Morphologic Studies of the Carotid Rete-Cavernous Sinus Complex and Its Functional Significance in Sheep and Goat Wael Abdul Hameed Khamas Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Threatening External Iliac Vein Injury During Total Hip Arthroplasty
경희의학 : 제 27 권 제 1 호 □ 증 례 □ J Kyung Hee Univ Med Cent : Vol. 27, No. 1, 2011 Threatening External Iliac Vein Injury during Total Hip Arthroplasty Kang Woo Lee, M.D., Jo Young Hyun, M.D., Jae Woo Yi, M.D., Ph.D. Department of Anesthesiology and Pain Medicine, School of Medicine, Kyung Hee University, Seoul, Korea INTRODUCTION nal iliac vein during total hip replacement, which resulted in hemorrhagic shock. Since its inception in the 1960’s, total hip arthro- plasty (THA) has grown in volume and complexity. CASE REPORT Total hip arthroplasty has revolutionized the treatment of end-stage hip arthritis and is felt to be among the A 63-year-old female patient (150 cm, 59 kg) was most cost effective of all medical interventions diagnosed as secondary osteoarthritis of left hip joint. available.(1) The complications associated with THA She was scheduled to undergo total hip replacement. have been increased as a result of increasing life The patient’s previous medical history entailed ten expectancy and widened indications for THA. But the years of hypertension, which was well-controlled with complications related to total hip arthroplasty are not oral anti-hypertensive drugs. Routine monitors such as common. Especially vascular injuries are very rare but electrocardiogram, pulse oxymeter, non-invasive blood can cause limb loss or become life threatening. A pressure were used. Induction of anesthesia was achieved thorough understanding of the possible complications with propofol 120 mg, rocuronium 50 mg intravenously. following total hip arthroplasty aids in optimizing Anesthesia was maintained with sevoflurane. After loss patient outcomes The occurrence of the complication of all four twitches from the train-of-four obtained by related to THA has not been emphasized enough in ulnar nerve stimulation, endotracheal intubation was anesthesia literature and has been overlooked in the performed. -
Gross Anatomy Assignment Name: Olorunfemi Peace Toluwalase Matric No: 17/Mhs01/257 Dept: Mbbs Course: Gross Anatomy of Head and Neck
GROSS ANATOMY ASSIGNMENT NAME: OLORUNFEMI PEACE TOLUWALASE MATRIC NO: 17/MHS01/257 DEPT: MBBS COURSE: GROSS ANATOMY OF HEAD AND NECK QUESTION 1 Write an essay on the carvernous sinus. The cavernous sinuses are one of several drainage pathways for the brain that sits in the middle. In addition to receiving venous drainage from the brain, it also receives tributaries from parts of the face. STRUCTURE ➢ The cavernous sinuses are 1 cm wide cavities that extend a distance of 2 cm from the most posterior aspect of the orbit to the petrous part of the temporal bone. ➢ They are bilaterally paired collections of venous plexuses that sit on either side of the sphenoid bone. ➢ Although they are not truly trabeculated cavities like the corpora cavernosa of the penis, the numerous plexuses, however, give the cavities their characteristic sponge-like appearance. ➢ The cavernous sinus is roofed by an inner layer of dura matter that continues with the diaphragma sellae that covers the superior part of the pituitary gland. The roof of the sinus also has several other attachments. ➢ Anteriorly, it attaches to the anterior and middle clinoid processes, posteriorly it attaches to the tentorium (at its attachment to the posterior clinoid process). Part of the periosteum of the greater wing of the sphenoid bone forms the floor of the sinus. ➢ The body of the sphenoid acts as the medial wall of the sinus while the lateral wall is formed from the visceral part of the dura mater. CONTENTS The cavernous sinus contains the internal carotid artery and several cranial nerves. Abducens nerve (CN VI) traverses the sinus lateral to the internal carotid artery. -
Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal. -
1-Anatomy of the Pituitary Gland
Color Code Important Anatomy of Pituitary Gland Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, students should be able to: ✓ Describe the position of the pituitary gland. ✓ List the structures related to the pituitary gland. ✓ Differentiate between the lobes of the gland. ✓ Describe the blood supply of pituitary gland & the hypophyseal portal system. الغدة النخامية Pituitary Gland (also called Hypophysis Cerebri) o It is referred to as the master of endocrine glands. o It is a small oval structure 1 cm in diameter. o It doubles its size during pregnancy. lactation ,(الحمل) pregnancy ,(الحيض) A women experiences changes in her hormone levels during menstruation But only the pituitary gland will only increase in size during pregnancy .(سن اليأس) and menopause ,(الرضاعة) X-RAY SKULL: LATERAL VIEW SAGITTAL SECTION OF HEAD & NECK Extra Pituitary Gland Position o It lies in the middle cranial fossa. o It is well protected in sella turcica* (hypophyseal fossa) of body of sphenoid o It lies between optic chiasma (anteriorly) & mamillary bodies** (posteriorly). Clinical point: *سرج الحصان Anterior to the pituitary gland is the optic chiasm, so if there was a tumor in the pituitary gland or it was ** Part of hypothalamus enlarged this could press on the chiasm and disrupt the patients vision (loss of temporal field). Extra Pictures The purple part is the sphenoid bone Hypophyseal fossa Pituitary Gland The relations are important Important Relations • SUPERIOR: Diaphragma sellae: A fold of dura mater covers the pituitary gland & has an opening for passage of infundibulum (pituitary stalk) connecting the gland to hypothalamus. -
CHAPTER 8 Face, Scalp, Skull, Cranial Cavity, and Orbit
228 CHAPTER 8 Face, Scalp, Skull, Cranial Cavity, and Orbit MUSCLES OF FACIAL EXPRESSION Dural Venous Sinuses Not in the Subendocranial Occipitofrontalis Space More About the Epicranial Aponeurosis and the Cerebral Veins Subcutaneous Layer of the Scalp Emissary Veins Orbicularis Oculi CLINICAL SIGNIFICANCE OF EMISSARY VEINS Zygomaticus Major CAVERNOUS SINUS THROMBOSIS Orbicularis Oris Cranial Arachnoid and Pia Mentalis Vertebral Artery Within the Cranial Cavity Buccinator Internal Carotid Artery Within the Cranial Cavity Platysma Circle of Willis The Absence of Veins Accompanying the PAROTID GLAND Intracranial Parts of the Vertebral and Internal Carotid Arteries FACIAL ARTERY THE INTRACRANIAL PORTION OF THE TRANSVERSE FACIAL ARTERY TRIGEMINAL NERVE ( C.N. V) AND FACIAL VEIN MECKEL’S CAVE (CAVUM TRIGEMINALE) FACIAL NERVE ORBITAL CAVITY AND EYE EYELIDS Bony Orbit Conjunctival Sac Extraocular Fat and Fascia Eyelashes Anulus Tendineus and Compartmentalization of The Fibrous "Skeleton" of an Eyelid -- Composed the Superior Orbital Fissure of a Tarsus and an Orbital Septum Periorbita THE SKULL Muscles of the Oculomotor, Trochlear, and Development of the Neurocranium Abducens Somitomeres Cartilaginous Portion of the Neurocranium--the The Lateral, Superior, Inferior, and Medial Recti Cranial Base of the Eye Membranous Portion of the Neurocranium--Sides Superior Oblique and Top of the Braincase Levator Palpebrae Superioris SUTURAL FUSION, BOTH NORMAL AND OTHERWISE Inferior Oblique Development of the Face Actions and Functions of Extraocular Muscles Growth of Two Special Skull Structures--the Levator Palpebrae Superioris Mastoid Process and the Tympanic Bone Movements of the Eyeball Functions of the Recti and Obliques TEETH Ophthalmic Artery Ophthalmic Veins CRANIAL CAVITY Oculomotor Nerve – C.N. III Posterior Cranial Fossa CLINICAL CONSIDERATIONS Middle Cranial Fossa Trochlear Nerve – C.N. -
Carotid Cavernous Sinus Fistula with Central Retinal Artery Occlusion: a Case Report
Carotid cavernous sinus fistula with central retinal artery occlusion: A case report Suntaree Thitiwichienlert1, Chonwarat Phattarapongdilok1, Paiboon Bawornwattanadilok1 1Department of Ophthalmology, Faculty of Medicine Thammasat University, Thailand Background: A carotid-cavernous sinus fistula (CCF) is an abnormal arteriovenous communication between the cavernous sinus and the internal carotid artery (ICA) and/or external carotid artery (ECA). Central retinal artery occlusion (CRAO) is a rare posterior segment complication occurring as result of traumatic CCF from an ocular hypoperfusion. Case Report: We present a 58-year-old female complaining of acute visual loss, with redness and swelling of the right eye following a motor vehicle accident. Her visual acuity was light perception (PL) in the right eye and 20/40 in the left eye. The intraocular pressure (IOP) was 52 mm Hg in the right eye and normal in the left eye. Eye examinations revealed proptosis, ptosis, complete total ophthalmoplegia and a 5-mm fixed dilated right pupil with relative afferent pupillary defect (RAPD) positive in her right eye. The fundus examination showed CRAO in the right eye. Cerebral angiogra- phy revealed a high flow direct CCF Barrow’s type A. Endovascular treatment was performed using balloon embolization. During the one-year follow-up, the patient had improvement of eye redness, proptosis, and ophthalmoplegia. However, the visual prognosis was poor due to optic atrophy and macular ischemia with the final visual acuity of PL. Conclusion: A complete fundus examination found vision- threatening complications in patients who have traumatic CCFs. Early recognition of CRAO is important in the management of these patients. Conflicts of interest: The authors report no confilcts of interest. -
Vessels and Circulation
CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels. -
Blood Vessels
BLOOD VESSELS Blood vessels are how blood travels through the body. Whole blood is a fluid made up of red blood cells (erythrocytes), white blood cells (leukocytes), platelets (thrombocytes), and plasma. It supplies the body with oxygen. SUPERIOR AORTA (AORTIC ARCH) VEINS & VENA CAVA ARTERIES There are two basic types of blood vessels: veins and arteries. Veins carry blood back to the heart and arteries carry blood from the heart out to the rest of the body. Factoid! The smallest blood vessel is five micrometers wide. To put into perspective how small that is, a strand of hair is 17 micrometers wide! 2 BASIC (ARTERY) BLOOD VESSEL TUNICA EXTERNA TUNICA MEDIA (ELASTIC MEMBRANE) STRUCTURE TUNICA MEDIA (SMOOTH MUSCLE) Blood vessels have walls composed of TUNICA INTIMA three layers. (SUBENDOTHELIAL LAYER) The tunica externa is the outermost layer, primarily composed of stretchy collagen fibers. It also contains nerves. The tunica media is the middle layer. It contains smooth muscle and elastic fiber. TUNICA INTIMA (ELASTIC The tunica intima is the innermost layer. MEMBRANE) It contains endothelial cells, which TUNICA INTIMA manage substances passing in and out (ENDOTHELIUM) of the bloodstream. 3 VEINS Blood carries CO2 and waste into venules (super tiny veins). The venules empty into larger veins and these eventually empty into the heart. The walls of veins are not as thick as those of arteries. Some veins have flaps of tissue called valves in order to prevent backflow. Factoid! Valves are found mainly in veins of the limbs where gravity and blood pressure VALVE combine to make venous return more 4 difficult. -
Arteries to Arterioles
• arteries to arterioles Important: The highest pressure of circulating blood is found in arteries, and gradu- ally drops as the blood flows through the arterioles, capillaries, venules, and veins (where it is the lowest). The greatest drop in blood pressure occurs at the transition from arteries to arterioles. Arterioles are one of the blood vessels of the smallest branch of the arterial circula- tion. Blood flowing from the heart is pumped by the left ventricle to the aorta (largest artery), which in turn branches into smaller arteries and finally into arterioles. The blood continues to flow through these arterioles into capillaries, venules, and finally veins, which return the blood to the heart. Arterioles have a very small diameter (<0.5 mm), a small lumen, and a relatively thick tunica media that is composed almost entirely of smooth muscle, with little elastic tissue. This smooth muscle constricts and dilates in response to neurochemical stimuli, which in turn changes the diameter of the arterioles. This causes profound and rapid changes in peripheral resistance. This change in diameter of the arteri- oles regulates the flow of blood into the capillaries. Note: By affecting peripheral resistance, arterioles directly affect arterial blood pressure. Primary function of each type of blood vessel: - Arteries - transport blood away from the heart, generally have blood that is rich in oxygen - Arterioles - control blood pressure - Capillaries - diffusion of nutrients/oxygen - Veins - carry blood back to the heart, generally have blood that is low in oxygen. -
Vascular Supply to the Head and Neck
Vascular supply to the head and neck Sumamry This lesson covers the head and neck vascular supply. ReviseDental would like to thank @KIKISDENTALSERVICE for the wonderful drawings in this lesson. Arterial supply to the head Facial artery: Origin: External carotid Branches: submental a. superior and inferior labial a. lateral nasal a. angular a. Note: passes superiorly over the body of there mandible at the masseter Superficial temporal artery: Origin: External carotid Branches: It is a continuation of the ex carotid a. Note: terminal branch of the ex carotid a. and is in close relation to the auricular temporal nerve Transverse facial artery: Origin: Superficial temporal a. Note: exits the parotid gland Maxillary branch: supplies the areas missed from the above vasculature Origin: External carotid a. Branches: (to the face) infraorbital, buccal and inferior alveolar a.- mental a. Note: Terminal branch of the ex carotid a. The ophthalmic branches Origin: Internal carotid a. Branches: Supratrochlear, supraorbital, lacrimal, anterior ethmoid, dorsal nasal Note:ReviseDental.com enters orbit via the optic foramen Note: The face arterial supply anastomose freely. ReviseDental.com ReviseDental.com Venous drainage of the head Note: follow a similar pathway to the arteries Superficial vessels can communicate with deep structures e.g. cavernous sinus and the pterygoid plexus. (note: relevant for spread of infection) Head venous vessels don't have valves Supratrochlear vein Origin: forehead and communicates with the superficial temporal v. Connects: joins with supra-orbital v. Note: from the angular vein Supra-orbital vein Origin: forehead and communicates with the superficial temporal v. Connects: joins with supratrochlear v. -
Artery/Vein Classification of Blood Vessel Tree in Retinal Imaging
Artery/vein Classification of Blood Vessel Tree in Retinal Imaging Joaquim de Moura1, Jorge Novo1, Marcos Ortega1, Noelia Barreira1 and Pablo Charlon´ 2 1Departamento de Computacion,´ Universidade da Coruna,˜ A Coruna,˜ Spain 2Instituto Oftalmologico´ Victoria de Rojas, A Coruna,˜ Spain joaquim.demoura, jnovo, mortega, nbarreira @udc.es, [email protected] { } Keywords: Retinal Imaging, Vascular Tree, Segmentation, Artery/vein Classification. Abstract: Alterations in the retinal microcirculation are signs of relevant diseases such as hypertension, arteriosclerosis, or diabetes. Specifically, arterial constriction and narrowing were associated with early stages of hypertension. Moreover, retinal vasculature abnormalities may be useful indicators for cerebrovascular and cardiovascular diseases. The Arterio-Venous Ratio (AVR), that measures the relation between arteries and veins, is one of the most referenced ways of quantifying the changes in the retinal vessel tree. Since these alterations affect differently arteries and veins, a precise characterization of both types of vessels is a key issue in the development of automatic diagnosis systems. In this work, we propose a methodology for the automatic vessel classification between arteries and veins in eye fundus images. The proposal was tested and validated with 19 near-infrared reflectance retinographies. The methodology provided satisfactory results, in a complex domain as is the retinal vessel tree identification and classification. 1 INTRODUCTION Hence, direct analysis of many injuries caused by oc- ular pathologies can be achieved, as is the case, for The analysis of the eye fundus offers useful infor- example, the diabetic retinopathy (DR). The DR is a mation about the status of the different structures the diabetes mellitus complication, one of the principal human visual system integrates, as happens with the causes of blindness in the world (Pascolini, 2011). -
Non-Pathological Opacification of the Cavernous Sinus on Brain CT
healthcare Article Non-Pathological Opacification of the Cavernous Sinus on Brain CT Angiography: Comparison with Flow-Related Signal Intensity on Time-of-Flight MR Angiography Sun Ah Heo 1, Eun Soo Kim 1,* , Yul Lee 1, Sang Min Lee 1, Kwanseop Lee 1 , Dae Young Yoon 2, Young-Su Ju 3 and Mi Jung Kwon 4 1 Department of Radiology, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 14068, Korea; [email protected] (S.A.H.); [email protected] (Y.L.); [email protected] (S.M.L.); [email protected] (K.L.) 2 Department of Radiology, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 14068, Korea; [email protected] 3 National Medical Center, Seoul 04564, Korea; [email protected] 4 Department of Pathology, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 14068, Korea; [email protected] * Correspondence: [email protected] Abstract: Purpose: To investigate the non-pathological opacification of the cavernous sinus (CS) on brain computed tomography angiography (CTA) and compare it with flow-related signal intensity (FRSI) on time-of-flight magnetic resonance angiography (TOF-MRA). Methods: Opacification of the CS was observed in 355 participants who underwent CTA and an additional 77 participants who underwent examination with three diagnostic modalities: CTA, TOF-MRA, and digital subtraction angiography (DSA). Opacification of the CS, superior petrosal sinus (SPS), inferior petrosal sinus Citation: Heo, S.A.; Kim, E.S.; Lee, Y.; Lee, S.M.; Lee, K.; Yoon, D.Y.; Ju, Y.-S.; (IPS), and pterygoid plexus (PP) were also analyzed using a five-point scale.