Effectiveness of Accelerated Solvent Extraction Compared to Quechers Method for the Multiresidue Analysis of Pesticides in Organ

Total Page:16

File Type:pdf, Size:1020Kb

Effectiveness of Accelerated Solvent Extraction Compared to Quechers Method for the Multiresidue Analysis of Pesticides in Organ CUSTOMER APPLICATION NOTE 72442 Effectiveness of accelerated solvent extraction compared to QuEChERS methods for the multiresidue analysis of pesticides in organic honey by GC-MS/MS Authors Goal Fabrizio Galbiati1; Sara Panseri2; Compare in-line ASE methods cleanup conditions for the evaluation of Giuseppe Labella2; pesticides in honey to QuEChERS methods. Domenico Britti3; Roberto Villa2; Francesco Arioli2; Luca Chiesa2 Introduction 1Thermo Fisher Scientific (Schweiz) According to the Council Directive 2001/110/EC,1 honey is considered as AG, Reinach, Switzerland; a “viscous, aromatic, natural, and sweet fluid produced by Apis mellifera 2Department of Health, Animal bees2,3 from the nectar of flowers or secretions of live parts of certain plants Science and Food Safety, or excretions of insects.” It has been used in medicine since ancient times for University of Milan, Milan, Italy; treatment of burns, gastrointestinal disorders, asthma, infected wounds, and 3Department of Health Sciences, skin ulcers.4 University of Catanzaro Magna Graecia, Catanzaro, Italy World production of honey has increased in the last 20 years. In 2014, 1.5 million tons of honey were produced worldwide, with China accounting for 31% of the world total followed by Turkey, the United States, Ukraine, and the Keywords Russian Federation. Pressurized fluid extraction, multiresidue pesticide analysis, in-line clean up, Rocket Evaporator, TSQ 8000 Triple Quadrupole GC-MS, Dionex ASE 350 Accelerated Solvent Extractor There are two main forms of contamination of honey: The high temperature allows a higher rate of extraction cross-contamination as bees collect pollen and nectar due to a reduction of the viscosity and surface tension, and contamination through treatment of hives with and increases the solubility and diffusion rate into the insecticides, fungicides, and acaricides for the protection sample. At the same time, high pressure prevents the from parasites like Varroa destructor, Acarapis woodi, and solvents from reaching their boiling point and promotes Paenibacillus larvae. penetration into the sample. Recent advances using ASE systems are described in several publications,9,10 and Although some organizations, such as the U.S. Food include procedures for selective removal of interferences and Drug Administration (FDA)5 and the Canadian during sample extraction, thus combining extraction and Food Inspection Agency,6 approve the use of certain purification into a single step. veterinary drugs, the European Union does not accept the use of antimicrobial drugs in beekeeping. The use of The methods reported here are applicable for the veterinary medicinal products in beekeeping is regulated determination of 53 pesticides, including acaricides and by the European Council (EC,1804/1999). According insecticides (both chlorinated and non-chlorinated) in to this regulation, the use of allopathic chemically organic honey and in concentrations from 1 to 100 ng/g. synthesized medicinal products for preventive treatments in beekeeping is prohibited, as these fat-soluble and Experimental nonvolatile compounds can accumulate in the stored Honey Samples honey, where they are able to migrate from the wax This study included 45 organic honey samples. In comb. The Council Regulation 1804/1999 EC7 is very particular, 10 orange blossom honey samples were restrictive regarding the production of organic honey from a German beekeeper and 35 were from Italian in terms of the origin of bees, siting of the apiaries, beekeepers of two different regions: Calabria (south Italy, feed, disease prevention, and veterinary treatments. In 15 samples), where intensive citrus orchards are present, particular, it establishes that plants that can be foraged and Trentino-Alto Adige (north Italy, 20 samples), where by bees, either biological or spontaneous, must be at intensive apple orchards are present. All samples were least 3 km from any source of pollution and from any stored at -20°C until analysis to prevent decomposition. non-agricultural production sources, that can possibly lead to contamination, such as industrial areas, urban Equipment centers, or motorways. A Radwag analytical balance was used for weighing the honey samples. The extractions were carried out with The determination of pesticide residues in honey is a a Thermo Scientific™ Dionex™ ASE™ 350 Accelerated considerable analytical challenge, as honey is a mixture Solvent Extractor [P/N 083114 (120 V) or 083146 of more than 300 substances identified mainly as sugars (240 V)], shown in Figure 1A, equipped with 34 mL and waxes, subject to variations arising from the type stainless steel extraction cells. The extracts were of plant(s) where bees collect nectar.8 Its complexity collected in 60 mL vials (Thermo Scientific, P/N 048784), requires a selective sample preparation because treated with sodium sulfate and directly concentrated carbohydrates and other matrix substances can be in a 2 mL autosampler glass vial (Thermo Scientific™ co-extracted with the analytes. These unwanted co- Chromacol™ VAGK ISP: GC 2-SVW + 9-SCK(B)-ST1) extractables can cause buildup of nonvolatile materials with the Thermo Scientific™ Rocket™ Evaporator on the GC injection port and the analytical column, [P/N 075904 (120 V) or 082766 (240 V)], shown in resulting in poor analytical results and high instrument Figure 1B. The samples were analyzed with a maintenance costs. Thermo Scientific™ TRACE™ 1310 Gas Chromatograph equipped Split/Splitless Injector, a fused-silica capillary Among the available extraction techniques, accelerated column Thermo Scientific™ TraceGOLD™ TG-5SilMS solvent extraction (ASE) is characterized by shorter (30 m × 0.25 mm × 0.25 µm), and a Thermo Scientific™ extraction times and reduced solvent consumption. ASE TSQ™ 8000 Triple Quadrupole GC-MS/MS. uses high temperatures combined with high pressure. 2 A B Figure 1. Dionex ASE 350 accelerated solvent extractor (A) and Thermo Scientific Rocket Evaporator (B). Chemicals and reagents column chromatography, 1 mL NORM-JECT® Tuberkulin Acrinathrin, bifenthrin, boscalid, bromopropylate, syringes, and 0.2 μm nylon filters were purchased from buprofezin, chlorfenvinphos, chlorpyrifos-methyl, Fisher Scientific (Schwerte, Germany). chlorothalonil, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, diazinon dichlorvos, difenoconazole, Diatomaceous earth and ASE cellulose filters were dimethoate, endosulfan (α, β, and sulfate), ethion, purchased from Thermo Fisher Scientific (Waltham, MA, ethoprophos, fenamiphos, fenitrothion, fenpropathrin, USA); ethylacetate (Lichrosolv for LC) was purchased lindane (γ-HCH), iprodion, malathion, methamidophos, from Merck (Darmstadt, Germany); Supelclean™ PSA oxadixyl, permethrin, phosalone, pirimiphos-methyl, (primary-secondary amine) was purchased from Supelco procymidon, propargite, propiconazole, pyridaben, Analytical (Bellofonte, PA, USA). quinoxyfen, tebuconazole, tetradifon, triadimefon, and vinclozolin were purchased from Sigma-Aldrich The stock solution, at a concentration of 10 μg/mL, (St. Louis, MO, USA). was prepared by dissolving the pesticide standards in hexane or acetonitrile for ASE extraction and QuEChERS, QuEChERS extraction tubes (50 mL; 4 g MgSO4, 1 g respectively. Stock solutions were stored at −40°C. NaCl, 1 g sodium citrate dihydrate tribasic, and 500 mg Calibration solutions containing all the investigated sodium citrate dibasic sesquihydrate), 15 mL QuEChERS compounds, in hexane or acetonitrile, were prepared clean-up tubes (1200 mg MgSO4, 400 mg CUPSA/ daily from the stock solutions (10 μg/mL). The appropriate 400 mg CE C18), acetonitrile (LC-MS grade), hexane volume was used as a spiking solution. (pesticide residue grade), Florisil® 60–100 mesh for 3 Accelerated solvent extraction Table 1B. Conditions for accelerated solvent extraction (n-hexane/ A cellulose filter (Thermo Scientific, P/N 056780) was ethyl acetate solvent). placed in the bottom of a 34 mL extraction cell ASE program for n-hexane/ethyl acetate solvent (Figure 2), followed by 2 g of PSA (primary-secondary (4:1, v/v) amine) or Florisil and another cellulose filter. A 5 g Adsorbent: Florisil (2 g) sample of honey was homogenized with an equal weight of Thermo Scientific™ Dionex™ ASE Prep DE Temperature: 100°C (Thermo Scientific P/N 062819), and transferred into Pressure: 1500 psi the cell. One milliliter of acetonitrile solution containing Static Cycles: 2 the internal standard (FBDE, 3-fluoro-2,2,4,4,6 pentabromodiphenyl ether) was added. The remaining Extraction Time: 5 min empty volume was filled with Dionex ASE Prep DE. The Rinse Volume: 90% extractor was programmed according to the conditions Purge Time: 90 s reported in Tables 1A and 1B. The extracts were collected in 60 mL vials and treated with sodium sulfate to remove any possible water. After filtration, the organic phase was concentrated to dryness in the Rocket Evaporator, reconstituted in 1 mL of Cellulose Filter acetonitrile or hexane, and submitted for analysis by Sample GC-MS/MS. The GC conditions are summarized (Honey+ ASE Prep DE) in Tables 2A and 2B, and the MS conditions are Extract Flow Cellulose Filter summarized in Table 3. PSA or Florisil Cellulose Filter Table 2A. Injector conditions. ASE Cell Injector program (PTV, splitless mode) Figure 2. Extraction cell schematic. Injector Temperature: 250°C Liner 2 mm x 2.75 mm x 120 mm, Siltek-deactivated Table 1A. Conditions for accelerated solvent extraction (acetonitrile solvent). Injected Volume: 1 µL Splitless Time: 1 min ASE program for
Recommended publications
  • Rapid Rise in Toxic Load for Bees Revealed by Analysis of Pesticide Use in Great Britain
    A peer-reviewed version of this preprint was published in PeerJ on 19 July 2018. View the peer-reviewed version (peerj.com/articles/5255), which is the preferred citable publication unless you specifically need to cite this preprint. Goulson D, Thompson J, Croombs A. 2018. Rapid rise in toxic load for bees revealed by analysis of pesticide use in Great Britain. PeerJ 6:e5255 https://doi.org/10.7717/peerj.5255 Rapid rise in toxic load for bees revealed by analysis of pesticide use in Great Britain Dave Goulson Corresp., 1 , Jack Thompson 1 , Amy Croombs 1 1 School of Life Sciences, University of Sussex, University of Sussex, Falmer, E Sussex, United Kingdom Corresponding Author: Dave Goulson Email address: [email protected] A strong argument can be made that the European Union has the most rigorous regulatory system for pesticides in the world, and that modern pesticide use poses fewer environmental threats than older regimes. Nevertheless, the impacts of pesticides on bees and other non-target organisms is much debated in Europe as elsewhere. Here we document changing patterns of pesticide use in arable and horticultural crops in Great Britain from 1990 to 2015. The weight of pesticides used has approximately halved over this period, but in contrast the number of applications per field nearly doubled. The total potential kill of honeybees (the total number of LD50 doses applied to the 4.6 million hectares of arable farmland in Great Britain each year) increased six-fold to approximately 3 x 1016 bees, the result of the increasing use of neonicotinoids from 1994 onwards which more than offset the effect of declining organophosphate use.
    [Show full text]
  • APPLICATION of Quechers METHOD for MULTI-RESIDUE PESTICIDES DETERMINATION in LETTUCE and APPLE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY
    Nigerian Journal of Technology (NIJOTECH) Vol. 35, No. 3, July 2016, pp. 544 – 549 Copyright© Faculty of Engineering, University of Nigeria, Nsukka, Print ISSN: 0331-8443, Electronic ISSN: 2467-8821 www.nijotech.com http://dx.doi.org/10.4314/njt.v35i3.11 APPLICATION OF QuEChERS METHOD FOR MULTI-RESIDUE PESTICIDES DETERMINATION IN LETTUCE AND APPLE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY J. Ukpebor1,* and E. Ukpebor2 1LANCASTER ENVIRONMENT CENTRE, LANCASTER UNIVERSITY, LANCASTER LA1 4YQ, UNITED KINGDOM 2CHEMISTRY DEPARTMENT, FACULTY OF PHYSICAL SCIENCES, UNIVERSITY OF BENIN, BENIN CITY, EDO STATE NIGERIA E-mail addresses: 1 [email protected] , 2 [email protected] ABSTRACT This study investigated the use of the QuEChERS method for the analysis of 13 pesticides on apples and lettuces. Comparison between two methods: Citrate- (buffered and unbuffered) and acetate (buffered and unbuffered). A range of pesticides –pirimicarb, diazinon, chlorpyrifos, azoxystrobin, pendimethalin, cyprodinil, boscalid, chlorothalonil, fenhexamid were selected for this study. Triphenyl phosphate was used as the internal standard. Results obtained revealed very high percentage recoveries for the majority of the pesticides screened for with recoveries of 66.3 to 109.8% for the citrate buffered, 72.5 – 120.8% for citrate unbuffered, 53.8 – 102% for acetate buffered and 54 – 105.3% for acetate unbuffered experiments carried out using apple samples. % recoveries obtained for the lettuce samples were 32.2 to 120.5% for the citrate buffered, 33.7 – 115.0% for citrate unbuffered, 53.8 – 107.4% for acetate buffered and 54 – 105.3% for acetate unbuffered experiments. % recoveries obtained for the apple samples were 64.3 – 109.8% for the citrate buffered, 72.5 – 120.8% for the citrate unbuffered, 60.3 – 102.0% for the acetate buffered and 54 – 120.5% for acetate unbuffered.
    [Show full text]
  • Gas Chromatography for the Analysis of Drugs Michelle L
    Seton Hall University eRepository @ Seton Hall Seton Hall University Dissertations and Theses Seton Hall University Dissertations and Theses (ETDs) Spring 5-16-2015 QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) Extraction – Gas Chromatography for the Analysis of Drugs Michelle L. Schmidt [email protected] Follow this and additional works at: https://scholarship.shu.edu/dissertations Part of the Analytical Chemistry Commons, and the Medicinal-Pharmaceutical Chemistry Commons Recommended Citation Schmidt, Michelle L., "QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) Extraction – Gas Chromatography for the Analysis of Drugs" (2015). Seton Hall University Dissertations and Theses (ETDs). 2060. https://scholarship.shu.edu/dissertations/2060 QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) Extraction – Gas Chromatography for the Analysis of Drugs BY Michelle L. Schmidt DISSERTATION Submitted to the Department of Chemistry and Biochemistry at Seton Hall University in partial fulfillment of the requirements for the degree of Doctor of Philosophy. May, 2015 1 © Michelle L. Schmidt 2015 2 We certify that we have read this dissertation and that in our opinion it is adequate to scientific scope and quality as a dissertation for the degree of Doctor of Philosophy. APPROVED _________________________________________________________ Nicholas H. Snow, Ph.D Research Mentor and Chair, Department of Chemistry and Biochemistry _________________________________________________________ Yuri V. Kazakevich, Ph.D Member of the Dissertation Committee _________________________________________________________ Sergiu M. Gorun, Ph.D Member of the Dissertation Committee 3 ACKNOWLEDGEMENTS I would like to thank Dr. Nicholas H. Snow for his continued guidance, input, and advice throughout my time at Seton Hall University and whose help was invaluable and deeply appreciated.
    [Show full text]
  • Analysis of Pesticide Residues in Strawberries and Soils by GC-MS/MS, LC-MS/MS and Two-Dimensional GC-Time-Of-Flight MS Comparin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scientific Repository of the Polytechnic Institute of Porto Analysis of pesticide residues in strawberries and soils by GC-MS/MS, LC-MS/MS and two- dimensional GC-time-of-flight MS comparing organic and integrated pest management farming Virgínia C. Fernandes, Steven J. Lehotay, Lucía Geis-Asteggiante, Hyeyoung Kwon, Hans G.J. Mol, Henk van der Kamp, Nuno Mateus, Valentina F. Domingues and Cristina Delerue-Matos This study analysed 22 strawberry and soil samples after their collection over the course of 2 years to compare the residue profiles from organic farming with integrated pest management practices in Portugal. For sample preparation, we used the citrate-buffered version of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. We applied three different methods for analysis: (1) 27 pesticides were targeted using LC-MS/MS; (2) 143 were targeted using low pressure GC-tandem mass spectrometry (LP-GC-MS/MS); and (3) more than 600 pesticides were screened in a targeted and untargeted approach using comprehensive, two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS). Comparison was made of the analyses using the different methods for the shared samples. The results were similar, thereby providing satisfactory confirmation of both similarly positive and negative findings. No pesticides were found in the organic-farmed samples. In samples from integrated pest management practices, nine pesticides were determined and confirmed to be present, ranging from 2 µg kg−1 for fluazifop-p- butyl to 50 µg kg−1 for fenpropathrin.
    [Show full text]
  • Rapid Rise in Toxic Load for Bees Revealed by Analysis of Pesticide Use in Great Britain
    Rapid rise in toxic load for bees revealed by analysis of pesticide use in Great Britain Dave Goulson, Jack Thompson and Amy Croombs School of Life Sciences, University of Sussex, Falmer, East Sussex, UK ABSTRACT A strong argument can be made that the European Union has the most rigorous regulatory system for pesticides in the world, and that modern pesticide use poses fewer environmental threats than older regimes. Nevertheless, the impacts of pesticides on bees and other non-target organisms are much debated in Europe as elsewhere. Here we document changing patterns of pesticide use in arable and horticultural crops in Great Britain from 1990 to 2015. The weight of pesticides used has approximately halved over this period, but in contrast the number of applications per field nearly doubled. The total potential kill of honeybees (the total number of LD50 doses applied to the 4.6 million hectares of arable farmland in Great Britain each year) increased six-fold to approximately 3 Â 1016 bees, the result of the increasing use of neonicotinoids from 1994 onwards which more than offset the effect of declining organophosphate use. It is important to stress that this does not mean that this number of bees will be killed, and also to acknowledge that our simple analysis does not take into account many factors such as differences in persistence, and timing and mode of application of pesticides, which will affect actual exposure of non-target organisms. Nonetheless, all else being equal, these data suggest that the risk posed by pesticides to non-target insects such as bees, other pollinators and natural enemies of pests, has increased considerably in the last 26 years.
    [Show full text]
  • Fate of Residual Pesticides in Fruit and Vegetable Waste (FVW) Processing
    foods Review Fate of Residual Pesticides in Fruit and Vegetable Waste (FVW) Processing Tri Thanh Nguyen 1, Carmen Rosello 2,3, Richard Bélanger 4 and Cristina Ratti 1,* 1 Soils and Agri-Food Engineering Dept, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC G1V 0A6, Canada; [email protected] 2 Chemical Engineering Group, Chemistry Department, Universitat des Iles Balears, Palma, 07122 Mallorca, Spain; [email protected] 3 Soils and Agri-Food Engineering Dept, Université Laval, Quebec City, QC G1V 0A6, Canada 4 Plant Science Dept, Université Laval, Quebec City, QC G1V 0A6, Canada; [email protected] * Correspondence: [email protected] Received: 16 September 2020; Accepted: 12 October 2020; Published: 15 October 2020 Abstract: Plants need to be protected against pests and diseases, so as to assure an adequate production, and therefore to contribute to food security. However, some of the used pesticides are harmful compounds, and thus the right balance between the need to increase food production with the need to ensure the safety of people, food and the environment must be struck. In particular, when dealing with fruit and vegetable wastes, their content in agrochemicals should be monitored, especially in peel and skins, and eventually minimized before or during further processing to separate or concentrate bioactive compounds from it. The general objective of this review is to investigate initial levels of pesticide residues and their potential reduction through further processing for some of the most contaminated fruit and vegetable wastes. Focus will be placed on extraction and drying processes being amid the main processing steps used in the recuperation of bioactive compounds from fruit and vegetable wastes.
    [Show full text]
  • Development and Validation of Quechers Method for Estimation of Propamocarb Residues in Tomato (Lycopersicon Esculentum Mill) and Soil
    American Journal of Analytical Chemistry, 2011, 2, 26-31 doi:10.4236/ajac.2011.228120 Published Online December 2011 (http://www.SciRP.org/journal/ajac) Development and Validation of QuEChERS Method for Estimation of Propamocarb Residues in Tomato (Lycopersicon esculentum Mill) and Soil Sanjay Kumar Sahoo*, Raminderjit Singh Battu, Balwinder Singh Pesticide Residue Analysis Laboratory, Department of Entomology, Punjab Agricultural University, Ludhiana, India E-mail: *[email protected] Received November 1, 2011; revised December 5, 2011; accepted December 16, 2011 Abstract An easy, simple and efficient analytical method was standardized and validated for the estimation of residues of propamocarb in tomato and soil. QuEChERS method included extraction of the sample with ethyl acetate and cleanup by treatment with PSA and graphatised carbon. Final clear extracts of ethyl acetate were con- centrated under vacuum to almost dryness and reconstituted into hexane. The residues of propamocarbwere estimated using gas chromatograph-mass spectrometry (GC-MS). Propamocarb presented a distinct peak at retention time of 8.962 min. Consistent recoveries of propamocarb ranging from 87 to 92 percent were ob- served when samples were spiked at 0.10, 0.50 and 1.00 mg·kg–1 levels. The limit of quantification (LOQ) of this method was determined to be 0.10 mg·kg–1. Keywords: QuEChERS, Propamocarb, Tomato, Soil, GC-MS 1. Introduction curate and direct determination of propamocarb in com- mercial pesticides. The method can be used in the quan- Propamocarb hydrochloride [propyl 3-(dimethylamino) titative analysis of the analyte in different agricultural propylcarbamate hydrochoride] shown in Figure 1, a products, also reducing as much as organic solvents ful- systemic fungicide with protective action against phyco- filling the purposes to establish a wider acceptability of mycetous diseases (Pythium, Phytophthora spp.), is used the methodology.
    [Show full text]
  • Analytical Methods for Determination of Pesticides: an Overview
    Analytical methods for determination of pesticides: An Overview Michele Mazzetti, What is a Pesticide? A 'pesticide' is something that prevents, destroys, or controls a harmful organism ('pest') or disease, or protects plants or plant products during production, storage and transport. The term includes, amongst others: herbicides, fungicides, insecticides, acaricides, nematicides, molluscicides, rodenticides, growth regulators, A pesticide is any substance or repellents, rodenticides, and biocides. mixture of substances intended for preventing, destroying, repelling, or mitigating any pest (insects, mites, nematodes, weeds, rats, etc.), including insecticide, herbicide, fungicide,and various other substances used to control pests (EPA, 2009) http://ec.europa.eu/food/plant/pesticides_en What is a Pesticide? Definition of pesticide varied with times and countries. However, the essence of pesticide remains basically constant, i.e., it is a (mixed) substance that is poisonous and efficient to target organisms and is safe to non-target organisms and environments (hopefully n.d.r.) Proceedings of the International Academy of Ecology and Environmental Sciences, 2011, 1(2):125-144 History of pesticides in the first phase (the period before 1870s) natural pesticides, for instance sulfur in ancient Greece, were used to control pests; the second phase was the era of inorganic synthetic pesticides (the period 1870s- 1945). Natural materials and inorganic compounds were mainly used during this period the third phase (since 1945) is the era of organic synthetic pesticides. Since 1945, the man-made organic pesticides, e.g., DDT, 2,4-D, and later HCH, dieldrin, have terminated the era of inorganic and natural pesticides. Proceedings of the International Academy of Ecology and Environmental Sciences, 2011, 1(2):125-144 History of pesticides In the earlier period of organic synthesized pesticides, there were mainly three kinds of insecticides, H3C NH O O carbamated insecticides: H3C O S O P organophosphorus + O O N insecticides - H3C O Cl Cl Cl organochlorined insecticides.
    [Show full text]
  • Evaluation of 99 Pesticide Residues in Major Agricultural Products From
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography foods Article Evaluation of 99 Pesticide Residues in Major Agricultural Products from the Western Highlands Zone of Cameroon Using QuEChERS Method Extraction and LC-MS/MS and GC-ECD Analyses Joseph H. Y. Galani 1,2,* , Michael Houbraken 2, Abukari Wumbei 2 , Joseph F. Djeugap 3, Daniel Fotio 4 and Pieter Spanoghe 2 1 Department of Agriculture and Veterinary Medicine, Université des Montagnes, P.O. Box 208, Bangangté, Cameroon 2 Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; [email protected] (M.H.); [email protected] (A.W.); [email protected] (P.S.) 3 Department of Plant Protection, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 222, Dschang, Cameroon; [email protected] 4 Inter-States Pesticides Committee of Central Africa, P.O. Box 16344, Yaounde, Cameroon; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +237-674244181 Received: 17 October 2018; Accepted: 6 November 2018; Published: 7 November 2018 Abstract: There is no information available on pesticide residue levels in major food commodities harvested in Cameroon, especially from the western highlands region, the food basket of the country. Hence, this study evaluated the residues of 99 pesticides in 72 samples of 12 agricultural products collected in the region, using QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method extraction, and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography with electron capture detection (GC-ECD).
    [Show full text]
  • Pesticide Exposure: Minimization Through User & Environment Friendly New Generation Pesticide Formulations
    International Journal of Crop Science and Technology IJCST Volume 3, Issue 1, 2017 ISSN: 2458-7540 Pesticide Exposure: Minimization through User & Environment Friendly New Generation Pesticide Formulations Dipak Kumar Hazra*, Rajib Karmakar, Durgesh Raghubanshi AINP on Pesticide Residues, Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Directorate of Research, Research Complex Building, Kalyani, Nadia, West Bengal Corresponding author: [email protected] ABSTRACT The greatest risk to our environment and our health comes from the chemical pesticides. With the publication of Rachel Carson’s book Silent Spring in 1962, public confidence in pesticide use was shaken. There has been growing awareness to the possible hazards to human health and the environment due to excessive and indiscriminate use of conventional pesticides. To minimize the pesticide exposure either directly or indirectly to human as well as environment phased out of conventional formulations must be done in regular basis by replacement of safe and environment friendly new generations’ formulations. Keywords: Pesticides, Hazards, Conventional, New generation INTRODUCTION as well as environment, phased out of conventional formulations like Dustable A pesticide is generally a chemical or Powder (DP), Wettable Powder (WP), biological agent (such as a virus, bacterium, Granules (GR), Emulsifiable Concentrates antimicrobial or disinfectant) that through its (EC) etc must be done in regular basis by effect deters, incapacitates, kills or otherwise replacement of safe and environment friendly discourages pests. Billion pounds of pesticides new generations’ formulations like Suspension are deliberately released into the environment Concentrates (SC), Water Dispersible Granules each year. Among these are some of the most (WG), Concentrated Emulsions (EW), dangerous synthetic chemicals manufactured Microemulsion (ME), Controlled Release today.
    [Show full text]
  • Determination of Residual Triflumezopyrim Insecticide
    foods Article Determination of Residual Triflumezopyrim Insecticide in Agricultural Products through a Modified QuEChERS Method Sung-Min Cho 1,2, Han-Sol Lee 1, Ji-Su Park 1 , Su-Jung Lee 1, Hye-Sun Shin 1, Yun-Mi Chung 3, Ha-Na Choi 3, Yong-Hyun Jung 1, Jae-Ho Oh 1 and Sang-Soon Yun 1,* 1 Food Safety Evaluation Department, Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Korea; [email protected] (S.-M.C.); [email protected] (H.-S.L.); [email protected] (J.-S.P.); [email protected] (S.-J.L.); [email protected] (H.-S.S.); [email protected] (Y.-H.J.); [email protected] (J.-H.O.) 2 Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea 3 Hazardous Substances Analysis Division, Gwangju Regional Food and Drug Administration, Gwangju 61012, Korea; [email protected] (Y.-M.C.); [email protected] (H.-N.C.) * Correspondence: [email protected]; Tel.: +82-43-719-4211 Abstract: A rapid and simple analytical method for triflumezopyrim, a new class of mesoionic insecticides and commercialized molecules from DuPont, was developed with a modified QuEChERS method. The pH adjustment was used to improve the extraction efficiency of acetonitrile solvent, and dispersive solid-phase extraction was employed for the clean-up process. The five selected food commodities were used to verify the present optimized method, which displayed good linearity with an excellent correlation coefficient (R2 = 0.9992–0.9998) in the 0.003–0.30 mg/kg calibration Citation: Cho, S.-M.; Lee, H.-S.; Park, range.
    [Show full text]
  • Development of a Modified Quechers Procedure For
    separations Article Development of a Modified QuEChERS Procedure for the Isolation of Pesticide Residues from Textile Samples, Followed by GC–MS Determination Svetlana Hrouzková * and Agneša Szarka Faculty of Chemical and Food Technology, Institute of Analytical Chemistry, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia; [email protected] * Correspondence: [email protected] Abstract: Due to the use of pesticides during cotton production and/or textile storage, it is necessary to assure textile and clothing safety in order to improve the protection of human health. In this work, an efficient method was established for a multiresidue determination of 33 pesticides covering several pesticide classes such as organochlorine, organophosphate, pyrethroides, triazines, etc., in textiles by modified QuEChERS and followed by gas chromatography–mass spectrometry. Optimal conditions were selected, including the amount of the sample, type of the extraction solvent and cleaning up sorbents, until the method was finally validated. Sufficient accuracy and precision were presented by the method using spiked samples between 10 and 250 µg/kg, while recoveries from 70 to 120% and an RSD < 20% for all the pesticides were obtained; the limits of quantification were below 5 µg/kg for all studied pesticides. The presented method showed high separation efficiency with minimal sample and sorbent consumption. The validated method was successfully applied to Citation: Hrouzková, S.; Szarka, A. the analysis of real samples and proved to be applicable to routine analyses. Development of a Modified QuEChERS Procedure for the Keywords: QuEChERS; textile samples; pesticide residues; GC-MS determination Isolation of Pesticide Residues from Textile Samples, Followed by GC–MS Determination.
    [Show full text]