: CHEST 4063 To appear in: CHEST Received Date: 20 December 2020 Revised Date: 14 February 2021 Accepted Date: 16 February 2021 Please cite this article as: Samhouri BF, Tandon YK, Hartman TE, Harada Y, Sekiguchi H, Yi ES, Ryu JH, Presenting Clinico-radiologic Features, Causes, and Clinical Course of Exogenous Lipoid Pneumonia in Adults, CHEST (2021), doi: https://doi.org/10.1016/j.chest.2021.02.037. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Copyright © 2021 Published by Elsevier Inc under license from the American College of Chest Physicians. 1 Word count: abstract –283, text – 3,108 2 Title: Presenting Clinico-radiologic Features, Causes, and Clinical Course of Exogenous Lipoid 3 Pneumonia in Adults 4 Short title: Exogenous Lipoid Pneumonia 5 Author list: 6 Bilal F. -
Task Force on Chronic Interstitial Lung Disease in Immunocompetent Children
Copyright #ERS Journals Ltd 2004 Eur Respir J 2004; 24: 686–697 European Respiratory Journal DOI: 10.1183/09031936.04.00089803 ISSN 0903-1936 Printed in UK – all rights reserved ERS TASK FORCE Task force on chronic interstitial lung disease in immunocompetent children A. Clement*, and committee members Committee members: J. Allen, B. Corrin, R. Dinwiddie, H. Ducou le Pointe, E. Eber, G. Laurent, R. Marshall, F. Midulla, A.G. Nicholson, P. Pohunek, F. Ratjen, M. Spiteri, J. de Blic. All members of the Task Force contributed equally to the work. Task force on chronic interstitial lung disease in immunocompetent children. Correspondence: A. Clement, Dept de Pneumo- A. Clement, and committee members. #ERS Journals Ltd 2004. logie Pediatrique - INSERM E213, Hopital ABSTRACT: Chronic interstitial lung diseases in children represent a heterogeneous d9enfants Armand Trousseau, 26 Ave du group of disorders of both known and unknown causes that share common histological Dr Arnold Netter, 75571 Paris cedex 12, France. features. Despite many efforts these diseases continue to present clinical management Fax: 33 144736718 dilemmas, principally because of their rare frequency that limits considerably the E-mail: [email protected] possibilities of collecting enough cases for clinical and research studies. Through a Task Force conducted by the European Respiratory Society, which Keywords: Children, infant, interstitial lung comprised respiratory physicians and basic scientists from across Europe, 185 cases of disease, lung fibrosis interstitial lung diseases in immunocompetent children were collected and reviewed. The present report provides important clinically-relevant information on the current Received: August 5 2003 approach to diagnosis and management of chronic interstitial lung diseases in children. -
Pathology of Allergic Bronchopulmonary Aspergillosis
[Frontiers in Bioscience 8, e110-114, January 1, 2003] PATHOLOGY OF ALLERGIC BRONCHOPULMONARY ASPERGILLOSIS Anne Chetty Department of Pediatrics, Floating Hospital for Children, New England Medical Center, Boston, MA TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Immunopathogenesis 4. Pathologic Findings 4.1. Plastic bronchitis 4.2. Allergic fungal sinusitis 4.3. ABPA in cystic fibrosis 5. Acknowledgement 6. References 1. ABSTRACT Allergic bronchopulmonary aspergillosis (ABPA) individuals with episodic obstructive lung diseases such as occurs in patients with asthma and cystic fibrosis when asthma and cystic fibrosis that produce thick, tenacious Aspergillus fumigatus spores are inhaled and grow in sputum. bronchial mucus as hyphae. Chronic colonization of Aspergillus fumigatus and host’s genetically determined Decomposing organic matter serves as a substrate immunological response lead to ABPA. In most cases, for the growth of Aspergillus species. Because biologic lung biopsy is not necessary because the diagnosis is made heating produces temperatures as high as 65° to 70° C, on clinical, serologic, and roentgenographic findings. Some Aspergillus spores will not be recovered in the latter stages patients who have had lung biopsies or partial resections of composting. Aspergillus species have been recovered for atelectasis or infiltrates will have histologic diagnoses. from potting soil, mulches, decaying vegetation, and A number of different histologic diagnoses can be found sewage treatment facilities, as well as in outdoor air and even in the same patient. In the early stages the bronchial Aspergillus spores grow in excreta from birds (1) wall is infiltrated with mononuclear cells and eosinophils. Mucoid impaction and eosinophilic pneumonia are seen Allergic fungal pulmonary disease is manifested subsequently. -
Are Welders More at Risk of Respiratory Infections?
Editorial Against this background, a new paper Thorax: first published as 10.1136/thoraxjnl-2016-208464 on 21 April 2016. Downloaded from Are welders more at risk of respiratory published in this edition of Thorax suggests that welders also have higher rates of upper infections? respiratory infections.15 The findings come from two parallel lines of investigation, David Coggon, Keith T Palmer both focusing on employees at a shipyard in the Middle East. In a cross-sectional survey, welders reported a significantly higher Welding of metals generates a complex mix lobar pneumonia, is clearly affected, but prevalence of respiratory symptoms than of noxious gases and fumes,1 and has been data on mortality by occupation suggest an other manual labourers in winter months linked with various respiratory diseases increased risk also of non-bronchial pneu- (OR 2.31). And in a longitudinal analysis of including metal fume fever,2 asthma,3 monia caused by other microorganisms.56 consultations at the staff medical centre, COPD4 and possibly bronchial carcin- Various mechanisms have been pro- welders consulted for respiratory infections oma.12In addition, there is now strong posed that might explain the hazard. One (mainly of the upper respiratory tract) more and consistent epidemiological evidence theory is that inhaled iron acts as a nutri- frequently than other manual labourers. that welders are at increased risk of infec- ent for microorganisms, promoting their Again, the difference was greater in winter tious, lobar pneumonia. Originally growth.12 This would accord with the (adjusted incidence rate ratio 1.47) than in detected in national analyses of occupa- observations that propensity to infections summer (1.33), but it was significant in tional mortality,5 the hazard was confirmed is increased in patients with sickle cell both seasons. -
Nebulizers: Diagnosis Codes – Medicare Advantage Policy Appendix
UnitedHealthcare® Medicare Advantage Policy Appendix: Applicable Code List Nebulizers: Diagnosis Codes This list of codes applies to the Medicare Advantage Policy Guideline titled Approval Date: September 8, 2021 Nebulizers. Applicable Codes The following list(s) of procedure and/or diagnosis codes is provided for reference purposes only and may not be all inclusive. The listing of a code does not imply that the service described by the code is a covered or non-covered health service. Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee claim payment. Other Policies and Guidelines may apply. Diagnosis Code Description For HCPCS Codes A7003, A7004, and E0570 A15.0 Tuberculosis of lung A22.1 Pulmonary anthrax A37.01 Whooping cough due to Bordetella pertussis with pneumonia A37.11 Whooping cough due to Bordetella parapertussis with pneumonia A37.81 Whooping cough due to other Bordetella species with pneumonia A37.91 Whooping cough, unspecified species with pneumonia A48.1 Legionnaires' disease B20 Human immunodeficiency virus [HIV] disease B25.0 Cytomegaloviral pneumonitis B44.0 Invasive pulmonary aspergillosis B59 Pneumocystosis B77.81 Ascariasis pneumonia E84.0 Cystic fibrosis with pulmonary manifestations J09.X1 Influenza due to identified novel influenza A virus with pneumonia J09.X2 Influenza due to identified novel influenza A virus with other -
Exogenous Lipoid Pneumonia Complicated by Mineral Oil Aspiration in a Patient with Chronic Constipation: a Case Report and Review
Open Access Case Report DOI: 10.7759/cureus.9294 Exogenous Lipoid Pneumonia Complicated by Mineral Oil Aspiration in a Patient With Chronic Constipation: A Case Report and Review Hafiz Muhammad Jeelani 1 , Muhammad Mubbashir Sheikh 2 , Belaal Sheikh 3, 4 , Hafiz Mahboob 5 , Anchit Bharat 6 1. Internal Medicine, Rosalind Franklin University of Medicine and Science, McHenry, USA 2. Oncology, Northwestern University Feinberg School of Medicine, Chicago, USA 3. Internal Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, USA 4. Internal Medicine, Chicago Medical School, North Chicago, USA 5. Pulmonary and Critical Care Medicine, University of Nevada Las Vegas School of Medicine, Las Vegas, USA 6. Internal Medicine, Indiana University Health Ball Memorial Hospital, Muncie, USA Corresponding author: Hafiz Muhammad Jeelani, [email protected] Abstract Exogenous lipoid pneumonia is a rare and frequently misdiagnosed lung disease. It occurs as an inflammatory reaction secondary to either aspiration or inhalation of lipids. Our patient had a history significant for recurrent pneumonia and the use of mineral oil for chronic constipation. A chest computed tomography showed multifocal consolidative opacities with areas of low attenuation, highly suspicious of exogenous lipid pneumonia. The diagnosis was confirmed with combined bronchoalveolar lavage and transbronchial lung biopsy that showed lipid-laden macrophages consistent with exogenous lipoid pneumonia. After thorough medication review, apart from mineral oil, no other contributing factors were found. A diagnosis of exogenous lipoid pneumonia associated with the use of mineral oil made and successfully managed by stopping the offending agent and supportive antibiotics. Categories: Internal Medicine, Medical Education, Pulmonology Keywords: lipoid pneumonia, mineral oil, constipation, bal lavage, macrophages Introduction Lipoid pneumonia has been identified as a non-infectious cause of recurrent aspiration pneumonia in 1- 2.5% cases. -
Toxicological Profile for Zinc
TOXICOLOGICAL PROFILE FOR ZINC U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry August 2005 ZINC ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. ZINC iii UPDATE STATEMENT A Toxicological Profile for Zinc, Draft for Public Comment was released in September 2003. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 ZINC vi *Legislative Background The toxicological profiles are developed in response to the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public law 99-499) which amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). This public law directed ATSDR to prepare toxicological profiles for hazardous substances most commonly found at facilities on the CERCLA National Priorities List and that pose the most significant potential threat to human health, as determined by ATSDR and the EPA. The availability of the revised priority list of 275 hazardous substances was announced in the Federal Register on November 17, 1997 (62 FR 61332). For prior versions of the list of substances, see Federal Register notices dated April 29, 1996 (61 FR 18744); April 17, 1987 (52 FR 12866); October 20, 1988 (53 FR 41280); October 26, 1989 (54 FR 43619); October 17, 1990 (55 FR 42067); October 17, 1991 (56 FR 52166); October 28, 1992 (57 FR 48801); and February 28, 1994 (59 FR 9486).