Spatial and Temporal Evolution of the Volcanics and Sediments of the Kenya Rift

Total Page:16

File Type:pdf, Size:1020Kb

Spatial and Temporal Evolution of the Volcanics and Sediments of the Kenya Rift Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2013 Spatial and Temporal Evolution of the Volcanics and Sediments of the Kenya Rift Alexandria L. Guth Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Geology Commons Copyright 2013 Alexandria L. Guth Recommended Citation Guth, Alexandria L., "Spatial and Temporal Evolution of the Volcanics and Sediments of the Kenya Rift", Dissertation, Michigan Technological University, 2013. https://doi.org/10.37099/mtu.dc.etds/484 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Geology Commons SPATIAL AND TEMPORAL EVOLUTION OF THE VOLCANICS AND SEDIMENTS OF THE KENYA RIFT By Alexandria L. Guth A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2013 © 2013 Alexandria L. Guth This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Geology. Department of Geological and Mining Engineering and Sciences Dissertation Advisor:" James Wood Committee Member: " Jacqueline Huntoon Committee Member: " Aleksey Smirnov Committee Member: " Carol MacLennan Department Chair: " Wayne Pennington Dedication This work could not have happened without the field geologists who came before me and spent years working on the ground, collecting rocks, and doing analyses. My first and foremost dedication is to these scientists, whose hard work has allowed this synthesis to occur. On a personal level I would like to thank my advisor, Jim Wood who took me to Africa, my parents Sharon Alley (1981) & Lawrence Guth (1991) who raised me in a science-filled home, and my partner in science & life: Bryan Franklin (2009). In case anyone ever reads this: as all who have written likely know, it is difficult and time consuming to distill your thoughts into a single page, and I am sure most academic writers do not do so unless compelled by page limitations. Thus, to paraphrase Blaise Pascal (1656): I apologize that this work is so long, I lacked the time to make it short. Table of Contents List of Figures!.............................................................................vii List of Tables!................................................................................ix List of Files!....................................................................................x Acknowledgments!.......................................................................xi Definitions!...................................................................................xii List of Abbreviations!.................................................................xiii Abstract!......................................................................................xiv Introduction and Summary!..........................................................1 Document Structure!.................................................................................6 Recommendations!....................................................................................8 1. Geological mapping in the Kenya Rift!....................................9 1.1. Introduction!........................................................................................9 1.2. Geologic Survey Publications!..........................................................9 1.3. Non-Survey Maps and Reports!.......................................................11 1.4. The Era of Age Dating!......................................................................14 1.5. A Digital Map of the Kenya Rift Geology!.......................................17 1.5.1 Digital Mapping Techniques & Sources of Map Error".................17 2. Rift characterization & current state of research!................20 2.2. Current State of Knowledge: Rift Origins!......................................24 2.2.1. One Plume"................................................................................26 2.2.2. Several Small Plumes"...............................................................26 2.2.3. Superplumes, Piles, and LLSVPs"..............................................29 iii 2.2.4. Modified Single Plume"...............................................................31 2.2.5. The Plate Model".........................................................................33 2.2.6. Brief Argument Summary"..........................................................34 2.3. Current State of Knowledge: Timing of rift development!............36 2.4. Current State of Knowledge: Crustal Structure!............................37 2.5. Current State of Knowledge: Plate Motions!..................................41 3. Geologic development of the Kenya Rift: trends and patterns!........................................................................................44 3.1. Methods!............................................................................................44 3.2. Trends & Paleomaps!.......................................................................45 3.2.1. Composition:"..............................................................................46 3.2.2. Spatial and Temporal Trends:"....................................................49 3.3. Volume Analysis!...............................................................................59 3.3.1. Seismically derived thickness estimates"...................................66 3.3.2. A note on volume estimates; sediments and dense-rock equivalents"..........................................................................................70 3.3.3. Volume estimate comparisons"...................................................71 3.3.4. Reconciling seismic and map-derived volume estimates"..........71 3.4. Volcanic pulses and eruptive rate comparisons!..........................74 3.4.1. Eruptive Rates"...........................................................................76 3.4.2. Comparisons with other large eruptive events - LIPs and SLIPs ".............................................................................................................79 3.4.3. Volcanic mass flux & comparisons with other systems"..............83 3.5. Chapter Conclusions: spatial, temporal & volumetric trends!.....86 4. Lake and hominin site distributions from Miocene to present in the Kenya Rift!............................................................88 iv 4.1. History of Lake Sedimentation in the Kenya Rift!..........................88 4.1.1. Basics of Climate in the Rift".......................................................89 4.1.2. Lacustrine deposits: volcanic and hominin synergies"................91 4.1.3. Volcanic and Lake Sedimentation trends in the Kenya Rift".....100 4.1.4. Lake Deposition History"...........................................................104 Oligocene: the earliest rift sediments!.................................................107 Early Miocene: 15-18 Ma!.......................................................................107 Mid-Miocene: 9-13 Ma!...........................................................................107 Late Miocene: 6-7 Ma!............................................................................108 Pliocene: 3-4 Ma!....................................................................................110 Late Pliocene - Early Pleistocene: 1.7-3 Ma!........................................110 Discussion of Pliocene - Pleistocene Climate!...................................111 Middle Pleistocene: 0.5-1.5 Ma!............................................................112 Late Pleistocene: 100-200 ka!...............................................................114 Holocene: the last 10 ka!.......................................................................115 Holocene: Present lacustrine settings!................................................115 4.2. Hominin developments in reference to rift and lake basin development!..........................................................................................117 4.2.1. Background to hominin research".............................................117 4.2.2. Hominin trends in the Rift"........................................................121 4.3. Conclusions: rift-related lacustrine & hominin trends!...............126 4.3.1. Open questions and future research needs:"............................127 5. Discussion & Conclusions!..................................................132 5.1. Conclusions!...................................................................................140 References!................................................................................143 v Appendix A!................................................................................169 Appendix B!................................................................................171 Appendix C!................................................................................176 Appendix D!................................................................................177 Appendix E!................................................................................178 vi List of Figures Figure 1.1." Outline of Kenya showing location of the available maps produced by the Kenya Geologic Survey. 9 Figure 1.2. " Geologic maps for regions affected by rift volcanism. The number in each box is the report number or degree sheet. 13
Recommended publications
  • PROFILES of ATTRACTION SITES-ELGEYO MARAKWET. Tourist Attractions in Elgeyo Marakwet County Include Sports Tourism, Rivers, a Na
    PROFILES OF ATTRACTION SITES-ELGEYO MARAKWET. Tourist attractions in Elgeyo Marakwet County include Sports Tourism, Rivers, A national reserve, waterfalls and the hills and escarpments. Rimoi National Reserve The National Reserve is a protected area in the kerio valley along the escarpment of the Great Rift Valley. The 66 square kilometers (25sq mi) reserve was created in 1983 and is managed by the Kenya Wildlife Service. The isolated Kerio Valley lies between the Cherangani Hills and the Tugen Hills with the Elgeyo Escarpment rising more than 1,830 meters (6,000ft) above the valley in places. The valley is 4,000 feet (1,200m) deep. It has semi-tropical vegetation on the slopes, while the floor of the valley is covered by dry thorn bush. The most comfortable time of the year is in July and August when the rains have ended and the temperatures are not excessive. The reserve is on the west side of the Kerio River, while the Lake Kamnarok National Reserve is on the east side. The reserve has beautiful scenery, prolific birdlife and camping site in the bush beside Lake Kamnarok. Gazzement of the conservation area was done to protect wildlife from rampant poaching which was going on at the time. A fence was also put up to address human wildlife conflicts. It provides unique geological scenery & biodiversity and is one of the few protected areas within the spectacular Kerio Valley. The main attraction is the groups of elephants, Culture and scenery of the Kerio valley. The Reserve has earth and gravel road network which make for an adventurous outing.
    [Show full text]
  • Conserving Wildlife in African Landscapes Kenya’S Ewaso Ecosystem
    Smithsonian Institution Scholarly Press smithsonian contributions to zoology • number 632 Smithsonian Institution Scholarly Press AConserving Chronology Wildlife of Middlein African Missouri Landscapes Plains Kenya’sVillage Ewaso SitesEcosystem Edited by NicholasBy Craig J. M. Georgiadis Johnson with contributions by Stanley A. Ahler, Herbert Haas, and Georges Bonani SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of “diffusing knowledge” was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: “It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.” This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to History and Technology Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Museum Conservation Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology In these series, the Institution publishes small papers and full-scale monographs that report on the research and collections of its various museums and bureaus. The Smithsonian Contributions Series are distributed via mailing lists to libraries, universities, and similar institu- tions throughout the world. Manuscripts submitted for series publication are received by the Smithsonian Institution Scholarly Press from authors with direct affilia- tion with the various Smithsonian museums or bureaus and are subject to peer review and review for compliance with manuscript preparation guidelines.
    [Show full text]
  • The Geothermal Activity of the East African Rift
    Presented at Short Course IV on Exploration for Geothermal Resources, organized by UNU-GTP, KenGen and GDC, at Lake Naivasha, Kenya, November 1-22, 2009. Kenya Electricity Generating Co., Ltd. GEOTHERMAL TRAINING PROGRAMME Geothermal Development Company THE GEOTHERMAL ACTIVITY OF THE EAST AFRICAN RIFT Peter A. Omenda Geothermal Development Company P. O. Box 100746, Nairobi 00101 KENYA [email protected] ABSTRACT The East Africa Rift System is a classical continental rift system associated with the world-wide mid ocean rift systems. The rift extends from the Red Sea – Afar triple junction through Ethiopian highlands, Kenya, Tanzania and Malawi to Mozambique in the south. The western branch passes through Uganda, DRC and Rwanda while the nascent south-western branch runs through Luangwa and Kariba rifts in Zambia into Botswana. The volcanic and tectonic activity in the rift started about 30 million years ago and in the eastern branch the activity involved faulting and eruption of large volumes of mafic and silicic lavas and pyroclastics. The western branch, typified by paucity of volcanism, is younger and dominated by faulting that has created deep basins currently filled with lakes and sediments. Geothermal activity in the rift is manifested by the occurrences of Quaternary volcanoes, hotsprings, fumaroles, boiling pools, hot and steaming grounds, geysers and sulphur deposits. The manifestations are abundant and stronger in the eastern branch that encompasses Afar, Ethiopian and Kenya rifts while in the western branch, the activity is subdued and occurs largely as hotsprings and fumaroles. Detailed and reconnaissance studies of geothermal potential in Eastern Africa indicates that the region has potential of 2,500MWe to 6,500MWe.
    [Show full text]
  • The Time Scales of Continental Rifting: Implications for Global Processes
    spe500-11 1st pgs page 1 The Geological Society of America 18888 201320 Special Paper 500 2013 CELEBRATING ADVANCES IN GEOSCIENCE The time scales of continental rifting: Implications for global processes Cynthia J. Ebinger* Department of Earth Sciences, University of Rochester, Rochester, New York 14627, USA Jolante van Wijk* Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204-5007, USA Derek Keir* National Oceanography Centre Southampton, University of Southampton, Southampton, UK ABSTRACT The rifting cycle initiates with stress buildup, release as earthquakes and/or magma intrusions/eruptions, and visco-elastic rebound, multiple episodes of which combine to produce the observed, time-averaged rift zone architecture. The aim of our synthesis of current research initiatives into continental rifting-to-rupture pro- cesses is to quantify the time and length scales of faulting and magmatism that pro- duce the time-averaged rift structures imaged in failed rifts and passive margins worldwide. We compare and contrast seismic and geodetic strain patterns during dis- crete, intense rifting episodes in magmatic and amagmatic sectors of the East African rift zone that span early- to late-stage rifting. We also examine the longer term rifting cycle and its relation to changing far-fi eld extension directions with examples from the Rio Grande rift zone and other cratonic rifts. Over time periods of millions of years, periods of rotating regional stress fi elds are marked by a lull in magmatic activity and a temporary halt to tectonic rift opening. Admittedly, rifting cycle comparisons are biased by the short time scale of global seismic and geodetic measurements, which span a small fraction of the 102–105 year rifting cycle.
    [Show full text]
  • Historical Volcanism and the State of Stress in the East African Rift System
    Historical volcanism and the state of stress in the East African Rift System Article Accepted Version Open Access Wadge, G., Biggs, J., Lloyd, R. and Kendall, J.-M. (2016) Historical volcanism and the state of stress in the East African Rift System. Frontiers in Earth Science, 4. 86. ISSN 2296- 6463 doi: https://doi.org/10.3389/feart.2016.00086 Available at http://centaur.reading.ac.uk/66786/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.3389/feart.2016.00086 Publisher: Frontiers media All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online 1 Historical volcanism and the state of stress in the East African 2 Rift System 3 4 5 G. Wadge1*, J. Biggs2, R. Lloyd2, J-M. Kendall2 6 7 8 1.COMET, Department of Meteorology, University of Reading, Reading, UK 9 2.COMET, School of Earth Sciences, University of Bristol, Bristol, UK 10 11 * [email protected] 12 13 14 Keywords: crustal stress, historical eruptions, East African Rift, oblique motion, 15 eruption dynamics 16 17 18 19 20 21 Abstract 22 23 Crustal extension at the East African Rift System (EARS) should, as a tectonic ideal, 24 involve a stress field in which the direction of minimum horizontal stress is 25 perpendicular to the rift.
    [Show full text]
  • 1843 KMS Kenya Past and Present Issue 43
    Kenya Past and Present Issue 43 Kenya Past and Present Editor Peta Meyer Editorial Board Marla Stone Patricia Jentz Kathy Vaughan Kenya Past and Present is a publication of the Kenya Museum Society, a not-for-profit organisation founded in 1971 to support and raise funds for the National Museums of Kenya. Correspondence should be addressed to: Kenya Museum Society, PO Box 40658, Nairobi 00100, Kenya. Email: [email protected] Website: www.KenyaMuseumSociety.org Statements of fact and opinion appearing in Kenya Past and Present are made on the responsibility of the author alone and do not imply the endorsement of the editor or publishers. Reproduction of the contents is permitted with acknowledgement given to its source. We encourage the contribution of articles, which may be sent to the editor at [email protected]. No category exists for subscription to Kenya Past and Present; it is a benefit of membership in the Kenya Museum Society. Available back issues are for sale at the Society’s offices in the Nairobi National Museum. Any organisation wishing to exchange journals should write to the Resource Centre Manager, National Museums of Kenya, PO Box 40658, Nairobi 00100, Kenya, or send an email to [email protected] Designed by Tara Consultants Ltd ©Kenya Museum Society Nairobi, April 2016 Kenya Past and Present Issue 43, 2016 Contents KMS highlights 2015 ..................................................................................... 3 Patricia Jentz To conserve Kenya’s natural and cultural heritage ........................................ 9 Marla Stone Museum highlights 2015 ............................................................................. 11 Juliana Jebet and Hellen Njagi Beauty and the bead: Ostrich eggshell beads through prehistory .................................................. 17 Angela W.
    [Show full text]
  • Technical Report
    Establishing a WMO Sand and Dust Storm Warning Advisory and Assessment System Regional Node for West Asia: Current Capabilities and Needs Technical Report For more information, please contact: World Meteorological Organization Research Department Atmospheric Research and Environment Branch 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland Tel.: +41 (0) 22 730 81 11 – Fax: +41 (0) 22 730 81 81 E-mail: [email protected] Website: http://www.wmo.int/pages/prog/arep/wwrp/new/wwrp_new_en.html WMO-No. 1121 Establishing a WMO Sand and Dust Storm Warning Advisory and Assessment System Regional Node for West Asia: Current Capabilities and Needs Technical Report NOVEMBER 2013 Cover photogtraph:Soil Solutions Ltd. © United Nations Environment Programme, 2013 General disclaimers The views expressed in this publication are those of the authors and do not necessarily reflect the views of the United Nations Environment Programme (UNEP). The opinions, figures and estimates set forth in this publication are not the responsibility of the author, and should not necessarily be considered as reflecting the views or carrying the endorsement of the United Nations Environment Programme. The contents of this publication do not necessarily reflect the views or policies of UNEP or the editors, nor are they an official record. The contents of this publication do not necessarily reflect the views or policies of UNEP or contributory organizations. Technical content disclaimers While reasonable efforts have been made to ensure that the contents of this publication are factually correct and properly referenced, UNEP does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication.
    [Show full text]
  • Seafloor Spreading Event in Western Gulf of Aden During the November
    Seafloor spreading event in western Gulf of Aden during the November 2010 -- March 2011 period captured by regional seismic networks: Evidence for diking events and interactions with a nascent transform zone Abdulhakim Ahmed, C´ecileDoubre, Sylvie Leroy, Kassim Mohamed, Derek Keir, Abayazid Ahmadine, Julie Perrot, Laurence Audin, Jerome Vergne, Alexandre Nercessian, et al. To cite this version: Abdulhakim Ahmed, C´ecile Doubre, Sylvie Leroy, Kassim Mohamed, Derek Keir, et al.. Seafloor spreading event in western Gulf of Aden during the November 2010 -- March 2011 period captured by regional seismic networks: Evidence for diking events and interactions with a nascent transform zone. Geophysical Journal International, Oxford University Press (OUP), 2016, 205 (2), pp.1244-1266. <10.1093/gji/ggw068>. <hal-01284416> HAL Id: hal-01284416 https://hal.archives-ouvertes.fr/hal-01284416 Submitted on 7 Mar 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Title: Seafloor spreading event in western Gulf of Aden during the November 2010 - March 2011 period captured by regional seismic networks: Evidence for diking events and interactions with a nascent transform zone Authors: Ahmed Abdulhakim1,2,3,*, Doubre Cécile4, Leroy Sylvie2,3, Mohamed Kassim5 , Keir Derek6, Ahmadine Abayazid5, Perrot Julie7, Audin Laurence8, Vergne Jérome4, Nercessian Alexandre9, Jacques Eric9, Khanbari Khaled10, Sholan Jamal1, Rolandone Frédérique2,3, Alganad Ismael11 Affiliations: 1Seismological and Volcanological Observatory Center, Dhamar, Yemen.
    [Show full text]
  • The East African Rift System in the Light of KRISP 90
    ELSEVIER Tectonophysics 236 (1994) 465-483 The East African rift system in the light of KRISP 90 G.R. Keller a, C. Prodehl b, J. Mechie b,l, K. Fuchs b, M.A. Khan ‘, P.K.H. Maguire ‘, W.D. Mooney d, U. Achauer e, P.M. Davis f, R.P. Meyer g, L.W. Braile h, 1.0. Nyambok i, G.A. Thompson J a Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968-0555, USA b Geophysikalisches Institut, Universitdt Karlwuhe, Hertzstrasse 16, D-76187Karlsruhe, Germany ’ Department of Geology, University of Leicester, University Road, Leicester LEl 7RH, UK d U.S. Geological Survey, Office of Earthquake Research, 345 Middlefield Road, Menlo Park, CA 94025, USA ’ Institut de Physique du Globe, Universite’ de Strasbourg, 5 Rue Ret& Descartes, F-67084 Strasbourg, France ‘Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90024, USA ’ Department of Geology and Geophysics, University of Wuconsin at Madison, Madison, WI 53706, USA h Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, USA i Department of Geology, University of Nairobi, P.O. Box 14576, Nairobi, Kenya ’ Department of Geophysics, Stanford University, Stanford, CA 94305, USA Received 21 September 1992; accepted 8 November 1993 Abstract On the basis of a test experiment in 1985 (KRISP 85) an integrated seismic-refraction/ teleseismic survey (KRISP 90) was undertaken to study the deep structure beneath the Kenya rift down to depths of NO-150 km. This paper summarizes the highlights of KRISP 90 as reported in this volume and discusses their broad implications as well as the structure of the Kenya rift in the general framework of other continental rifts.
    [Show full text]
  • Lake Turkana and the Lower Omo the Arid and Semi-Arid Lands Account for 50% of Kenya’S Livestock Production (Snyder, 2006)
    Lake Turkana & the Lower Omo: Hydrological Impacts of Major Dam & Irrigation Development REPORT African Studies Centre Sean Avery (BSc., PhD., C.Eng., C. Env.) © Antonella865 | Dreamstime © Antonella865 Consultant’s email: [email protected] Web: www.watres.com LAKE TURKANA & THE LOWER OMO: HYDROLOGICAL IMPACTS OF MAJOR DAM & IRRIGATION DEVELOPMENTS CONTENTS – VOLUME I REPORT Chapter Description Page EXECUTIVE(SUMMARY ..................................................................................................................................1! 1! INTRODUCTION .................................................................................................................................... 12! 1.1! THE(CONTEXT ........................................................................................................................................ 12! 1.2! THE(ASSIGNMENT .................................................................................................................................. 14! 1.3! METHODOLOGY...................................................................................................................................... 15! 2! DEVELOPMENT(PLANNING(IN(THE(OMO(BASIN ......................................................................... 18! 2.1! INTRODUCTION(AND(SUMMARY(OVERVIEW(OF(FINDINGS................................................................... 18! 2.2! OMO?GIBE(BASIN(MASTER(PLAN(STUDY,(DECEMBER(1996..............................................................19! 2.2.1! OMO'GIBE!BASIN!MASTER!PLAN!'!TERMS!OF!REFERENCE...........................................................................19!
    [Show full text]
  • Explanations of Variability in Middle Stone Age Stone Tool Assemblage Composition and Raw Material Use in Eastern Africa
    Archaeological and Anthropological Sciences (2021) 13:14 https://doi.org/10.1007/s12520-020-01250-8 ORIGINAL PAPER Explanations of variability in Middle Stone Age stone tool assemblage composition and raw material use in Eastern Africa J. Blinkhorn1,2 & M. Grove3 Received: 26 February 2020 /Accepted: 1 December 2020 # The Author(s) 2020 Abstract The Middle Stone Age (MSA) corresponds to a critical phase in human evolution, overlapping with the earliest emergence of Homo sapiens as well as the expansions of these populations across and beyond Africa. Within the context of growing recog- nition for a complex and structured population history across the continent, Eastern Africa remains a critical region to explore patterns of behavioural variability due to the large number of well-dated archaeological assemblages compared to other regions. Quantitative studies of the Eastern African MSA record have indicated patterns of behavioural variation across space, time and from different environmental contexts. Here, we examine the nature of these patterns through the use of matrix correlation statistics, exploring whether differences in assemblage composition and raw material use correlate to differences between one another, assemblage age, distance in space, and the geographic and environmental characteristics of the landscapes surrounding MSA sites. Assemblage composition and raw material use correlate most strongly with one another, with site type as well as geographic and environmental variables also identified as having significant correlations to the former, and distance in time and space correlating more strongly with the latter. By combining time and space into a single variable, we are able to show the strong relationship this has with differences in stone tool assemblage composition and raw material use, with significance for exploring the impacts of processes of cultural inheritance on variability in the MSA.
    [Show full text]
  • Lake Turkana Archaeology: the Holocene
    Lake Turkana Archaeology: The Holocene Lawrence H. Robbins, Michigan State University Abstract. Pioneering research in the Holocene archaeology of Lake Turkana con- tributed significantly to the development of broader issues in the prehistory of Africa, including the aquatic civilization model and the initial spread of domes- ticated livestock in East Africa. These topics are reviewed following retrospective discussion of the nature of pioneering fieldwork carried out in the area in the1960s. The early research at Lake Turkana uncovered the oldest pottery in East Africa as well as large numbers of bone harpoons similar to those found along the Nile Valley and elsewhere in Africa. The Lake Turkana area remains one of the major building blocks in the interpretation of the later prehistory of Africa as a whole, just as it is a key area for understanding the early phases of human evolution. Our way had at first led us up hills of volcanic origin. I can’t imagine landscape more barren, dried out and grim. At 1.22 pm the Bassonarok appeared, an enormous lake of blue water dotted with some islands. The northern shores cannot be seen. At its southern end it must be about 20 kilometers wide. As far as the eye can see are barren and volcanic shores. I give it the name of Lake Rudolf. (Teleki 1965 [1886–95]: 5 March 1888) From yesterday’s campsite we could overlook nearly the whole western and north- ern shores of the lake. The soil here is different again. I observed a lot of conglom- erates and fossils (petrification).
    [Show full text]