Metalepteametaleptea the Newsletter of the Orthopterists’ Society

Total Page:16

File Type:pdf, Size:1020Kb

Metalepteametaleptea the Newsletter of the Orthopterists’ Society ISSN 2372-2517 (Online), ISSN 2372-2479 (Print) METALEPTEAMETALEPTEA THE NEWSLETTER OF THE ORTHOPTERISTS’ SOCIETY TABLE OF CONTENTS President’s Message (Clicking on an article’s title will take you By DAVID HUNTER to the desired page) President [1] PRESIDENT’S MESSAGE [email protected] [2] SOCIETY NEWS [2] Back Issues of Society Publications Avail- ear Society members, able by H. SONG [2] Polyneoptera Symposium at the Virtual ESA 2020 by D.A. WOLLER ET AL. While there has been [3] ICE 2024 will be in Kyoto, Japan by M.M. CIGLIANO a levelling off of the [3] Behavioral Plasticity Research Institute effects of COVID-19 (BPRI) - a newly funded NSF Biology Integra- in some areas, many of tion Institute by H. SONG DD [4] REGIONAL REPORTS us continue to have limitations on [4] East Europe - North and Central Asia by M.G. SERGEEV our activities and we are having to [5] Australia, New Zealand & Pacific Islands learn to adapt, much like the insects by M. KEARNEY [5] Latin America by M.E. POCCO we work on that have to adapt when [6] China by L. ZHANG faced with challenges. There has [7] India by R. BALAKRISHNAN [8] T.J. COHN GRANT REPORTS been particular disruption to our work [8] Behavioral response to multi-channel in offices or laboratories, though environmental noise: tracking noise-induced changes in daily locomotor patterns and field work has had less disruption mate attraction strategies in Acheta domes- because of COVID-19 being less ticus by N. ABATE [10] Can Kapton screening minimize the ad- common in many rural areas. And verse effects of LED light on the behavioral pattern and life history of flower visiting as I have found, many things can be Indian grasshoppers? by A. GANGULY accomplished with online meetings, [13] Altitudinal variation of Orthoptera spe- of citing other Zootaxa papers. Holger not only with work but with catching cies diversity in rice fields of central Nepal Braun sent me a letter supporting by M. SUBEDI up with colleagues, friends, and [14] Acknowledging spatiotemporal hierar- the retention of the impact factor family. chy improves locust outbreak models by D. for Zootaxa, which we circulated to LAWTON And, of course, COVID-19 has [16] OSF GRANT REPORTS members of our society, and thanks to made control of locusts more complex [16] Types of Neotropical Tetrigidae the many of you who signed the letter, (Orthoptera: Caelifera) in the Collection of than normal, with an upsurge of Academy of Natural Sciences of Philadelphia Zootaxa has been retained on the Schistocerca gregaria from East (ANSP) by D.S.M. SILVA list of publications having an impact [19] Photographic and distributional data Africa to the India-Pakistan border of some Neotropical Orthoptera groups and factor. Colombian Phasmatodea by O.J. CADENA- region and swarms of Schistocerca The many reports of our activities in CASTAÑEDA cancellata in Argentina and [24] CONTRIBUTED ARTICLES this issue of Metaleptea demonstrate [24] The altitudinal range of Omocestus neighbouring countries. that in spite of limitations, there is viridulus in the United Kingdom by T. GAR- We have had some good news in NIDER continuing success of our work on [25] Agricultural defense of Brazil in alert that the journal Zootaxa has retained Orthoptera and related insects: it is against the possible entry of locust swarms its impact factor. The journal was by M.G. LHANO with great pleasure that I present [29] The Orthoptera Collection at MNRJ placed on the list to have its impact and the Brazilian Orthopterology by P.G.B. another excellent Metaleptea, thanks factor ended because of over-self- SOUZA DIAS once again to the tireless efforts of [32] Collecting Orthoptera in South Africa citation; apparently too many papers and Namibia amid COVID-19 by R. MARIÑO- Hojun Song and Derek Woller! PÉREZ & D. MATENAAR in the journal cite other Zootaxa [37] MEETING REPORTS papers. But it turns out that 45% of [37] VIII Brazilian Symposium of Orthoptera and I Symposium of Orthopteroid Insects by taxonomic papers on Orthoptera are P.G.B. SOUZA DIAS published in Zootaxa, so it is not [41] EDITORIAL surprising there is a “high” 43% rate Volume 40 (3) / September 2020 1 METALEPTEA Back Issues of Society Publications Available By HOJUN SONG Editor, Metaleptea [email protected] ur Society has occas- The Grasshopper Tribe The Grasshoppers Phaeopariini (Acri- (Caelifera) of Costa sionally published doidea: Romaleidae) Rica and Panama by the “Publications on by Carlos S. Carbonell C.H.F. Rowell = $25. Orthopteran Diver- = $15 The first compre- sity” series, which Example Publications hensive treatment O are available as hard- of grasshoppers O (Caelifera) of Costa copy books in limited supply for Rica and Panama. the members to purchase. Although this information can be found on our Society website, I would like to take Katydids of Costa Caribbean Crickets by this opportunity to advertise in Meta- Rica, Vol. 1. Systemat- Daniel Otte and Daniel leptea. Also, a limited number of hard ics and bioacoustics of Perez-Gelabert = $30. the cone-head katy- copies of back issues of the Journal of dids by Piotr Naskrecki The first comprehen- Orthoptera Research are also avail- = Free (just pay S&H) sive assessment of the able. To order, please visit https:// fauna of Caribbean Discusses the biology crickets to date. It orthsoc.org/publications/books/ or and taxonomy of 3 treats 585 cricket email me at [email protected]. subfamilies of Costa species, of which 458 Rican Tettigoniidae. are described as new species. Polyneoptera Symposium at the Virtual 2020 Entomological Society of America Meeting: “Small Orders, Big Ideas (Polyneoptera)” - November 11-25 By DEREK A. WOLLER1, ABIGAIL HAYES2, JOSEPH SWEENEY3, AND HOJUN SONG4 1USDA-APHIS-PPQ-Science & Technology Phoenix Lab, Phoenix, AZ, USA [email protected] 2Washington State University, Pullman, WA, USA [email protected] 3Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA [email protected] 4Texas A&M University, College Station, TX, USA [email protected] olyneopteran insects to the ongoing worldwide pandemic, be presentations covering an array of (Orthoptera and nine this year’s ESA will be entirely Polyneoptera orders and intriguing other insect orders) virtual, with presentations being a topics, plus a livestreamed panel are very common and mix of live and pre-recorded (referred discussion (day to be decided) during include some of the most to as “On-Demand,” which is what which you will be able to interact PP recognizable creatures ours will be) that you will be able to with speakers. Since our symposium on Earth, but are rarely represented access on-line during November 11- is On-Demand, presentations should at Entomological Society of America 25, 2020. In many ways, this will be be available to watch starting (ESA) meetings. Since 2014, Derek unfortunate since these meetings are November 11, but the meeting A. Woller and rotating groups of a wonderful chance to catch up with schedule is still being finalized, so co-organizers have been working colleagues and make new friends, if you’re interested, please continue diligently to raise their profile at ESA but this cloud’s silver lining is that to check the online program for meetings by organizing Organized anyone in the world will be able to updates using the symposium’s title: Meetings and Member Symposia (this attend. In fact, the nine speakers we https://www.eventscribe.com/2020/ year’s event type) to highlight all the have planned represent five countries entomology2020/index.asp. We hope fascinating and novel research being and come from a variety of research you can attend! undertaken with polyneopterans. Due experience levels. This year, there will Volume 40 (3) / September 2020 2 METALEPTEA ICE 2024 will be in Kyoto, Japan By MARIA MARTA CIGLIANO Universidad Nacional de la Plata, ARGENTINA [email protected] he Council for Inter- for August 25-30, 2024 and more national Congresses of information will become available Entomology, of which I at https://ice2024kyoto.jp/. But, of am a member, came to course, Helsinki ICE2020, which a decision regarding the has been postponed to 2021 due to TT venue for ICE2024, and COVID-19 is rescheduled to take they asked us to inform our National place on July 18-23, 2021 and more Societies and Entomological Societies information is available at https://ice- about it. Kyoto, Japan was chosen as 2020helsinki.fi/. the venue. The Congress is scheduled Behavioral Plasticity Research Institute (BPRI) - a newly funded NSF Biology Integration Institute By HOJUN SONG Texas A&M University, TX, USA [email protected] he Biology Integration NSF. The title of the funded project Institutes (BII) program is: “Behavioral Plasticity Research is a new program from Institute (BPRI): Transforming the U.S. National Science the Study of Phenotypic Plasticity Foundation’s Directorate through Biological Integration” with TT for Biological Sciences the total funding amount over 5 years that supports collaborative teams of being $12,497,519. The BPRI is one researchers investigating questions of four awards selected as the inau- Here is a technical abstract of our that span multiple disciplines within gural cohort of NSF Biology Integra- project: Phenotypic plasticity – the and beyond biology (awards are for 5 tion Institutes (https://www.nsf.gov/ ability of a genotype to produce years @ $12.5 million). In February news/special_reports/announce- different phenotypes in response 2020, a group of researchers from 5 ments/090120.03.jsp). to different environmental condi- U.S. institutions (Baylor College of Our team consists of Fabrizio Gab- tions – is ubiquitous in nature, and Medicine [lead], Texas A&M Uni- biani (PI, computational neurobiol- occurs across all scales of biological versity, Arizona State University, UC ogy), Herman Dierick (co-PI, genome organization.
Recommended publications
  • Mitochondrial Genomes of Three Tetrigoidea Species and Phylogeny of Tetrigoidea
    Mitochondrial genomes of three Tetrigoidea species and phylogeny of Tetrigoidea Li-Liang Lin1, Xue-Juan Li1, Hong-Li Zhang2 and Zhe-Min Zheng1 1 College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China 2 School of Life Sciences, Datong University, Datong, Shanxi, China ABSTRACT The mitochondrial genomes (mitogenomes) of Formosatettix qinlingensis, Coptotettix longjiangensis and Thoradonta obtusilobata (Orthoptera: Caelifera: Tetrigoidea) were sequenced in this study, and almost the entire mitogenomes of these species were determined. The mitogenome sequences obtained for the three species were 15,180, 14,495 and 14,538 bp in length, respectively, and each sequence included 13 protein- coding genes (PCGs), partial sequences of rRNA genes (rRNAs), tRNA genes (tRNAs) and a A C T-rich region. The order and orientation of the gene arrangement pattern were identical to that of most Tetrigoidea species. Some conserved spacer sequences between trnS(UCN) and nad1 were useful to identify Tetrigoidea and Acridoidea. The Ka/Ks value of atp8 between Trachytettix bufo and other four Tetrigoidea species indicated that some varied sites in this gene might be related with the evolution of T. bufo. The three Tetrigoidea species were compared with other Caelifera. At the superfamily level, conserved sequences were observed in intergenic spacers, which can be used for superfamily level identification between Tetrigoidea and Acridoidea. Furthermore, a phylogenomic analysis was conducted based on the concatenated data sets from mitogenome sequences of 24 species of Orthoptera in the superorders Caelifera and Ensifera. Both maximum likelihood and bayesian inference analyses strongly supported Acridoidea and Tetrigoidea as forming monophyletic groups. The relationships among six Tetrigoidea species were (((((Tetrix japonica, Alulatettix Submitted 9 May 2017 yunnanensis), Formosatettix qinlingensis), Coptotettix longjiangensis), Trachytettix bufo), Accepted 17 October 2017 Thoradonta obtusilobata).
    [Show full text]
  • The Genus Markia (Orthoptera: Tettigoniidae; Phaneropterinae), New Species and Some Clarifications
    Zootaxa 3599 (6): 501–518 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3599.6.1 http://zoobank.org/urn:lsid:zoobank.org:pub:394886D5-B574-479D-83D4-F602ADDE7587 The tribe Dysoniini part II: The genus Markia (Orthoptera: Tettigoniidae; Phaneropterinae), new species and some clarifications OSCAR J. CADENA-CASTAÑEDA Universidad Distrital Francisco José de Caldas. Grupo de Investigación en Artrópodos “Kumangui”. Bogotá–Colombia. E-mail: [email protected] Abstract This paper clarifies the status of the species of the genus Markia White, 1862, also providing new distribution data. It describes M. erinaceus from Peru, M. arizae n.sp. from the Amazonian foothills of Colombia and Ecuador, M. sarriai n.sp. from the Colombian Biogeographic Chocó, M. espinachi n.sp. from Costa Rica; as well as the true male of M. major (Brunner von Wattenwyl, 1878), clarifying the real distributional range this latter species. M. longivertex n. syn., is proposed as a synonym of M. major. The colour polymorphism in M. hystrix (Westwood, 1844) is discussed and its distribution range is defined. A key to the species of Markia is provided. Key words: biodiversity, camouflage, lichen, Neotropics, Phaneropterinae, colour polymorphism, rainforest, Usnea Resumen Se esclarece el estatus de las especies del género Markia White, 1862 aportando nuevos datos de distribución. Se describe a M. erinaceus n.sp. del Perú, M. arizae n.sp. proveniente del pie de monte amazónico de Colombia y Ecuador, M. sarriai n.sp. del Chocó Biogeográfico colombiano, y M.
    [Show full text]
  • Sorghum Edited.Cdr
    Agricultural Productivity Program for Southern Africa (APPSA) Agricultural Productivity Program for Southern Sorghum Production Guide Africa (APPSA) Agricultural Productivity Program for Southern Africa (APPSA) Agricultural Productivity Program for Southern Africa (APPSA) Table of Contents Foreword ii Acknowledgements iii 1. Introduction 1 2. Climatic and Soil Requirements 1 3. Recommended Varieties 1 4. Recommendation Management Practices 3 5. Crop Protection 4 6. Harvesting 8 7.. Post-Harvest Handling and Processing 8 i Table of Contents Foreword ii Acknowledgements iii 1. Introduction 1 2. Climatic and Soil Requirements 1 3. Recommended Varieties 1 4. Recommendation Management Practices 3 5. Crop Protection 4 6. Harvesting 8 7.. Post-Harvest Handling and Processing 8 i Foreword Acknowledgements Zambia has the potential to produce sufficient food The Editorial Committee wishes to express its gratitude to the for its citizens and for export. Sorghum Research Team of Zambia Agriculture Research Institute for providing the technical information and invaluable advice. In order to ensure that good agricultural practices are employed by farmers, crop specific production The Zambia Agriculture Research Institute wishes to recognize the information should be made available to them. support provided by World Bank through the Agricultural Productivity Programme for Southern Africa- Zambia Project (APPSA-Zambia) Due to technological advances and the changing environmental and for financing the publication of this production guide. socio-economic conditions it became necessary to revise the first edition of the Sorghum Production Guide, which was published in 2002. This revised edition is meant to provide farmers and other stakeholders crop specific information in order to promote good agricultural practices and enhance productivity and production.
    [Show full text]
  • Orthoptera: Tetrigidae) with Description of Two New Species and Additional Notes on Lamellitettix, Probolotettix, and Scelimena
    Research Article J. TUMBRINCKJournal of Orthoptera Research 2019, 28(2): 167-180167 Taxonomic and biogeographic revision of the genus Lamellitettigodes (Orthoptera: Tetrigidae) with description of two new species and additional notes on Lamellitettix, Probolotettix, and Scelimena JOSEF TUMBRINCK1 1 Auf der Hees 1, D-41849 Wassenberg, Germany Corresponding author: Josef Tumbrinck ([email protected]) Academic editor: Daniel Petit | Received 18 March 2019 | Accepted 29 April 2019 | Published 3 September 2019 http://zoobank.org/CA0FD29D-1EE9-4176-9E1F-2EACBFFB68F1 Citation: Tumbrinck J (2019) Taxonomic and biogeographic revision of the genus Lamellitettigodes (Orthoptera: Tetrigidae) with description of two new species and additional notes on Lamellitettix, Probolotettix, and Scelimena. Journal of Orthoptera Research 28(2): 167–180. https://doi.org/10.3897/ jor.28.34605 Abstract context of the ongoing revision of the Tetrigidae of New Guinea. The genus was established by Günther (1939) and comprised two The genus Lamellitettigodes Günther, 1939 from Southeast Asia is re- species with three subspecies. After 1939, for the first time the ge- viewed. The genus currently includes seven species and is transferred to nus is fundamentally revised. With the addition of a new species Tetriginae Rambur, 1838. Two new species are described: Lamellitettigodes described in this paper, there are currently 145 species known for novaeguineae sp. nov. from New Guinea and Lamellitettigodes karwinkeli sp. New Guinea and the adjacent islands. nov. from Yunnan, People’s Republic of China. Lamellitettigodes palawani- cus Günther, 1939 stat. nov. is no longer regarded as a subspecies of L. contractus, but a separate species. Two species are transferred from Eupara- Material and methods tettix Hancock, 1904 to Lamellitettigodes: Lamellitettigodes sagittatus (Bolívar, 1887) comb.
    [Show full text]
  • Discovering Great Sandy Region Chapter 5 Animals of the Dunes the Animals of Fraser Island and Cooloola Are Not Readily Apparent to the Casual Observer
    DGSR Fauna 1 Discovering Great Sandy Region Chapter 5 Animals of the Dunes The animals of Fraser Island and Cooloola are not readily apparent to the casual observer. The most obvious are birds and dingoes. Despite the obscurity of the fauna it presents an impressive range to those with the patience to explore and discover. This is because much of the fauna is lies buried in the sand or hidden by the great bulk of biomass or else it is either well camouflaged, very timid, or very small. However, it is not necessary to see animals in the wild to be attracted by them. Tens of thousands of anglers are used to searching out invisible targets as they seek the pelagic tailor during the winter months, and bream, whiting trevally and flathead at any time of the year. However, there are many other interesting animals in the sea around Fraser Island and Cooloola than those which delight the anglers. These mammals and reptiles are not the targets of anglers but the subject of much interest of those who are seeking to understand the environment and the many niches in and around Fraser Island and Cooloola. Although Fraser Island and Cooloola lack large populations of bigger terrestrial animals, they boast many rare and unusual species. One study in Cooloola alone identified over 300 species of ants, many new to science. In the aquatic environment the acidity of some of the peaty swamps has been so hostile that a specialized group of frogs known as "acid frogs" has evolved to fill this unique niche.
    [Show full text]
  • An Assessment of Biological Control of the Banana Pseudostem Weevil Odoiporus Longicollis (Olivier) by Entomopathogenic Fungi Beauveria Bassiana T
    Biocatalysis and Agricultural Biotechnology 20 (2019) 101262 Contents lists available at ScienceDirect Biocatalysis and Agricultural Biotechnology journal homepage: www.elsevier.com/locate/bab An assessment of biological control of the banana pseudostem weevil Odoiporus longicollis (Olivier) by entomopathogenic fungi Beauveria bassiana T Alagersamy Alagesana, Balakrishnan Padmanabanb, Gunasekaran Tharania, Sundaram Jawahara, Subramanian Manivannana,c,* a PG and Research Department of Biotechnology, Bharath College of Science and Management, Thanjavur, 613 005, Tamil Nadu, India b Division of Crop Protection, National Research Centre for Banana (ICAR), Tiruchirappalli, 620 102, Tamil Nadu, India c Department of Zoology, Kongunadu Arts and Science College, Coimbatore, 641 029, Tamil Nadu, India ARTICLE INFO ABSTRACT Keywords: Banana (Musa sp.) is the most imperative staple food crop for all types of people worldwide, which is commonly Banana production grown in Southeast Asia. Banana plantain can be severely affected by the devastating pest Odoiporus longicollis Odoiporus longicollis that results in severe economic losses in India. Management of weevil pests using chemical methods is harmful to Beauveria bassiana the environment, and cultural methods are also partially successful. Therefore, an alternative approach of plant Bioefficacy defense mediated by endophytic fungi to control banana stem borer larvae is necessary, which could affect the Extracellular enzyme extracellular enzyme chitinase and protease. Among four isolates, Beauveria bassiana isolate KH3 is the most Phylogeny virulent entomopathogenic fungus compared with other isolates, and species identification was achieved using molecular phylogenetic characteristics. The B. bassiana isolate KH3 (1 × 108 conidia/mL-1) is more bioeffective against O. longicollis larvae, causing > 90% significant mortality in 12 and 18 days.
    [Show full text]
  • (Orthoptera) and Their Phylogenetic Implications Within Tetrigoidea
    Mitochondrial genomes of eight Scelimeninae species (Orthoptera) and their phylogenetic implications within Tetrigoidea Ran Li1, Xiaoli Ying1, Weian Deng2, Wantao Rong2 and Xiaodong Li2 1 College of Life Sciences, Nanjing Normal University, Nanjing, China 2 School of Chemistry and Bioengineering, Hechi University, Yizhou, China ABSTRACT Scelimeninae is a key member of the pygmy grasshopper community, and an important ecological indicator. No mitochondrial genomes of Scelimeninae have been reported to date, and the monophyly of Scelimeninae and its phylogenetic relationship within Tetrigidae is still unclear. We sequenced and analyzed eight nearly complete mitochondrial genomes representing eight genera of Scelimeninae. These mitogenomes ranged in size from 13,112 to 16,380 bp and the order of tRNA genes between COII and ATP8 was reversed compared with the ancestral order of insects. The protein-coding genes (PCGs) of tetrigid species mainly with the typical ATN codons and most terminated with complete (TAA or TAG) stop codons. Analyses of pairwise genetic distances showed that ATP8 was the least conserved gene within Tetrigidae, while COI was the most conserved. The longest intergenic spacer (IGS) region in the mitogenomes was always found between tRNASer(UCN) and ND1. Additionally, tandem repeat units were identified in the longest IGS of three mitogenomes. Maximum likelihood (ML) and Bayesian Inference (BI) analyses based on the two datasets supported the monophyly of Tetriginae. Scelimeninae was classified as a non-monophyletic subfamily.
    [Show full text]
  • Elements for the Sustainable Management of Acridoids of Importance in Agriculture
    African Journal of Agricultural Research Vol. 7(2), pp. 142-152, 12 January, 2012 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR11.912 ISSN 1991-637X ©2012 Academic Journals Review Elements for the sustainable management of acridoids of importance in agriculture María Irene Hernández-Zul 1, Juan Angel Quijano-Carranza 1, Ricardo Yañez-López 1, Irineo Torres-Pacheco 1, Ramón Guevara-Gónzalez 1, Enrique Rico-García 1, Adriana Elena Castro- Ramírez 2 and Rosalía Virginia Ocampo-Velázquez 1* 1Department of Biosystems, School of Engineering, Queretaro State University, C.U. Cerro de las Campanas, Querétaro, México. 2Department of Agroecology, Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, México. Accepted 16 December, 2011 Acridoidea is a superfamily within the Orthoptera order that comprises a group of short-horned insects commonly called grasshoppers. Grasshopper and locust species are major pests of grasslands and crops in all continents except Antarctica. Economically and historically, locusts and grasshoppers are two of the most destructive agricultural pests. The most important locust species belong to the genus Schistocerca and populate America, Africa, and Asia. Some grasshoppers considered to be important pests are the Melanoplus species, Camnula pellucida in North America, Brachystola magna and Sphenarium purpurascens in northern and central Mexico, and Oedaleus senegalensis and Zonocerus variegatus in Africa. Previous studies have classified these species based on specific characteristics. This review includes six headings. The first discusses the main species of grasshoppers and locusts; the second focuses on their worldwide distribution; the third describes their biology and life cycle; the fourth refers to climatic factors that facilitate the development of grasshoppers and locusts; the fifth discusses the action or reaction of grasshoppers and locusts to external or internal stimuli and the sixth refers to elements to design management strategies with emphasis on prevention.
    [Show full text]
  • Katydid (Orthoptera: Tettigoniidae) Bio-Ecology in Western Cape Vineyards
    Katydid (Orthoptera: Tettigoniidae) bio-ecology in Western Cape vineyards by Marcé Doubell Thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Sciences at Stellenbosch University Department of Conservation Ecology and Entomology, Faculty of AgriSciences Supervisor: Dr P. Addison Co-supervisors: Dr C. S. Bazelet and Prof J. S. Terblanche December 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 2017 Copyright © 2017 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za Summary Many orthopterans are associated with large scale destruction of crops, rangeland and pastures. Plangia graminea (Serville) (Orthoptera: Tettigoniidae) is considered a minor sporadic pest in vineyards of the Western Cape Province, South Africa, and was the focus of this study. In the past few seasons (since 2012) P. graminea appeared to have caused a substantial amount of damage leading to great concern among the wine farmers of the Western Cape Province. Very little was known about the biology and ecology of this species, and no monitoring method was available for this pest. The overall aim of the present study was, therefore, to investigate the biology and ecology of P. graminea in vineyards of the Western Cape to contribute knowledge towards the formulation of a sustainable integrated pest management program, as well as to establish an appropriate monitoring system.
    [Show full text]
  • Phylogeny of Ensifera (Hexapoda: Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication
    Molecular Phylogenetics and Evolution 38 (2006) 510–530 www.elsevier.com/locate/ympev Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication M.C. Jost a,*, K.L. Shaw b a Department of Organismic and Evolutionary Biology, Harvard University, USA b Department of Biology, University of Maryland, College Park, MD, USA Received 9 May 2005; revised 27 September 2005; accepted 4 October 2005 Available online 16 November 2005 Abstract Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals pro- duced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsi- monious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae.
    [Show full text]
  • Cholinergic Activation of Stridulatory Behaviour in the Grasshopper Omocestus Viridulus (L.)
    The Journal of Experimental Biology 200, 1327–1337 (1997) 1327 Printed in Great Britain © The Company of Biologists Limited 1997 JEB0800 CHOLINERGIC ACTIVATION OF STRIDULATORY BEHAVIOUR IN THE GRASSHOPPER OMOCESTUS VIRIDULUS (L.) RALF HEINRICH, BERTHOLD HEDWIG AND NORBERT ELSNER* I. Zoologisches Institut, Berliner Straße 28, D-37073 Göttingen, Germany Accepted 14 February 1997 Summary When acetylcholine (ACh) and its agonists are injected stridulation induced by activation of the muscarinic ACh into neuropile regions of the protocerebrum and the receptors begins after a longer latency, increases slowly in suboesophageal ganglion of male and female grasshoppers intensity and is maintained for many minutes. The sites of the species Omocestus viridulus (L.), they elicit within the cephalic ganglia where song can be initiated stridulation in a pattern no different from that of natural pharmacologically coincide with regions in which song. Stridulation can even be evoked in mated females descending stridulatory command neurones arborize. which normally do not sing. By choosing suitable ACh agonists, nicotinic and muscarinic ACh receptors can be activated selectively. Activation of nicotinic ACh receptors Key words: grasshopper, Omocestus viridulus, stridulation, brain, produces individual song sequences with rapid onset; the neuropharmacology, acetylcholine. Introduction An understanding of the processes within the central nervous which the animals performed song sequences. However, these system (CNS) that control stridulatory behaviour in
    [Show full text]
  • Song Duration in the Grasshopper Omocestus Viridulus
    DENSITY DEPENDENT SONG DURATION IN THE GRASSHOPPER OMOCESTUS VIRIDULUS by THORLEIFUR EIRIKSSON1) (Department of Zoology, Stockholm University, S-106 91 Sweden) (With5 Figures) (Acc.10-VIII-1992) Summary Although duration of grashopper song is species specific, there is also considerable varia- tion within species. One possible reason for this is that males are adjusting their singing tactics in relation to the density of competitors. Males are expected to sing shorter songs when other males are nearby to enhance the probability of hearing female response or to listen to other males. To test this hypothesis an experiment was performed by placing different numbers of Omocestusviridulus males in large outdoor cages and monitoring their singing behaviour. The results show that males sing on average shorter calling songs as the number of males increases. It was also found that males compensate for singing shorter songs by singing more songs, so the total time spent singing stays similar at all densities. The scenario is complicated by the singing of very short songs which are mainly, but not exclusively, used in male-male interactions. The probability that males sing rivalry songs increases with the density of males and the number of these songs increases as male-male interactions get longer. The results suggests that part of the variation in the duration of calling songs reported in several field studies is caused by a change in singing tactics at different densities of males. The function of rivalry songs is not clear. These songs may function in the spacing of males or may be an extremely short form of the normal calling song used when other males are very close.
    [Show full text]