First Genome of Labyrinthula, an Opportunistic Seagrass Pathogen, Reveals Novel Insight

Total Page:16

File Type:pdf, Size:1020Kb

First Genome of Labyrinthula, an Opportunistic Seagrass Pathogen, Reveals Novel Insight bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.297390; this version posted September 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 First genome of Labyrinthula, an opportunistic seagrass pathogen, reveals novel insight 2 into marine protist phylogeny, ecology and CAZyme cell-wall degradation 3 Mun Hua Tan1,2,3,4, Stella Loke1,2, Laurence J. Croft1,2, Frank H. Gleason5, Lene Lange6, Bo 4 Pilgaard7, Stacey M. Trevathan-Tackett1* 5 6 1Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin 7 University, Geelong, Australia 8 2Deakin Genomics Centre, Deakin University, Geelong, Australia 9 3School of BioSciences, Bio21 Institute, University of Melbourne, Australia 10 4Department of Microbiology and Immunology, University of Melbourne, Bio21 Institute, 11 Melbourne, Australia 12 5School of Life and Environmental Sciences, University of Sydney, Sydney, 2006, New 13 South Wales, Australia 14 6BioEconomy, Research & Advisory, Valby, 2500 Copenhagen, Denmark 15 7Protein Chemistry and Enzyme Technology, Department of Bioengineering, Technical 16 University of Denmark, Kgs. Lyngby, Denmark 17 18 19 * Corresponding Author: Dr Stacey Trevathan-Tackett, [email protected], 20 Deakin University, 221 Burwood Hwy, Burwood, Victoria, Australia 3125 21 22 Keywords: evolution; ion regulation; mitochondrial genome; saprobe; Stramenopiles; 23 virulence 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.297390; this version posted September 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 24 Abstract 25 Labyrinthula spp. are saprobic, marine protists that also act as opportunistic pathogens and 26 are the causative agents of seagrass wasting disease (SWD). Despite the threat of local- and 27 large-scale SWD outbreaks, there are currently gaps in our understanding of the drivers of 28 SWD, particularly surrounding Labyrinthula virulence and ecology. Given these 29 uncertainties, we investigated Labyrinthula from a novel genomic perspective by presenting 30 the first draft genome and predicted proteome of a pathogenic isolate of Labyrinthula 31 SR_Ha_C, generated from a hybrid assembly of Nanopore and Illumina sequences. 32 Phylogenetic and cross-phyla comparisons revealed insights into the evolutionary history of 33 Stramenopiles. Genome annotation showed evidence of glideosome-type machinery and an 34 apicoplast protein typically found in protist pathogens and parasites. Proteins involved in 35 Labyrinthula’s actin-myosin mode of transport, as well as carbohydrate degradation were 36 also prevalent. Further, CAZyme functional predictions revealed a repertoire of enzymes 37 involved in breakdown of cell-wall and carbohydrate storage compounds common to 38 seagrasses. The relatively low number of CAZymes annotated from the genome of 39 Labyrinthula SR_Ha_C compared to other Labyrinthulea species may reflect the 40 conservative annotation parameters, a specialised substrate affinity and the scarcity of 41 characterised protist enzymes. Inherently, there is high probability for finding both unique 42 and novel enzymes from Labyrinthula spp. This study provides resources for further 43 exploration of Labyrinthula ecology and evolution, and will hopefully be the catalyst for new 44 hypothesis-driven SWD research revealing more details of molecular interactions between 45 Labyrinthula species and its host substrate. 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.297390; this version posted September 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 46 Introduction 47 Sequencing capabilities of both short and long read technologies have shown marked 48 progress in recent years, resulting in the generation of a large number of contiguous and high 49 quality genome assemblies reported for a myriad of living organisms at an unprecedented 50 pace. As a result of genome sequencing projects at local-to-global scales, we are better 51 resolving linages across the Tree of Life (Lewin et al. 2018), revealing new diversity for 52 underrepresented or unculturable microorganisms (e.g. aquatic and marine protists and 53 zoosporic fungi; Sibbald and Archibald 2017, Lange et al. 2019a) and informing the 54 ecological and functional roles of organisms in the environment (Kyrpides et al. 2014). In 55 marine ecosystems, genomic and transcriptomic sequencing is producing vital information on 56 the ecological roles microorganisms play. For example, genomes of putative pathogens are 57 revealing genes involved in virulence and attachment to the host, as well as mechanisms 58 involved in degrading the host substrate and switching between non-pathogenic and 59 pathogenic lifestyles (Fernandes et al. 2011). These new insights are especially important as 60 marine emergent diseases and opportunistic pathogens are predicted to increase globally in 61 the coming decades due to the suboptimal living conditions for marine biota caused by 62 human- and climate-induced changes (Harvell et al. 1999). 63 64 Seagrass meadows are one such marine ecosystem susceptible to a decline in health and 65 increased infection, as they are subjected to dynamic pressures at the land-sea interface, such 66 as elevated temperatures in shallow regions and run-off-associated turbidity, eutrophication 67 and hyposalinity conditions (Sullivan et al. 2018). There are currently four pathogens that 68 cause disease to multiple seagrass genera: Labyrinthula, Phytophthora, Halophytophthora, 69 and Phytomyxea (Sullivan et al. 2018). Labyrinthula, a heterotrophic, halophytic protist in 70 the Stramenopile lineage, is the causative agent of seagrass wasting disease (SWD). To-date, 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.297390; this version posted September 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 71 it is also the most well-studied seagrass pathogen after being discovered in the early twentieth 72 century when it decimated 90% of the North Atlantic population of the seagrass Zostera 73 marina (Sullivan et al. 2018). Labyrinthula isolates from seagrass leaves have shown variable 74 levels of virulence through laboratory infection trials and associated phylogenetic analyses 75 (Martin et al. 2016, Brakel et al. 2017). Virulent isolates are able to invade the leaf cells of 76 living plants and subsequently cause black leaf lesions, the diagnostic trait of SWD (Sullivan 77 et al. 2018). However, Labyrinthula, is also a ubiquitous commensal saprobe that 78 decomposes marine plants and algae litter, with one species parasitic to turfgrass (Martin et 79 al. 2016). Because of the flexibility of its ecological function, Labyrinthula spp. are 80 considered opportunistic pathogens that in some cases utilise a mild parasitism strategy 81 (Brakel et al. 2017). 82 83 Since its discovery, the advances in our understanding of Labyrinthula species include 84 phylogenetic reclassifications of Labyrinthula (Leander and Porter 2001) and molecular 85 techniques that facilitate detection of Labyrinthula without the need for culturing (Duffin et 86 al. 2020, Lohan et al. 2020). Despite this progress, we still do not completely understand the 87 pathosystem of SWD. For example, it is still under debate whether the conditions that 88 promote SWD rely more on seagrass health and defence capabilities or the virulence and 89 enzymatic capabilities of Labyrinthula isolates and haplotypes, or a combination of host and 90 pathogen characteristics (Martin et al. 2016, Duffin et al. 2020). Much of the new knowledge 91 on the pathosystem has come from the immune and stress response of the seagrass using 92 genomic markers or assays (Brakel et al. 2014, Duffin et al. 2020), as opposed to pathogen 93 virulence (Martin et al. 2016). Furthermore, despite our molecular advances, we also know 94 little about the role of specific organelles, such as the bothrosome, in the hunt and 95 consumption of food sources (Collier and Rest 2019). Next-generation sequencing 4 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.297390; this version posted September 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 96 technologies are helping us produce new hypotheses for Labyrinthula and SWD. For 97 example, Lohan et al. (2020) questioned how the variation in Labyrinthula diversity links 98 with intra-species diversity of the seagrass host. 99 100 This set of ecological uncertainties constitutes the basis for our interest in sequencing the 101 genome of a Labyrinthula isolate. So far the genomes of only three different genera of the 102 Labyrinthulea class have been
Recommended publications
  • METABOLIC EVOLUTION in GALDIERIA SULPHURARIA By
    METABOLIC EVOLUTION IN GALDIERIA SULPHURARIA By CHAD M. TERNES Bachelor of Science in Botany Oklahoma State University Stillwater, Oklahoma 2009 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2015 METABOLIC EVOLUTION IN GALDIERIA SUPHURARIA Dissertation Approved: Dr. Gerald Schoenknecht Dissertation Adviser Dr. David Meinke Dr. Andrew Doust Dr. Patricia Canaan ii Name: CHAD M. TERNES Date of Degree: MAY, 2015 Title of Study: METABOLIC EVOLUTION IN GALDIERIA SULPHURARIA Major Field: PLANT SCIENCE Abstract: The thermoacidophilic, unicellular, red alga Galdieria sulphuraria possesses characteristics, including salt and heavy metal tolerance, unsurpassed by any other alga. Like most plastid bearing eukaryotes, G. sulphuraria can grow photoautotrophically. Additionally, it can also grow solely as a heterotroph, which results in the cessation of photosynthetic pigment biosynthesis. The ability to grow heterotrophically is likely correlated with G. sulphuraria ’s broad capacity for carbon metabolism, which rivals that of fungi. Annotation of the metabolic pathways encoded by the genome of G. sulphuraria revealed several pathways that are uncharacteristic for plants and algae, even red algae. Phylogenetic analyses of the enzymes underlying the metabolic pathways suggest multiple instances of horizontal gene transfer, in addition to endosymbiotic gene transfer and conservation through ancestry. Although some metabolic pathways as a whole appear to be retained through ancestry, genes encoding individual enzymes within a pathway were substituted by genes that were acquired horizontally from other domains of life. Thus, metabolic pathways in G. sulphuraria appear to be composed of a ‘metabolic patchwork’, underscored by a mosaic of genes resulting from multiple evolutionary processes.
    [Show full text]
  • Physiology and Biochemistry of the Tropical Seagrass Thalassia Testudinum in Response to Hypersalinity Stress and Labyrinthula Sp
    UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 2011 Physiology and Biochemistry of the Tropical Seagrass Thalassia testudinum in Response to Hypersalinity Stress and Labyrinthula sp. Infection Stacey Marie Trevathan-Tackett University of North Florida Suggested Citation Trevathan-Tackett, Stacey Marie, "Physiology and Biochemistry of the Tropical Seagrass Thalassia testudinum in Response to Hypersalinity Stress and Labyrinthula sp. Infection" (2011). UNF Graduate Theses and Dissertations. 391. https://digitalcommons.unf.edu/etd/391 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 2011 All Rights Reserved Physiology and Biochemistry of the Tropical Seagrass Thalassia testudinum in Response to Hypersalinity Stress and Labyrinthula sp. Infection by Stacey Marie Trevathan-Tackett A thesis submitted to the Department of Biology in partial fulfillment of the requirements for the degree of Master of Science in Biology University of North Florida College of Arts and Sciences December, 2011 Unpublished Work © 2011 Stacey Marie Trevathan-Tackett Signature Deleted Signature Deleted Signature Deleted Signature Deleted Signature Deleted Signature Deleted Acknowledgements I first would like to acknowledge NOAA and the Nancy Foster Scholarship for funding both school and living expenses for the majority of my Master‟s career allowing me to focus all of my time and efforts toward research. Also, I would like to thank the Dodson Grant, the Coastal Biology program and the Graduate School at UNF for their continued financial support and resources during graduate school.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Genetic Diversity of Labyrinthula Spp. in Seagrass Zostera Marina Beds in the North Atlantic Ocean and the Baltic Sea
    Genetic diversity of Labyrinthula spp. in seagrass Zostera marina beds in the North Atlantic Ocean and the Baltic Sea Submitted by Matsapume Detcharoen In partial fulfillment of the requirements for the Degree of Master of Science in Biology Ludwig-Maximilians-Universität München Faculty of Biology August 2015 Abstract Die sogenannte Seegras – „Wasting Disease“ führte in den 1930er Jahren zu einem Massenrückgang des Seegrases Zostera marina im nördlichen Atlantik. Labyrinthula zosterae ist der potentielle Erreger der Krankheit, der zu dem Verlust von Seegrasbetten führen kann. Dieser Organismus infiziert die Blätter des Seegrases. Frühere Studien, die die Vielfalt der Labyrinthula spp untersuchten, basierten auf der Kultivierung von Labyrinthula. Diese Studie ist die erste Studie, die Blattproben zur molekularen Identifizierung von Labyrinthula verwendet und erforscht die Vielfalt der Gattung Labyrinthula. Proben von sechs Standorten wurden untersucht, dabei wurde ein 290 bp lange Teilsequenz der 18S rDNA kloniert und Sanger sequenziert. Das Abgleichen der erhaltenen Sequenzen mit NCBI GenBank mittels des blast Algorithmus ergab, dass die meisten Sequenzen von 77 bis 100% mit L. zosterae übereinstimmen, während inige Sequenzen der Standorte Wackerballig und Sandspollen eine 84-94 prozentige Übereinstimmung mit Labyrinthula spp zeigten. Keine der mutmaßlichen Labyrinthula spp. Sequenzen wurden mit bekannten Sequenzen aus der Datenbank zusammengefasst. Es wurden sieben OTUs generiert. Der Test von verschiedenen DNA-Extraktionmethoden ergab für ein Pflanzen- und ein Gewebe-Extraktionskit ähnliche Ergebnisse. Nichtsdestotrotz hat das Pflanzen-Kit mehr Vorteile wegen geringerer Kosten und dem geringeren Zeitaufwand. Zusammenfassend zeigt diese Studie, dass bisher unbekannte Labyrinthula spp. in den Seegraspopulationen vorkommen, und dass das in dieser Studie verwendete Verfahren für weitere Anwendungen geeignet ist.
    [Show full text]
  • High-Throughput Sequencing for Algal Systematics
    High-throughput sequencing for algal systematics Mariana C. Oliveiraa, Sonja I. Repettib, Cintia Ihaab, Christopher J. Jacksonb, Pilar Díaz-Tapiabc, Karoline Magalhães Ferreira Lubianaa, Valéria Cassanoa, Joana F. Costab, Ma. Chiela M. Cremenb, Vanessa R. Marcelinobde, Heroen Verbruggenb a Department of Botany, Biosciences Institute, University of São Paulo, São Paulo 05508-090, Brazil b School of BioSciences, University of Melbourne, Victoria 3010, Australia c Coastal Biology Research Group, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, 15071, A Coruña, Spain d Marie Bashir Institute for Infectious Diseases and Biosecurity and Sydney Medical School, University of Sydney, New South Wales 2006, Australia e Westmead Institute for Medical Research, Westmead, New South Wales 2145, Australia Abstract In recent years, the use of molecular data in algal systematics has increased as high-throughput sequencing (HTS) has become more accessible, generating very large data sets at a reasonable cost. In this perspectives paper, our goal is to describe how HTS technologies can advance algal systematics. Following an introduction to some common HTS technologies, we discuss how metabarcoding can accelerate algal species discovery. We show how various HTS methods can be applied to generate datasets for accurate species delimitation, and how HTS can be applied to historical type specimens to assist the nomenclature process. Finally, we discuss how HTS data such as organellar genomes and transcriptomes can be used to construct well resolved phylogenies, leading to a stable and natural classification of algal groups. We include examples of bioinformatic workflows that may be applied to process data for each purpose, along with common programs used to achieve each step.
    [Show full text]
  • Associated Heterotrophic Protists, Stereomyxa Ramosa, Nitzschia Alba and Labyrinthula Sp
    AQUATIC MICROBIAL ECOLOGY Vol. 21: 49-57,2000 Published February 21 Aquat Microb Ecol Utilisation of seaweed carbon by three surface- associated heterotrophic protists, Stereomyxa ramosa, Nitzschia alba and Labyrinthula sp. Evelyn ~rmstrong'~~~*,Andrew ~ogerson~,John W. ~eftley~ 'University Marine Biological Station Millport, Isle of Curnbrae KA28 OEG, Scotland, UK 'Oceanographic Center, Nova Southeastern University, 8000 N. Ocean Drive, Dania Beach, Florida 33004, USA 'Scottish Association for Marine Science, Dunstaffnage Marine Laboratory. PO Box 3, Oban. Argyll PA34 4AD. Scotland, UK ABSTRACT: In view of the abundance of protists associated with seaweeds and the diversity of nutri- tional strategies displayed by protists in general, the ability of 3 closely associated protists to utilise sea- weed carbon was investigated. Stereomyxa ramosa, Nitzschja alba and Labyrinthula sp. were cultured with seaweed polysaccharides as well as seaweed itself. N. alba and Labyrinthula sp. were found to utilise seaweed polysaccharides in axenic culture. All 3 protists were capable of penetrating intact but 'damaged' (autoclaved) seaweed particularly when bacteria were present. The possibility that these and other heterotrophic protists are directly removing macroalgal carbon in the field is discussed. KEY WORDS: Protist . Heterotroph - Seaweed. Carbon . Utilisation INTRODUCTION (Lucas et al. 1981, Rieper-Kirchner 1989).This conver- sion of dissolved carbon into particulate forms (as bac- Heterotrophic protists are abundant on seaweed sur- terial biomass) is thought to be a major link to higher faces (Rogerson 1991, Armstrong et al. 2000) because trophic levels (Newell et al. 1980). To compete effec- seaweeds are rich in bacterial prey (Laycock 1974, tively with bacteria, heterotrophic protists would need Shiba & Taga 1980).
    [Show full text]
  • Controlled Sampling of Ribosomally Active Protistan Diversity in Sediment-Surface Layers Identifies Putative Players in the Marine Carbon Sink
    The ISME Journal (2020) 14:984–998 https://doi.org/10.1038/s41396-019-0581-y ARTICLE Controlled sampling of ribosomally active protistan diversity in sediment-surface layers identifies putative players in the marine carbon sink 1,2 1 1 3 3 Raquel Rodríguez-Martínez ● Guy Leonard ● David S. Milner ● Sebastian Sudek ● Mike Conway ● 1 1 4,5 6 7 Karen Moore ● Theresa Hudson ● Frédéric Mahé ● Patrick J. Keeling ● Alyson E. Santoro ● 3,8 1,9 Alexandra Z. Worden ● Thomas A. Richards Received: 6 October 2019 / Revised: 4 December 2019 / Accepted: 17 December 2019 / Published online: 9 January 2020 © The Author(s) 2020. This article is published with open access Abstract Marine sediments are one of the largest carbon reservoir on Earth, yet the microbial communities, especially the eukaryotes, that drive these ecosystems are poorly characterised. Here, we report implementation of a sampling system that enables injection of reagents into sediments at depth, allowing for preservation of RNA in situ. Using the RNA templates recovered, we investigate the ‘ribosomally active’ eukaryotic diversity present in sediments close to the water/sediment interface. We 1234567890();,: 1234567890();,: demonstrate that in situ preservation leads to recovery of a significantly altered community profile. Using SSU rRNA amplicon sequencing, we investigated the community structure in these environments, demonstrating a wide diversity and high relative abundance of stramenopiles and alveolates, specifically: Bacillariophyta (diatoms), labyrinthulomycetes and ciliates. The identification of abundant diatom rRNA molecules is consistent with microscopy-based studies, but demonstrates that these algae can also be exported to the sediment as active cells as opposed to dead forms.
    [Show full text]
  • The Classification of Lower Organisms
    The Classification of Lower Organisms Ernst Hkinrich Haickei, in 1874 From Rolschc (1906). By permission of Macrae Smith Company. C f3 The Classification of LOWER ORGANISMS By HERBERT FAULKNER COPELAND \ PACIFIC ^.,^,kfi^..^ BOOKS PALO ALTO, CALIFORNIA Copyright 1956 by Herbert F. Copeland Library of Congress Catalog Card Number 56-7944 Published by PACIFIC BOOKS Palo Alto, California Printed and bound in the United States of America CONTENTS Chapter Page I. Introduction 1 II. An Essay on Nomenclature 6 III. Kingdom Mychota 12 Phylum Archezoa 17 Class 1. Schizophyta 18 Order 1. Schizosporea 18 Order 2. Actinomycetalea 24 Order 3. Caulobacterialea 25 Class 2. Myxoschizomycetes 27 Order 1. Myxobactralea 27 Order 2. Spirochaetalea 28 Class 3. Archiplastidea 29 Order 1. Rhodobacteria 31 Order 2. Sphaerotilalea 33 Order 3. Coccogonea 33 Order 4. Gloiophycea 33 IV. Kingdom Protoctista 37 V. Phylum Rhodophyta 40 Class 1. Bangialea 41 Order Bangiacea 41 Class 2. Heterocarpea 44 Order 1. Cryptospermea 47 Order 2. Sphaerococcoidea 47 Order 3. Gelidialea 49 Order 4. Furccllariea 50 Order 5. Coeloblastea 51 Order 6. Floridea 51 VI. Phylum Phaeophyta 53 Class 1. Heterokonta 55 Order 1. Ochromonadalea 57 Order 2. Silicoflagellata 61 Order 3. Vaucheriacea 63 Order 4. Choanoflagellata 67 Order 5. Hyphochytrialea 69 Class 2. Bacillariacea 69 Order 1. Disciformia 73 Order 2. Diatomea 74 Class 3. Oomycetes 76 Order 1. Saprolegnina 77 Order 2. Peronosporina 80 Order 3. Lagenidialea 81 Class 4. Melanophycea 82 Order 1 . Phaeozoosporea 86 Order 2. Sphacelarialea 86 Order 3. Dictyotea 86 Order 4. Sporochnoidea 87 V ly Chapter Page Orders. Cutlerialea 88 Order 6.
    [Show full text]
  • Short Communication on the Classification of The
    SHORT COMMUNICATION ON THE CLASSIFICATION OF THE GENERA Labyrinthula, Schizochytrium AND Thraustochytrium (Labyrinthulids AND Thraustochytrids) Øjvind Moestrup Biological Institute, University of Copenhagen Universitetsparken 4 , DK- 2100 Copenhagen, Denmark E-mail: [email protected] Citation as: Moestrup Øjvind, 2019. On the classification of the genera Labyrinthula, Schizochytrium and Thraustochytrium (Labyrinthulids and Thraustochytrids). Tap chi Sinh hoc, 41(2): xx–xx. https://doi.org/10.15625/0866-7160/v41n2.xxxxx Species of the genera Labyrinthula, Schizochytrium, Thraustochytrium and related organisms have recently attracted attention in biotechnology, and here is a short note on how to classify these rather special organisms. The labyrinthulids and thraustochytrids belong to the heterokonts, a large group of very diverse organisms, from microscopic unicells to metre-long brown algae. The heterokonts comprise species that were formerly classified as algae, fungi and/or protozoa. Many heterokonts are autotrophic and contain chloroplasts, and such organisms are often classified as algae (golden algae, brown algae). Labyrinthulids and thraustochytrids, however, are heterotrophic and lack chloroplasts. They were until recently known as Labyrinthulomycetes or Labyrinthulea , indeed the new classification of Adl et al. (2019) uses the first of these names. It is an unfortunate name as it gives the misleading impression that they are fungi. Honigberg et al. (1964) and others considered them protozoa. Are heterokonts algae, protozoa or fungi? And, more specifically, what are labyrinthulids and thraustochytrids? The heterokonts are thought to be a very old group (probably precambrian), and this may account for their huge morphological diversity. In the WORMS list (World Register of Marine Species) heterokonts are classified as the Infrakingdom Heterokonta .
    [Show full text]
  • Marine Phytophthora Species Can Hamper Conservation and Restoration of Vegetated Coastal Ecosystems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by College of William & Mary: W&M Publish W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2016 Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems LL Govers WAM in 't Veid JP Meffert TJ Bouma PCJ van Rijswick See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Govers, LL; in 't Veid, WAM; Meffert, JP; Bouma, TJ; van Rijswick, PCJ; Heusinkveld, JHT; Orth, R J.; van Katwijk, MM; and van der Heide, T, "Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems" (2016). VIMS Articles. 795. https://scholarworks.wm.edu/vimsarticles/795 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors LL Govers, WAM in 't Veid, JP Meffert, TJ Bouma, PCJ van Rijswick, JHT Heusinkveld, R J. Orth, MM van Katwijk, and T van der Heide This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/795 Downloaded from http://rspb.royalsocietypublishing.org/ on October 25, 2018 Marine Phytophthora species can hamper rspb.royalsocietypublishing.org conservation and restoration of vegetated coastal ecosystems Laura L. Govers1,3, Willem A. Man in ‘t Veld4, Johan P. Meffert4, Tjeerd Research J.
    [Show full text]
  • Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes
    University of Rhode Island DigitalCommons@URI Biological Sciences Faculty Publications Biological Sciences 9-26-2018 Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Christopher E. Lane Et Al Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Sina M. Adla,* , David Bassb,c , Christopher E. Laned, Julius Lukese,f , Conrad L. Schochg, Alexey Smirnovh, Sabine Agathai, Cedric Berneyj , Matthew W. Brownk,l, Fabien Burkim,PacoCardenas n , Ivan Cepi cka o, Lyudmila Chistyakovap, Javier del Campoq, Micah Dunthornr,s , Bente Edvardsent , Yana Eglitu, Laure Guillouv, Vladimır Hamplw, Aaron A. Heissx, Mona Hoppenrathy, Timothy Y. Jamesz, Anna Karn- kowskaaa, Sergey Karpovh,ab, Eunsoo Kimx, Martin Koliskoe, Alexander Kudryavtsevh,ab, Daniel J.G. Lahrac, Enrique Laraad,ae , Line Le Gallaf , Denis H. Lynnag,ah , David G. Mannai,aj, Ramon Massanaq, Edward A.D. Mitchellad,ak , Christine Morrowal, Jong Soo Parkam , Jan W. Pawlowskian, Martha J. Powellao, Daniel J. Richterap, Sonja Rueckertaq, Lora Shadwickar, Satoshi Shimanoas, Frederick W. Spiegelar, Guifre Torruellaat , Noha Youssefau, Vasily Zlatogurskyh,av & Qianqian Zhangaw a Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, S7N 5A8, SK, Canada b Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
    [Show full text]
  • DHA-Rich Algal Oil from Schizochytrium Sp.RT100
    DHA-rich Algal Oil from Schizochytrium sp.RT100 A submission to the UK Food Standards Agency requesting consideration of Substantial Equivalence in accordance with Regulation (EC) No 258/97 concerning novel foods and novel food ingredients I. Administrative data Applicant: DAESANG Corp. 26, Cheonho-daero Dongdaemun-gu Seoul 130-706 South Korea Ray Kim, James Kwak [email protected], [email protected] Tel. +82 2 2657 5353, +82 2 2657 5371 Contact address: Dr. Stoffer Loman NutriClaim BV Lombardije 44 3524 KW Utrecht The Netherlands [email protected] Tel. +31 (0)6 160 96 193 Food ingredient: The food ingredient for which an opinion on Substantial Equivalence is requested is Daesang Corp.’s Schizochytrium sp.RT100 derived DHA-rich oil. Date of application: 20 March, 2015. 1 II. The Issue In recent years, Schizochytrium sp.-derived docosahexaenoic (DHA)-rich oils have been the subject of several Novel Food Applications submitted under Regulation No 258/97 in the European Union (EU; EC, 1997). The first application for Novel Food authorization for Schizochytrium sp.-derived DHA-rich oil for general use as a nutritional ingredient in foods, was submitted by the United States (US)-based company OmegaTech Inc. to the Advisory Committee on Novel Foods and Processes (ACNFP) of the United Kingdom (UK) Food Standards Agency (UK FSA) in 2001.(Martek BioSciences Corporation, 2001) After evaluation, the placing on the market of OmegaTech DHA-rich oil was authorized in 2003 following the issuing of the Commission Decision of 5 June 2003 (CD 2003/427/EC) authorizing the placing on the market of oil rich in DHA (docosahexaenoic acid) from the microalgae Schizochytrium sp.
    [Show full text]