MICOS and F1FO-ATP Synthase Crosstalk Is a Fundamental Property

Total Page:16

File Type:pdf, Size:1020Kb

MICOS and F1FO-ATP Synthase Crosstalk Is a Fundamental Property bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.438160; this version posted April 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 MICOS and F1FO-ATP synthase crosstalk is a fundamental 2 property of mitochondrial cristae 3 4 Lawrence Rudy Cadena1,2, Ondřej Gahura1, Brian Panicucci1, Alena Zíková1,2, Hassan 5 Hashimi1,2,# 6 7 8 1 Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, 9 Czech Republic 10 2 Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic 11 # Address correspondence to Hassan Hashimi, [email protected] 12 13 Running title: MICOS and ATP synthase crosstalk in Trypanosoma brucei 14 15 16 17 18 19 20 21 22 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.438160; this version posted April 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 23 Abstract 24 Mitochondrial cristae are polymorphic invaginations of the inner membrane that are the fabric 25 of cellular respiration. Both the Mitochondrial Contact Site and Cristae Organization System 26 (MICOS) and the F1FO-ATP synthase are vital for sculpting cristae by opposing membrane 27 bending forces. While MICOS promotes negative curvature at cristae junctions, dimeric F1FO- 28 ATP synthase is crucial for positive curvature at cristae rims. Crosstalk between these two 29 complexes has been observed in baker’s yeast, the model organism of the Opisthokonta 30 supergroup. Here, we report that this property is conserved in Trypanosoma brucei, a member 31 of the Discoba supergroup that separated from Opisthokonta ~2 billion years ago. 32 Specifically, one of the paralogs of the core MICOS subunit Mic10 interacts with dimeric 33 F1FO-ATP synthase, whereas the other core Mic60 subunit has a counteractive effect on F1FO- 34 ATP synthase oligomerization. This is evocative of the nature of MICOS-F1FO-ATP synthase 35 crosstalk in yeast, which is remarkable given the diversification these two complexes have 36 undergone during almost 2 eons of independent evolution. Furthermore, we identified a 37 highly diverged trypanosome homolog of subunit e, which is essential for the stability of 38 F1FO-ATP synthase dimers in yeast. Just like subunit e, it is preferentially associated with 39 dimers, interacts with Mic10 and its silencing results in severe defects to cristae and 40 disintegration of F1FO-ATP synthase dimers. Our findings indicate that crosstalk between 41 MICOS and dimeric F1FO-ATP synthase is a fundamental property impacting cristae shape 42 throughout eukaryotes. 43 44 45 46 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.438160; this version posted April 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 47 Importance 48 Mitochondria have undergone profound diversification in separate lineages that have radiated 49 since the last common ancestor of eukaryotes some eons ago. Most eukaryotes are unicellular 50 protists, including etiological agents of infectious diseases like Trypanosoma brucei. Thus, 51 the study of a broad range of protists can reveal fundamental features shared by all eukaryotes 52 and lineage-specific innovations. Here we report that two different protein complexes, 53 MICOS and F1Fo-ATP synthase, known to affect mitochondrial architecture, undergo 54 crosstalk in T. brucei, just as in baker’s yeast. This is remarkable considering that these 55 complexes have otherwise undergone many changes during their almost two billion years of 56 independent evolution. Thus, this crosstalk is a fundamental property needed to maintain 57 proper mitochondrial structure even if the constituent players considerably diverged. 58 59 Introduction 60 Mitochondria are ubiquitous organelles that play a central role in cellular respiration in 61 aerobic eukaryotes alongside other essential processes, some of which are retained in 62 anaerobes (1). These organelles have a complex internal organization. While the 63 mitochondrial outer membrane is smooth, the inner membrane is markedly folded into 64 invaginations called cristae, the morphological hallmark of the organelle in facultative and 65 obligate aerobes (2, 3). Cristae are enriched with respiratory chain complexes that perform 66 oxidative phosphorylation (4, 5), and eukaryotes that cannot form these complexes lack these 67 ultrastructures (1, 6). 68 69 Mitochondrial morphology differs between species, tissues, and metabolic states. 70 Nevertheless, these variations are derived from common structural features, some of which 71 were likely inherited from endosymbiotic -proteobacterium that gave rise to the organelle (1, bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.438160; this version posted April 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 72 7, 8). Cristae contribute to this variety as they can assume different shapes, such as plate-like 73 lamellar cristae, which decorate yeast and animal mitochondria, and the paddle-like discoidal 74 cristae seen in discoban protists (9). These shapes are at least in part determined by protein 75 complexes embedded within the cristae membranes. 76 77 The Mitochondrial Contact Site and Cristae Organization System (MICOS) is a hetero- 78 oligomeric protein complex that is responsible for the formation and maintenance of cristae 79 junctions, narrow attachment points of cristae to the rest of the inner membrane (10, 11). 80 Cristae junctions serve as diffusion barriers into and out of cristae, as these structures cease to 81 act as autonomous bioenergetic units upon MICOS ablation (12). The two core MICOS 82 subunits Mic10 and Mic60, which are both well conserved throughout eukaryotes (13, 14), 83 have demonstrated membrane modeling activity that contributes to constriction at cristae 84 junctions (15-18). 85 86 The F1FO-ATP synthase (henceforth ‘ATP synthase’) dimers also influence cristae shape (19). 87 Dimeric ATP synthase assemble into rows or other oligomeric configurations that promote 88 positive curvature at crista rims (20, 21). In yeast and animals, both belonging to the 89 eukaryotic supergroup Opisthokonta (22), ATP synthase dimerization depends on membrane- 90 embedded FO moiety subunits e and g (23-25). Although these subunits do not directly 91 contribute to intermonomer contacts, deletion of either of them hinders dimer formation (20) 92 and subsequently results in the emergence of defective cristae (25, 26). 93 94 Crosstalk between the crista shaping factors MICOS and ATP synthase has been 95 demonstrated in yeast. A fraction of Mic10 physically interacts with ATP synthase dimers, 96 presumably via subunit e, and overexpression of Mic10 leads to stabilization of ATP synthase bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.438160; this version posted April 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 97 oligomers (27, 28). Even more pronounced accumulation of ATP synthase oligomers was 98 observed upon deletion of the Mic60 gene, but no physical interaction has been reported 99 between Mic60 and any ATP synthase subunits (29). This interplay between MICOS and 100 ATP synthase is a remarkable and still unexplained phenomenon, as both complexes play 101 critical, yet apparently antithetical roles in shaping the inner membrane. 102 103 Here, we ask whether crosstalk between MICOS and ATP synthase dimers is a fundamental 104 property of cristae. We employed the protist Trypanosoma brucei, a model organism that is 105 part of supergroup Discoba, which diverged from Opisthokonta ~1.8 billion years ago (22, 106 30). Because of their extended independent evolution, discoban MICOS (30-32) and ATP 107 synthase (33-36) differ radically from their opisthokont counterparts. Discoban MICOS has 108 two Mic10 paralogs and an unconventional Mic60, which lacks the C-terminal mitofilin 109 domain, characteristic for other Mic60 orthologs (13-14). Furthermore, unlike opisthokont 110 MICOS, which is organized into two integral membrane sub-complexes, each assembled 111 around a single core subunit, trypanosome MICOS is composed of one integral and one 112 peripheral sub-complex. Discoban ATP synthase exhibits type IV dimer architecture, different 113 from the canonical type I dimers found in opisthokonts (20-33), and has a dissimilar FO 114 moiety, which lacks obvious homologs of subunit e or g (37). 115 116 Results 117 Depletion of trypanosome Mic60 affects oligomerization of F1FO-ATP synthase 118 independent of other MICOS proteins 119 In T. brucei, ablation of conserved MICOS components, Mic60 or both Mic10 paralogs 120 simultaneously, resulted in impaired submitochondrial morphology characterized by elongated 121 cristae adopting arc-like structures (31). Because in budding yeast, the knockout of Mic60 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.438160; this version posted April 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 122 affects oligomerization
Recommended publications
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • S41467-021-25308-W.Pdf
    ARTICLE https://doi.org/10.1038/s41467-021-25308-w OPEN Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota ✉ ✉ Luis Javier Galindo 1 , Purificación López-García 1, Guifré Torruella1, Sergey Karpov2,3 & David Moreira 1 Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living fla- gellated stages (zoospores) remain poorly known and their phylogenetic position is often 1234567890():,; unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and San- chytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchy- trids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids’ phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages. 1 Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. 2 Zoological Institute, Russian Academy of Sciences, St. ✉ Petersburg, Russia. 3 St.
    [Show full text]
  • Introns and Alternative Splicing in Choanoflagellates
    Introns and alternative splicing in choanoflagellates By Marjorie Wright Westbrook A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Nicole King Professor Donald C. Rio Professor G. Steven Martin Professor Steven E. Brenner Fall 2011 Introns and alternative splicing in choanoflagellates ©2011 by Marjorie Wright Westbrook Abstract Introns and alternative splicing in choanoflagellates By Marjorie Wright Westbrook Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Nicole King, Chair The first organisms to evolve were unicellular, and the vast majority of life has remained so for billions of years. Complex forms of multicellularity, requiring increased levels of cell adhesion, cell signaling and gene regulation, have evolved in only a few eukaryotic lineages [1, 2]. The comparison of genomes from choanoflagellates, the closest relatives of metazoans, with genomes from metazoans may reveal genomic changes underlying metazoan origins. I used this approach to investigate the evolution of introns during the origin of metazoans. By analyzing the genome of the first choanoflagellate to be sequenced, Monosiga brevicollis, I found that its intron density rivals that of genes in intron-rich metazoans [3]. Many intron positions are conserved between choanoflagellates and metazoans, implying that their shared unicellular ancestor was also intron-rich. In my analysis of the M. brevicollis genome, I made the unexpected discovery that, unlike most choanoflagellate genes, the longest genes contain relatively few introns. Indeed, one M. brevicollis gene contains the longest stretch of intron-free coding sequence known to date.
    [Show full text]
  • Diversity and Distribution of Unicellular Opisthokonts Along the European Coast Analyzed Using High-Throughput Sequencing
    Diversity and distribution of unicellular opisthokonts along the European coast analyzed using high-throughput sequencing Javier del Campo1,2,*, Diego Mallo3, Ramon Massana4, Colomban de Vargas5,6, Thomas A. Richards7,8, and Iñaki Ruiz-Trillo1,9,10 1Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain. 3Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Galicia, Spain 4Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain 5CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France 6UPMC Univ. Paris 06, UMR 7144, Station Biologique de Roscoff, Roscoff, France 7Geoffrey Pope Building, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK 8Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity 9Departament de Genètica, Universitat de Barcelona, Barcelona, Catalonia, Spain 10Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain Summary The opisthokonts are one of the major super-groups of eukaryotes. It comprises two major clades: 1) the Metazoa and their unicellular relatives and 2) the Fungi and their unicellular relatives. There is, however, little knowledge of the role of opisthokont microbes in many natural environments, especially among non-metazoan and non-fungal opisthokonts. Here we begin to address this gap by analyzing high throughput 18S rDNA and 18S rRNA sequencing data from different European coastal sites, sampled at different size fractions and depths. In particular, we analyze the diversity and abundance of choanoflagellates, filastereans, ichthyosporeans, nucleariids, corallochytreans and their related lineages. Our results show the great diversity of choanoflagellates in coastal waters as well as a relevant role of the ichthyosporeans and the uncultured marine opisthokonts (MAOP).
    [Show full text]
  • Controlled Sampling of Ribosomally Active Protistan Diversity in Sediment-Surface Layers Identifies Putative Players in the Marine Carbon Sink
    The ISME Journal (2020) 14:984–998 https://doi.org/10.1038/s41396-019-0581-y ARTICLE Controlled sampling of ribosomally active protistan diversity in sediment-surface layers identifies putative players in the marine carbon sink 1,2 1 1 3 3 Raquel Rodríguez-Martínez ● Guy Leonard ● David S. Milner ● Sebastian Sudek ● Mike Conway ● 1 1 4,5 6 7 Karen Moore ● Theresa Hudson ● Frédéric Mahé ● Patrick J. Keeling ● Alyson E. Santoro ● 3,8 1,9 Alexandra Z. Worden ● Thomas A. Richards Received: 6 October 2019 / Revised: 4 December 2019 / Accepted: 17 December 2019 / Published online: 9 January 2020 © The Author(s) 2020. This article is published with open access Abstract Marine sediments are one of the largest carbon reservoir on Earth, yet the microbial communities, especially the eukaryotes, that drive these ecosystems are poorly characterised. Here, we report implementation of a sampling system that enables injection of reagents into sediments at depth, allowing for preservation of RNA in situ. Using the RNA templates recovered, we investigate the ‘ribosomally active’ eukaryotic diversity present in sediments close to the water/sediment interface. We 1234567890();,: 1234567890();,: demonstrate that in situ preservation leads to recovery of a significantly altered community profile. Using SSU rRNA amplicon sequencing, we investigated the community structure in these environments, demonstrating a wide diversity and high relative abundance of stramenopiles and alveolates, specifically: Bacillariophyta (diatoms), labyrinthulomycetes and ciliates. The identification of abundant diatom rRNA molecules is consistent with microscopy-based studies, but demonstrates that these algae can also be exported to the sediment as active cells as opposed to dead forms.
    [Show full text]
  • Molecular Phylogeny of Choanoflagellates, the Sister Group to Metazoa
    Molecular phylogeny of choanoflagellates, the sister group to Metazoa M. Carr*†, B. S. C. Leadbeater*‡, R. Hassan‡§, M. Nelson†, and S. L. Baldauf†¶ʈ †Department of Biology, University of York, Heslington, York, YO10 5YW, United Kingdom; and ‡School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom Edited by Andrew H. Knoll, Harvard University, Cambridge, MA, and approved August 28, 2008 (received for review February 28, 2008) Choanoflagellates are single-celled aquatic flagellates with a unique family. Members of the Acanthoecidae family (Norris 1965) are morphology consisting of a cell with a single flagellum surrounded by characterized by the most distinct periplast morphology. This a ‘‘collar’’ of microvilli. They have long interested evolutionary biol- consists of a complex basket-like lorica constructed in a precise and ogists because of their striking resemblance to the collared cells highly reproducible manner from ribs (costae) composed of rod- (choanocytes) of sponges. Molecular phylogeny has confirmed a close shaped silica strips (Fig. 1 E and F) (13). The Acanthoecidae family relationship between choanoflagellates and Metazoa, and the first is further subdivided into nudiform (Fig. 1E) and tectiform (Fig. 1F) choanoflagellate genome sequence has recently been published. species, based on the morphology of the lorica, the stage in the cell However, molecular phylogenetic studies within choanoflagellates cycle when the silica strips are produced, the location at which the are still extremely limited. Thus, little is known about choanoflagel- strips are stored, and the mode of cell division [supporting infor- late evolution or the exact nature of the relationship between mation (SI) Text] (14).
    [Show full text]
  • Multigene Phylogeny of Choanozoa and the Origin of Animals
    Multigene Phylogeny of Choanozoa and the Origin of Animals Kamran Shalchian-Tabrizi1*, Marianne A. Minge2, Mari Espelund2, Russell Orr1, Torgeir Ruden3, Kjetill S. Jakobsen2, Thomas Cavalier-Smith4 1 Microbial Evolution Research Group, Department of Biology, University of Oslo, Oslo, Norway, 2 Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway, 3 Scientific Computer Group, Center for Information Technology Services, University of Oslo, Oslo, Norway, 4 Department of Zoology, University of Oxford, Oxford, United Kingdom Abstract Animals are evolutionarily related to fungi and to the predominantly unicellular protozoan phylum Choanozoa, together known as opisthokonts. To establish the sequence of events when animals evolved from unicellular ancestors, and understand those key evolutionary transitions, we need to establish which choanozoans are most closely related to animals and also the evolutionary position of each choanozoan group within the opisthokont phylogenetic tree. Here we focus on Ministeria vibrans, a minute bacteria-eating cell with slender radiating tentacles. Single-gene trees suggested that it is either the closest unicellular relative of animals or else sister to choanoflagellates, traditionally considered likely animal ancestors. Sequencing thousands of Ministeria protein genes now reveals about 14 with domains of key significance for animal cell biology, including several previously unknown from deeply diverging Choanozoa, e.g. domains involved in hedgehog, Notch and tyrosine kinase signaling
    [Show full text]
  • Lineage-Specific Proteins Essential for Endocytosis in Trypanosomes Paul T
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 1379-1392 doi:10.1242/jcs.191478 RESEARCH ARTICLE Lineage-specific proteins essential for endocytosis in trypanosomes Paul T. Manna1, Samson O. Obado2, Cordula Boehm1, Catarina Gadelha3, Andrej Sali4, Brian T. Chait2, Michael P. Rout2 and Mark C. Field1,* ABSTRACT year period since this radiation is vast, and while core metabolic and Clathrin-mediated endocytosis (CME) is the most evolutionarily gene expression pathways are frequently well conserved, many ancient endocytic mechanism known, and in many lineages the cellular features have experienced extensive specialisations, in part sole mechanism for internalisation. Significantly, in mammalian as a response to adaptive evolutionary forces. cells CME is responsible for the vast bulk of endocytic flux and One aspect of this diversity that has received considerable attention has likely undergone multiple adaptations to accommodate specific is the endomembrane system, on account of this feature representing requirements by individual species. In African trypanosomes, we one of the more unique, yet flexible, aspects of eukaryotic cells. The previously demonstrated that CME is independent of the AP-2 primitive endomembrane system in the earliest eukaryotes gave rise adaptor protein complex, that orthologues to many of the animal and to all of the endogenously derived internal compartments present in fungal CME protein cohort are absent, and that a novel, trypanosome- modern lineages (Schlacht et al., 2014). As a consequence of this restricted protein cohort interacts with clathrin and drives CME. Here, extensive evolutionary history, compartments have experienced we used a novel cryomilling affinity isolation strategy to preserve significant divergence, resulting in vastly different morphologies transient low-affinity interactions, giving the most comprehensive and functions, as reflected in diversification of the Golgi complex, trypanosome clathrin interactome to date.
    [Show full text]
  • Marine Biological Laboratory) Data Are All from EST Analyses
    TABLE S1. Data characterized for this study. rDNA 3 - - Culture 3 - etK sp70cyt rc5 f1a f2 ps22a ps23a Lineage Taxon accession # Lab sec61 SSU 14 40S Actin Atub Btub E E G H Hsp90 M R R T SUM Cercomonadida Heteromita globosa 50780 Katz 1 1 Cercomonadida Bodomorpha minima 50339 Katz 1 1 Euglyphida Capsellina sp. 50039 Katz 1 1 1 1 4 Gymnophrea Gymnophrys sp. 50923 Katz 1 1 2 Cercomonadida Massisteria marina 50266 Katz 1 1 1 1 4 Foraminifera Ammonia sp. T7 Katz 1 1 2 Foraminifera Ovammina opaca Katz 1 1 1 1 4 Gromia Gromia sp. Antarctica Katz 1 1 Proleptomonas Proleptomonas faecicola 50735 Katz 1 1 1 1 4 Theratromyxa Theratromyxa weberi 50200 Katz 1 1 Ministeria Ministeria vibrans 50519 Katz 1 1 Fornicata Trepomonas agilis 50286 Katz 1 1 Soginia “Soginia anisocystis” 50646 Katz 1 1 1 1 1 5 Stephanopogon Stephanopogon apogon 50096 Katz 1 1 Carolina Tubulinea Arcella hemisphaerica 13-1310 Katz 1 1 2 Cercomonadida Heteromita sp. PRA-74 MBL 1 1 1 1 1 1 1 7 Rhizaria Corallomyxa tenera 50975 MBL 1 1 1 3 Euglenozoa Diplonema papillatum 50162 MBL 1 1 1 1 1 1 1 1 8 Euglenozoa Bodo saltans CCAP1907 MBL 1 1 1 1 1 5 Alveolates Chilodonella uncinata 50194 MBL 1 1 1 1 4 Amoebozoa Arachnula sp. 50593 MBL 1 1 2 Katz lab work based on genomic PCRs and MBL (Marine Biological Laboratory) data are all from EST analyses. Culture accession number is ATTC unless noted. GenBank accession numbers for new sequences (including paralogs) are GQ377645-GQ377715 and HM244866-HM244878.
    [Show full text]
  • Molecular Phylogeny of Unikonts: New Insights Into the Position of Apusomonads and Ancyromonads and the Internal Relationships of Opisthokonts
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digital.CSICEurope PMC Funders Group Author Manuscript Protist. Author manuscript; available in PMC 2015 February 27. Published in final edited form as: Protist. 2013 January ; 164(1): 2–12. doi:10.1016/j.protis.2012.09.002. Europe PMC Funders Author Manuscripts Molecular phylogeny of Unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts Jordi Paps1,2,§, Luis A. Medina-Chacón1, Wyth Marshall3, Hiroshi Suga1,4, and Iñaki Ruiz- Trillo1,4,5,§ 1Departament de Genètica, Universitat de Barcelona. Av. Diagonal, 645, 08028 Barcelona 3B.C. Centre for Aquatic Health, 871A Island Hwy. Campbell River, B.C., V9W 5B1, Canada 4Institut de Biologia Evolutiva (UPF-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain 5Institució Catalana per a la Recerca i Estudis Avançats (ICREA) Abstract The eukaryotic supergroup Opisthokonta includes animals (Metazoa), fungi, and choanoflagellates, as well as the lesser known unicellular lineages Nucleariidae, Fonticula alba, Ichthyosporea, Filasterea and Corallochytrium limacisporum. Whereas the evolutionary positions of the well-known opisthokonts are mostly resolved, the phylogenetic relationships among the more obscure lineages are not. Within the Unikonta (Opisthokonta and Amoebozoa), it has not Europe PMC Funders Author Manuscripts been determined whether the Apusozoa (apusomonads and ancyromonads) or the Amoebozoa form the sister group to opisthokonts, nor to which side of the hypothesized unikont/bikont divide the Apusozoa belong. Aiming at elucidating the evolutionary tree of the unikonts, we have assembled a dataset with a large sampling of both organisms and genes, including representatives from all known opisthokont lineages.
    [Show full text]
  • Novel Diversity of Deeply Branching Holomycota and Unicellular Holozoans Revealed by Metabarcoding in Middle Paraná River, Argentina
    ORIGINAL RESEARCH published: 12 July 2018 doi: 10.3389/fevo.2018.00099 Novel Diversity of Deeply Branching Holomycota and Unicellular Holozoans Revealed by Metabarcoding in Middle Paraná River, Argentina Alicia S. Arroyo 1, David López-Escardó 1, Eunsoo Kim 2, Iñaki Ruiz-Trillo 1,3,4 and Sebastián R. Najle 1,5* 1 Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain, 2 Division of Invertebrate Zoology and Sackler, Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States, 3 Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Edited by: Barcelona, Spain, 4 ICREA, Barcelona, Spain, 5 Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad Mariana Mateos, de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina Texas A&M University, United States Reviewed by: Opisthokonta represents a major lineage of eukaryotes and includes fungi and Jeffrey D. Silberman, University of Arkansas, United States metazoans, as well as other less known unicellular groups. The latter are paraphyletic Yonas Isaak Tekle, assemblages that branch in between the former two groups, and thus are important Spelman College, United States for understanding the origin and early diversification of opisthokonts. The full range of *Correspondence: Sebastián R. Najle their diversity, however, has not yet been explored from diverse ecological habitats. [email protected]; Freshwater environments are crucial sources for new diversity; they are considered [email protected] even more heterogeneous than marine ecosystems. This heterogeneity implies more Specialty section: ecological niches where local eukaryotic communities are located.
    [Show full text]