The Incidence of Chemically Peculiar Stars in Open Clusters”

Total Page:16

File Type:pdf, Size:1020Kb

The Incidence of Chemically Peculiar Stars in Open Clusters” DISSERTATION Titel der Dissertation “The incidence of chemically peculiar stars in open clusters” Verfasser Mag. Martin Netopil angestrebter akademischer Grad Doktor der Naturwissenschaften (Dr.rer.nat) Wien, im April 2013 Studienkennzahl lt. Studienblatt: A 091 413 Dissertationsgebiet lt. Studienblatt: Astronomie Betreuer: Ao.Prof.Dr.HansMichaelMaitzen Contents Zusammenfassung V Abstract VII 1 Introduction & Objectives 1 2 Propertiesofchemicallypeculiarstars 5 2.1 Rotation................................... 6 2.2 Magneticfield................................ 15 2.3 ThetemperaturescaleofCPstars. 20 3 Detectionofchemicallypeculiarstars 29 3.1 Classificationspectroscopy . .. 36 4 Why studying open clusters? 41 4.1 Datacompilation .............................. 43 5 The open cluster sample 45 5.1 Photoelectric ∆a survey .......................... 45 5.1.1 Collinder121 ............................ 45 5.1.2 Collinder132 ............................ 45 5.1.3 Collinder140 ............................ 46 5.1.4 IC2391 ............................... 46 5.1.5 IC2602 ............................... 47 5.1.6 IC4665 ............................... 47 5.1.7 IC4725 ............................... 47 5.1.8 Melotte 20 (α Persei)........................ 48 5.1.9 Melotte22(Pleiades). 48 5.1.10 Melotte111(ComaBerenices) . 48 5.1.11 NGC1039.............................. 49 5.1.12 NGC1662.............................. 50 5.1.13 NGC1901.............................. 50 5.1.14 NGC2169.............................. 50 5.1.15 NGC2232.............................. 50 5.1.16 NGC2287.............................. 51 5.1.17 NGC2343.............................. 51 I II Contents 5.1.18 NGC2362.............................. 51 5.1.19 NGC2422.............................. 51 5.1.20 NGC2423.............................. 52 5.1.21 NGC2447.............................. 52 5.1.22 NGC2451A/B........................... 52 5.1.23 NGC2516.............................. 53 5.1.24 NGC2546.............................. 53 5.1.25 NGC2632(Praesepe) . 53 5.1.26 NGC3114.............................. 54 5.1.27 NGC3228.............................. 54 5.1.28 NGC3532.............................. 55 5.1.29 NGC5460.............................. 55 5.1.30 NGC5662.............................. 56 5.1.31 NGC6087.............................. 56 5.1.32 NGC6281.............................. 56 5.1.33 NGC6405.............................. 57 5.1.34 NGC6475.............................. 57 5.1.35 NGC7092.............................. 57 5.1.36 NGC7243.............................. 57 5.1.37 Trumpler10............................. 58 5.2 CCD∆a survey-PartI .......................... 58 5.2.1 Collinder272 ............................ 58 5.2.2 Lyng˚a14............................... 58 5.2.3 Melotte105 ............................. 58 5.2.4 NGC2099.............................. 59 5.2.5 NGC2169.............................. 59 5.2.6 NGC2439.............................. 59 5.2.7 NGC2489.............................. 60 5.2.8 NGC2567.............................. 60 5.2.9 NGC2658.............................. 60 5.2.10 NGC3114.............................. 60 5.2.11 NGC3960.............................. 61 5.2.12 NGC5281.............................. 61 5.2.13 NGC6134.............................. 61 5.2.14 NGC6192.............................. 61 5.2.15 NGC6204.............................. 62 5.2.16 NGC6208.............................. 62 5.2.17 NGC6250.............................. 62 5.2.18 NGC6396.............................. 63 5.2.19 NGC6451.............................. 63 5.2.20 NGC6611.............................. 63 5.2.21 NGC6705.............................. 63 5.2.22 NGC6756.............................. 64 5.2.23 Pismis20 .............................. 64 5.3 CCD∆a survey-PartII.......................... 64 Contents III 5.3.1 Berkeley11 ............................. 64 5.3.2 Berkeley94 ............................. 65 5.3.3 Haffner15.............................. 65 5.3.4 King21 ............................... 65 5.3.5 Lyng˚a1 ............................... 66 5.3.6 NGC1502.............................. 66 5.3.7 NGC3105.............................. 66 5.3.8 NGC3293.............................. 66 5.3.9 NGC5999.............................. 67 5.3.10 NGC6031.............................. 67 5.3.11 NGC6268.............................. 67 5.3.12 NGC6405.............................. 68 5.3.13 NGC6802.............................. 68 5.3.14 NGC6830.............................. 68 5.3.15 NGC6834.............................. 68 5.3.16 NGC7235.............................. 69 5.3.17 NGC7296.............................. 69 5.3.18 NGC7510.............................. 69 5.3.19 Ruprecht44............................. 69 5.3.20 Ruprecht115 ............................ 70 5.3.21 Ruprecht120 ............................ 70 5.3.22 Ruprecht130 ............................ 71 5.3.23 Stock16............................... 71 6 Open cluster parameters 73 6.1 Metallicity.................................. 73 6.1.1 A homogeneous approach to determine metallicity . .... 76 6.2 Thefinalopenclusterparameters . 102 7 Membership analysis 111 8 Results 123 8.1 Thefinaldataset .............................. 123 8.2 MassesandfractionalagesofCPstars. 127 8.3 Evolutionwithage ............................. 130 8.3.1 Formerinvestigations. 130 8.3.2 Results based on the ∆a survey .................. 132 8.4 Dependenciesbesideage . 142 8.5 The early stage of chemically peculiar stars . ...... 146 9 Outlook 151 A The data 153 References 161 IV Contents List of Abbreviations 171 List of Figures 173 List of Tables 181 Acknowledgements 183 Curriculum vitae 185 Zusammenfassung Die Entstehung und Entwicklung von chemisch pekuliaren (CP) Sternen ist nach wie vor nicht restlos gekl¨art, und das obwohl die ersten Vertreter dieser Sterngruppe bereits vor mehr als 110 Jahren entdeckt wurden. Aus astrophysikalischer Sicht sind diese Ob- jekte von großem Interesse, da sie zahlreiche besondere Eigenschaften in sich vereinen. Diese Dissertation widmet sich der Untersuchung einer Untergruppe der CP Sterne, die neben Uberh¨ ¨aufigkeiten von Elementen der Eisengruppe (zB. Chrom) und seltenen Erden wie Europium, auch starke Magnetfelder und eine langsame Rotation aufweisen. Basierend auf einer Auswahl von gut untersuchten nahen Feldsternen wird der m¨ogliche Zusammenhang zwischen diesen Eigenschaften betrachtet. Das Hauptaugenmerk galt jedoch der Untersuchung einer m¨oglichen Abh¨angigkeit zwischen der Anzahl von CP Sternen und deren Alter. Fur¨ diesen Zweck wurden die Ergebnisse von mehreren ∆a Studien in Sternhaufen herangezogen. Dieses fotometrische Filtersystem erm¨oglicht ei- ne effiziente und zeitsparende Detektion der magnetischen CP Sterne auf Grund einer charakteristischen Flussdepression bei 520nm. Im Vergleich zu Feldsternen bieten of- fene Sternhaufen den großen Vorteil, dass zum Beispiel das Alter und die Entfernung statistisch gesehen genauer bestimmt werden k¨onnen. Der Grund dafur¨ liegt in der mehr oder weniger gleichzeitigen Entstehung aller Mitglieder aus einer einzigen Mo- lekulwolke.¨ Nach der Analyse der Mitgliedswahrscheinlichkeit aller mittels ∆a untersuchten Objekte und der Bestimmung der jeweiligen Sternhaufenparameter konnte gezeigt wer- den, dass eine Abh¨angigkeit zwischen der Anzahl von CP Sternen und deren Alter besteht. Allerdings konnte dies durch die allgemeine Sternentwicklung erkl¨art werden. Das wurde¨ unter anderem bedeuten, dass CP Sterne sp¨atestens beim Erreichen der Hauptreihe bereits ihre typischen Eigenschaften zeigen. Des Weiteren konnte zumin- dest ein Vertreter dieser Gruppe gefunden werden, der sich vermutlich noch auf der Vorhauptreihe befindet. V VI Zusammenfassung Abstract The formation and evolution of chemically peculiar (CP) stars is still a matter of debate, although the first representatives were detected already more than 110 years ago. From the astrophysical point of view, these objects are of particular interest, since they combine a wide variety of specific properties. This work deals with a subgroup of CP stars, showing beside overabundances of some iron-peak (e.g. Chromium) and rare earth elements like Europium, also strong ordered magnetic fields as well as a slow rotation. Based on a selection of well inves- tigated close field stars, the possible connections of these properties were examined. However, the main research focus was the analysis of a relationship between the num- ber of CP stars and their age. For this purpose, the results of the extensive ∆a survey in open clusters were used. This photometric filter system allows an efficient and eco- nomic detection of magnetic CP stars due to a characteristic flux depression at 520nm. Compared to field stars, open clusters offer the big advantage that for example the age and the distance can be determined more accurately on a statistical basis, since all member stars of an open cluster originate more or less at the same time from a single molecular cloud. After the membership analysis of all in ∆a investigated objects and the determi- nation of the cluster parameters, it was shown that the occurrence of CP stars depend on age, but can be explained by the general evolution of stars. This entails amongst others that CP stars show their typical characteristics already as soon as they have arrived the main-sequence, or even before. Furthermore, we were able to detect at least one representative, probably still in its pre-main-sequence phase. VII VIII Abstract Chapter 1 Introduction & Objectives For the first time, the
Recommended publications
  • The Desert Sky Observer
    Desert Sky Observer Volume 32 Antelope Valley Astronomy Club Newsletter February 2012 Up-Coming Events February 10: Club Meeting* February 11: Moon Walk @ Prime Desert Woodlands February 13: Executive Board Meeting @ Don’s house February 18: Telescope Night and Star Party @ Devil's Punchbowl * Monthly meetings are held at the S.A.G.E. Planetarium on the Cactus School campus in Palmdale, the second Friday of each month. The meeting location is at the northeast corner of Avenue R and 20th Street East. Meetings start at 7 p.m. and are open to the public. Please note that food and drink are not allowed in the planetarium President Don Bryden Well I gave a star party and no one showed up! Not that I can blame them – it was raining and windy and cold – it even hailed! Still I dragged out the scope and got it ready to go. Briefly, between the clouds I looked at Jupiter and it was quite a treat. The Galilean moons were all tight to the planet either coming from just in front or behind. It gave a bejeweled look like a large ruby surrounded by four small diamonds. Even with the winds and clouds the sky was surprisingly steady and I went as high as 260x with ease, exposing the shadow of Europa transiting the planet. But soon more clouds came and inside we had a nice fire so I put the Artist's rendering DVD “400 Years of the Telescope” on and settled in for the night. My daughter had a few friends over after a skating party that afternoon and later when I went out for one more look they came out to see what was up.
    [Show full text]
  • Winter Constellations
    Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great ​ ​ hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar ​ ​ ​ nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. ​ ​ 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming ​ “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the ​ Orion Nebula.
    [Show full text]
  • Magnetism, Dynamo Action and the Solar-Stellar Connection
    Living Rev. Sol. Phys. (2017) 14:4 DOI 10.1007/s41116-017-0007-8 REVIEW ARTICLE Magnetism, dynamo action and the solar-stellar connection Allan Sacha Brun1 · Matthew K. Browning2 Received: 23 August 2016 / Accepted: 28 July 2017 © The Author(s) 2017. This article is an open access publication Abstract The Sun and other stars are magnetic: magnetism pervades their interiors and affects their evolution in a variety of ways. In the Sun, both the fields themselves and their influence on other phenomena can be uncovered in exquisite detail, but these observations sample only a moment in a single star’s life. By turning to observa- tions of other stars, and to theory and simulation, we may infer other aspects of the magnetism—e.g., its dependence on stellar age, mass, or rotation rate—that would be invisible from close study of the Sun alone. Here, we review observations and theory of magnetism in the Sun and other stars, with a partial focus on the “Solar-stellar connec- tion”: i.e., ways in which studies of other stars have influenced our understanding of the Sun and vice versa. We briefly review techniques by which magnetic fields can be measured (or their presence otherwise inferred) in stars, and then highlight some key observational findings uncovered by such measurements, focusing (in many cases) on those that offer particularly direct constraints on theories of how the fields are built and maintained. We turn then to a discussion of how the fields arise in different objects: first, we summarize some essential elements of convection and dynamo theory, includ- ing a very brief discussion of mean-field theory and related concepts.
    [Show full text]
  • The Stellar Group NGC 1901 in Front of the Large Magellanic Cloud,
    A&A 466, 931–941 (2007) Astronomy DOI: 10.1051/0004-6361:20066687 & c ESO 2007 Astrophysics Observational templates of star cluster disruption The stellar group NGC 1901 in front of the Large Magellanic Cloud, G. Carraro1,2, R. de la Fuente Marcos3, S. Villanova1, C. Moni Bidin2, C. de la Fuente Marcos3,H.Baumgardt4, and G. Solivella5 1 Dipartimento di Astronomia, Università di Padova, Vicolo Osservatorio 2, 35122 Padova, Italy e-mail: [email protected] 2 Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile 3 Suffolk University Madrid Campus, C/ Viña 3, 28003 Madrid, Spain 4 AIfA, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany 5 Facultad de Ciencias Astronómicas y Geofísicas de la UNLP, IALP-CONICET, Paseo del Bosque s/n, La Plata, Argentina Received 3 November 2006 / Accepted 23 January 2007 ABSTRACT Context. Observations indicate that present-day star formation in the Milky Way disk takes place in stellar ensembles or clusters rather than in isolation. Bound, long-lived stellar groups are known as open clusters. They gradually lose stars and are severely disrupted in their final evolutionary stages, leaving an open cluster remnant made up of a few stars. Aims. In this paper, we study in detail the stellar content and kinematics of the poorly populated star cluster NGC 1901. This object appears projected against the Large Magellanic Cloud. The aim of the present work is to derive the current evolutionary status, binary fraction, age, and mass of this stellar group. These are fundamental quantities to compare with those from N-body models in order to study the most general topic of star cluster evolution and dissolution.
    [Show full text]
  • UC Irvine UC Irvine Previously Published Works
    UC Irvine UC Irvine Previously Published Works Title Astrophysics in 2006 Permalink https://escholarship.org/uc/item/5760h9v8 Journal Space Science Reviews, 132(1) ISSN 0038-6308 Authors Trimble, V Aschwanden, MJ Hansen, CJ Publication Date 2007-09-01 DOI 10.1007/s11214-007-9224-0 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Space Sci Rev (2007) 132: 1–182 DOI 10.1007/s11214-007-9224-0 Astrophysics in 2006 Virginia Trimble · Markus J. Aschwanden · Carl J. Hansen Received: 11 May 2007 / Accepted: 24 May 2007 / Published online: 23 October 2007 © Springer Science+Business Media B.V. 2007 Abstract The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords Cosmology: general · Galaxies: general · ISM: general · Stars: general · Sun: general · Planets and satellites: general · Astrobiology · Star clusters · Binary stars · Clusters of galaxies · Gamma-ray bursts · Milky Way · Earth · Active galaxies · Supernovae 1 Introduction Astrophysics in 2006 modifies a long tradition by moving to a new journal, which you hold in your (real or virtual) hands. The fifteen previous articles in the series are referenced oc- casionally as Ap91 to Ap05 below and appeared in volumes 104–118 of Publications of V.
    [Show full text]
  • A Spitzer Study of Debris Disks in the Young Nearby Cluster NGC 2232
    A Spitzer Study of Debris Disks In The Young Nearby Cluster NGC 2232: Icy Planets Are Common Around ∼ 1.5–3 M⊙ Stars Thayne Currie1, Peter Plavchan2, and Scott J. Kenyon1 [email protected], [email protected], [email protected] ABSTRACT We describe Spitzer IRAC and MIPS observations of the nearby 25 Myr- old open cluster NGC 2232. Combining these data with ROSAT All-Sky Survey observations, proper motions, and optical photometry/spectroscopy, we construct a list of highly probable cluster members. We identify 1 A-type star, HD 45435, with definite excess emission at 4.5–24 µm indicative of debris from terrestrial planet formation. We also identify 2–4 late-type stars with possible 8 µm excesses, and 8 early-type stars with definite 24 µm excesses. Constraints on the dust luminosity and temperature suggest that the detected excesses are produced by debris disks. From our sample of B and A stars, stellar rotation appears correlated with 24 µm excess, a result expected if massive primordial disks evolve into massive debris disks. To explore the evolution of the frequency and magnitude of debris around A-type stars, we combine our results with data for other young clusters. The frequency of debris disks around A-type stars appears to increase from ∼ 25% at 5 Myr to ∼ 50–60% at 20–25 Myr. Older A-type stars have smaller debris disk frequencies: ∼ 20% at 50–100 Myr. For these ages, the typical level of debris emission rises from 5–20 Myr and then declines. Because 24 µm dust emission probes icy planet formation around A-type stars, our results suggest that the frequency of icy planet formation is ηi & 0.5–0.6.
    [Show full text]
  • February 14, 2015 7:00Pm at the Herrett Center for Arts & Science Colleagues, College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Saturday, February 14, 2015 7:00pm at the Herrett Center for Arts & Science Colleagues, College of Southern Idaho. Public Star Party Follows at the It’s that time of year when obstacles appear in the sky. In particular, this year is Centennial Obs. loaded with fog. It got in the way of letting us see the dance of the Jovian moons late last month, and it’s hindered our views of other unique shows. Still, members Club Officers reported finding enough of a clear sky to let us see Comet Lovejoy, and some great photos by members are popping up on the Facebook page. Robert Mayer, President This month, however, is a great opportunity to see the benefit of something [email protected] getting in the way. Our own Chris Anderson of the Herrett Center has been using 208-312-1203 the Centennial Observatory’s scope to do work on occultation’s, particularly with asteroids. This month’s MVAS meeting on Feb. 14th will give him the stage to Terry Wofford, Vice President show us just how this all works. [email protected] The following weekend may also be the time the weather allows us to resume 208-308-1821 MVAS-only star parties. Feb. 21 is a great window for a possible star party; we’ll announce the location if the weather permits. However, if we don’t get that Gary Leavitt, Secretary window, we’ll fall back on what has become a MVAS tradition: Planetarium night [email protected] at the Herrett Center.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Balog 2016 Apj 832 87.Pdf
    PROTOPLANETARY AND TRANSITIONAL DISKS IN THE OPEN STELLAR CLUSTER IC 2395 Item Type Article Authors Balog, Zoltan; Siegler, Nick; Rieke, George H.; Kiss, L. L.; Muzerolle, James; Gutermuth, Robert A.; Bell, Cameron P. M.; Vinkó, J.; Su, Kate Y. L.; Young, E. T.; Gáspár, András Citation PROTOPLANETARY AND TRANSITIONAL DISKS IN THE OPEN STELLAR CLUSTER IC 2395 2016, 832 (1):87 The Astrophysical Journal DOI 10.3847/0004-637X/832/1/87 Publisher IOP PUBLISHING LTD Journal The Astrophysical Journal Rights © 2016. The American Astronomical Society. All rights reserved. Download date 29/09/2021 21:43:54 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/622451 The Astrophysical Journal, 832:87 (17pp), 2016 November 20 doi:10.3847/0004-637X/832/1/87 © 2016. The American Astronomical Society. All rights reserved. PROTOPLANETARY AND TRANSITIONAL DISKS IN THE OPEN STELLAR CLUSTER IC 2395 Zoltan Balog1, Nick Siegler2, G. H. Rieke3, L. L. Kiss4, James Muzerolle5, R. A. Gutermuth6, Cameron P. M. Bell7, J. VinkÓ8,K.Y.L.Su3, E. T. Young9, and András Gáspár3 1 Max Planck Institute for Astronomy, Heidelberg, D-69117, Germany; [email protected] 2 NASA Exoplanet Exploration Program, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 3 Steward Observatory, 933 N. Cherry Ave, University of Arizona, Tucson, AZ 85721, USA 4 Konkoly Observatory, Research Center for Astronomy and Earth Sciences, P.O. Box 67, H-1525 Budapest, Hungary 5 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 6 Department of Astronomy, University of Massachusetts, Amherst, MA, USA 7 Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093, Zürich, Switzerland 8 Dept.
    [Show full text]
  • Observing List Evening of 2011 Dec 25 at Boyden Observatory
    Southern Skies Binocular list Observing List Evening of 2011 Dec 25 at Boyden Observatory Sunset 19:20, Twilight ends 20:49, Twilight begins 03:40, Sunrise 05:09, Moon rise 06:47, Moon set 20:00 Completely dark from 20:49 to 03:40. New Moon. All times local (GMT+2). Listing All Classes visible above 2 air mass and in complete darkness after 20:49 and before 03:40. Cls Primary ID Alternate ID Con Mag Size Distance RA 2000 Dec 2000 Begin Optimum End S.A. Ur. 2 PSA Difficulty Optimum EP Open Collinder 227 Melotte 101 Car 8.4 15.0' 6500 ly 10h42m12.0s -65°06'00" 01:32 03:31 03:54 25 210 40 challenging Glob NGC 2808 Car 6.2 14.0' 26000 ly 09h12m03.0s -64°51'48" 21:57 03:08 04:05 25 210 40 detectable Open IC 2602 Collinder 229 Car 1.6 100.0' 520 ly 10h42m58.0s -64°24'00" 23:20 03:31 04:07 25 210 40 obvious Open Collinder 246 Melotte 105 Car 9.4 5.0' 7200 ly 11h19m42.0s -63°29'00" 01:44 03:33 03:57 25 209 40 challenging Open IC 2714 Collinder 245 Car 8.2 14.0' 4000 ly 11h17m27.0s -62°44'00" 01:32 03:33 03:57 25 209 40 challenging Open NGC 2516 Collinder 172 Car 3.3 30.0' 1300 ly 07h58m04.0s -60°45'12" 20:38 01:56 04:10 24 200 30 obvious Open NGC 3114 Collinder 215 Car 4.5 35.0' 3000 ly 10h02m36.0s -60°07'12" 22:43 03:27 04:07 25 199 40 easy Neb NGC 3372 Eta Carinae Nebula Car 3.0 120.0' 10h45m06.0s -59°52'00" 23:26 03:32 04:07 25 199 38 easy Open NGC 3532 Collinder 238 Car 3.4 50.0' 1600 ly 11h05m39.0s -58°45'12" 23:47 03:33 04:08 25 198 38 easy Open NGC 3293 Collinder 224 Car 6.2 6.0' 7600 ly 10h35m51.0s -58°13'48" 23:18 03:32 04:08 25 199
    [Show full text]
  • Download This Article in PDF Format
    A&A 453, 101–119 (2006) Astronomy DOI: 10.1051/0004-6361:20053894 & c ESO 2006 Astrophysics On the difference between nuclear and contraction ages, W. Lyra1,2,3,A.Moitinho4,N.S.vanderBliek1,andJ.Alves5 1 Cerro Tololo Interamerican Observatory, Casilla 603 La Serena, Chile 2 Observatório do Valongo/UFRJ, Ladeira do Pedro Antônio 43, 20080-090 Rio de Janeiro, Brazil 3 Department of Astronomy and Space Physics, Uppsala Astronomical Observatory, Box 515, 751 20 Uppsala, Sweden e-mail: [email protected] 4 Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisbon, Portugal 5 European Southern Observatory, Karl-Schwarzschild 2, 85748 Garching, Germany Received 23 July 2005 / Accepted 20 February 2006 ABSTRACT Context. Ages derived from low mass stars still contracting onto the main sequence often differ from ages derived from the high mass ones that have already evolved away from it. Aims. We investigate the general claim of disagreement between these two independent age determinations by presenting UBVRI pho- tometry for the young galactic open clusters NGC 2232, NGC 2516, NGC 2547 and NGC 4755, spanning the age range ∼10–150 Myr Methods. We derived reddenings, distances, and nuclear ages by fitting ZAMS and isochrones to color–magnitudes and color–color di- agrams. To derive contraction ages, we used four different pre-main sequence models, with an empirically calibrated color-temperature relation to match the Pleiades cluster sequence. Results. When exclusively using the V vs. V − I color–magnitude diagram and empirically calibrated isochrones, there is consistency between nuclear and contraction ages for the studied clusters.
    [Show full text]
  • The List of Possible Double and Multiple Open Clusters Between Galactic Longitudes 240O and 270O
    The list of possible double and multiple open clusters between galactic longitudes 240o and 270o Juan Casado Facultad de Ciencias, Universidad Autónoma de Barcelona, 08193, Bellaterra, Catalonia, Spain Email: [email protected] Abstract This work studies the candidate double and multiple open clusters (OCs) in the galactic sector from l = 240o to l = 270o, which contains the Vela-Puppis star formation region. To do that, we have searched the most recent and complete catalogues of OCs by hand to get an extensive list of 22 groups of OCs involving 80 candidate members. Gaia EDR3 has been used to review some of the candidate OCs and look for new OCs near the candidate groups. Gaia data also permitted filtering out most of the field sources that are not member stars of the OCs. The plotting of combined colour-magnitude diagrams of candidate pairs has allowed, in several cases, endorsing or discarding their link. The most likely systems are formed by OCs less than 0.1 Gyr old, with only one eccentric OC in this respect. No probable system of older OCs has been found. Preliminary estimations of the fraction of known OCs that form part of groups (9.4 to 15%) support the hypothesis that the Galaxy and the Large Magellanic Cloud are similar in this respect. The results indicate that OCs are born in groups like stars are born in OCs. Keywords Binary open clusters; Open cluster groups; Open cluster formation; Gaia; Manual search; Large Magellanic Cloud. 1. Introduction Open clusters are formed in giant molecular clouds and there is observational evidence suggesting that they can form in groups (Camargo et al.
    [Show full text]