ABELIAN GROUPS with a MINIMAL GENERATING SET Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Group Theory
Algebra Math Notes • Study Guide Group Theory Table of Contents Groups..................................................................................................................................................................... 3 Binary Operations ............................................................................................................................................................. 3 Groups .............................................................................................................................................................................. 3 Examples of Groups ......................................................................................................................................................... 4 Cyclic Groups ................................................................................................................................................................... 5 Homomorphisms and Normal Subgroups ......................................................................................................................... 5 Cosets and Quotient Groups ............................................................................................................................................ 6 Isomorphism Theorems .................................................................................................................................................... 7 Product Groups ............................................................................................................................................................... -
Chapter 1 Introduction
Chapter 1 Introduction 1.1 Preliminary When is a torsion-free abelian group free abelian? This problem has been attacked by many mathematicians for many years, but no satisfactory answer has emerged. As a result, they have made the theory of abelian groups rich and diverse. Also, set theory plays an important role in this problem, as pointed out by Thomas [27, 28]. 1.2 Abelian Groups In this section, we will discuss different types of abelian groups. Free Abelian Group An abelian group G is said to be free abelian if G is a direct sum of infinite L cyclic groups. Let K be an index set. If G = k2K hxki where hxki is the infinite 1 cyclic group generated by xk , then we say G is free on fxk : k 2 Kg. Moreover, every non-zero element g 2 G has the unique expression g = mk1 xk1 + ··· + mkn xkn where the mki 's are nonzero integers and the ki's are distinct. If G is free on fxk : k 2 Kg and F is free on fyj : j 2 Jg, then the two free abelian groups are isomorphic if and only if J and K have the same number of elements, i.e. there is a one-to-one and onto function (bijection) from J onto K. If jKj = n, then we say that G has rank n. A non-trivial result will show that a subgroup of a free abelian group is free (see [23, Theorem 9.22 on p. 189]). Torsion Abelian Group An abelian group G is said to be torsion if every element in G has finite order. -
Infinite Abelian Groups
Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 5-1970 Infinite Abelian Groups Joaquin Pascual Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Recommended Citation Pascual, Joaquin, "Infinite Abelian Groups" (1970). All Graduate Plan B and other Reports. 1122. https://digitalcommons.usu.edu/gradreports/1122 This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INFINITE ABELIAN GROUPS by Joaquin Pascual A report submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Ma the ma ti cs Plan B Approved: UTAH STATE UNIVERSITY Logan, Utah 1970 NOTATION Z Set of integers Q Set of rationals Zp: Group of integer modulo p • , a } Set whose elements are a , ..., a n 1 n . , a ] Subgroup generated by a , ..., a . n 1 n o(m) Cyclic group of order m 00 o(p ) : p-primary component of rationals modulo one tG Torsion subgroup of G dG Maximal divisible subgroup of G G [ p] : { x E. G : px = 0} nG: {nx: x e G} LJ\ Direct sum of the groups 1\ (almost all coordinates are O) k '=- K ITJ\ Direct product of the groups� k f=- K To Amelia TABLE OF CONTENT S Page INTRODUCTION 1 PRELIMINARY RESULTS 2 INFINITE ABELIAN GROUPS 3 LITERATURE CITED 75 VITA . 76 1 INTRODUCTION When the theory of groups was first introduced, the attention was on finite groups. -
\ /0""0' Field Vector Space
APPENDIX I Some Major Algebraic Systems Semigroup GroupI ~~ Abelian group Operator group / Ring / Commutative ring R-module DoL ~ \ /0""0' Field Vector space A ring (always containing 1 -1= 0) is a set with two operations, addition and multiplication. It is an abelian group under addition, a semi group with 1 under multiplication, and the two operations are linked by the distributive laws. A commutative ring is a ring in which multiplication is commutative. 476 Appendix I. Some Major Algebraic Systems A domain (or integral domain) is a commutative ring in which ab = 0 implies a = 0 or b = 0; equivalently, the cancellation law holds: if ab = ac and a =F 0, then b = c. A division ring (or skew field) is a (not necessarily commutative) ring in which every nonzero element has a multiplicative inverse: if a =F 0, then there is b E K with ab = 1 = ba. The set of nonzero elements K X = K - {O} is thus a multiplicative group. Afield K is a commutative division ring. It is a theorem of Wedderburn (1905) that every finite division ring is a field. APPENDIX II Equivalence Relations and Equi valence Classes A relation on a set X is a subset == of X x X. One usually writes x == y instead of (x, y) E ==; for example, the relation < on the set of real numbers IR consists of all points in the plane IR x IR lying above the line with equation y = x, and one usually writes 2 < 3 instead of (2, 3) E <. A relation == on a set X is reflexive if x == x for all x EX; it is symmetric if, for all x, y E X, X == Y implies y == x; it is transitive if, for all x, y, Z E X, X == Y and y == z imply x == z.