Preservation Through Propagation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Another New Species of Ceratozamia (Zamiaceae) from Chiapas, Mexico
Botanical Journal of the Linnean Society (2001), 137: 81-85. With 2 figures doi:10.1006/bojl.2001.0459, available online at http://www.idealibrary.com on Another new species of Ceratozamia (Zamiaceae) from Chiapas, Mexico ANDREW P. VOVIDES1*, MIGUEL A. PÉREZ-FARRERA2 and CARLOS IGLESIAS1 1Instituto de Ecología, A.C., Apartado Postal 63, 91000, Xalapa, Veracruz, México 2Escuela de Biología, Universidad de Ciencias y Artes del Estado de Chiapas, Calzada Samuel León Brindis 151, C.P. 29,000, Tuxtla Gutiérrez, Chiapas, México Received April 2000; accepted for publication February 2001 Ceratozamia mirandai sp. nov. from the Sepultura Biosphere reserve of Chiapas, Mexico, is described and illustrated. Its closest affinities are with C. kuesteriana Regel from Tamaulipas of north-east Mexico, but differs in male and female cone and trunk morphology. © 2001 The Linnean Society of London ADDITIONAL KEY WORDS: biosphere reserves - Ceratozamia kuesteriana - Chiapas - Cycad - Mesoamerica - Pleistocene refuges. INTRODUCTION of the Sierra Madre (Chiapas) we collected a Cer- atozamia specimen with a thick, arborescent, branched The genus Ceratozamia or 'horned Zamia' as the name trunk with large leaves and cones. We first considered suggests, is largely restricted to Mexico, with an out- that this taxon formed part of the wide species concept lying species (C. robusta Miq.) in Guatemala and Be- of Ceratozamia norstogii of Stevenson (1982) and Jones lize. Recently a Ceratozamia species has been reported (1993). However, further explorations at the type of from Honduras (Whitelock, pers. comm.). Much of our locality of C. norstogii and other populations of this knowledge of the distribution of Ceratozamia in its species in the states of Chiapas and Oaxaca, as well native Mexico is due to the early exploratory work of as examination of the type of C. -
Botanical Journal of the Linnean Society0024-4074The Linnean Society of London, 2004? 2004 145? 499504 Original Article
Blackwell Science, LtdOxford, UKBOJBotanical Journal of the Linnean Society0024-4074The Linnean Society of London, 2004? 2004 145? 499504 Original Article 5S rDNA SITES ON CYCAD CHROMOSOMES G. KOKUBUGATA ET AL. Botanical Journal of the Linnean Society, 2004, 145, 499–504. With 6 figures Mapping 5S ribosomal DNA on somatic chromosomes of four species of Ceratozamia and Stangeria eriopus (Cycadales) GORO KOKUBUGATA1*, ANDREW P. VOVIDES2 and KATSUHIKO KONDO3 1Tsukuba Botanical Garden, National Science Museum, Tokyo, Ibaraki 305-0005, Japan 2Instituto de Ecología, A. C., Apartado Postal 63, 91000, Xalapa, Mexico 3Laboratory of Plant Chromosome and Gene Stock, Graduate of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan Received October 2003; accepted for publication February 2004 Somatic chromosomes of four species of Ceratozamia, C. hildae, C. kuesteriana, C. mexicana and C. norstogii, and Stangeria eriopus, were observed and compared by the fluorescence in situ hybridization method using 5S ribosomal (rDNA) probes. The four Ceratozamia species and S. eriopus showed the same chromosome number of 2n = 16, and had similar karyotypes, comprising 12 metacentric (m), two submetacentric (sm) chromosomes and two telocentric (t) chromosomes. The four Ceratozamia species exhibited a proximal 5S rDNA site in the interstitial region of two m chromosomes. Stangeria eriopus exhibited a distal 5S rDNA site in the interstitial region of two m chromosomes, which probably indicates that the two genera differ in chromosome structure by at least one paracentric inversion. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 145, 499–504. ADDITIONAL KEYWORDS: cycads – cytotaxonomy – fluorescence in situ hybridization. INTRODUCTION Recently, the molecular–cytological techniques of the fluorescence in situ hybridization (FISH) method The genus Ceratozamia (family Zamiaceae; Steven- have been applied to cytotaxonomic studies in some son, 1992) is endemic to Mega-Mexico 2, an extension cycad taxa. -
Download the PDF File
ISSN 2473-442X CONTENTS Message from Dr. Patrick Griffith, Co-chair, IUCN/SSC CSG 3 Official newsletter of IUCN/SSC Cycad Specialist Group Botanic Garden: In Focus Vol. IV I Issue 2 I December 2019 Montgomery Botanical Center’s Cycad Collection – Focus on research and conservation 5 Michael Calonje & Patrick Griffith Feature Articles Towards an approach for the conservation and illegal trade prevention of South Africa’s endangered Encephalartos spp. 10 James A. R. Clugston, Michelle Van Der Bankand Ronny M. Kobongo Fire is the most important threat for conservation of Dioon merolae (espadaña) in the hill Nambiyigua, municipality of Villaflores, Chiapas, Mexico 13 Miguel Angel Pérez-Farrera & Mauricio Martínez Martínez Ex-situ Cycad Conservation [1]: Public and Private Collections 16 Chip Jones & JS Khuraijam The Cycad Specialist Group (CSG) is a component of the IUCN Species Research and Conservation News Survival Commission (IUCN/SSC). It consists of a group of volunteer The Cycad Extinction Crisis in South Africa 19 experts addressing conservation Wynand van Eeden & Tim Gregory issues related to cycads, a highly What is Ceratozamia becerrae ? 21 threatened group of land plants. The Andrew P. Vovides, Miguel Angel Pérez-Farrera & José Said Gutiérrez-Ortega CSG exists to bring together the world’s cycad conservation expertise, Preliminary Finding: Seed longevity of Encephalartos in controlled storage 23 and to disseminate this expertise to Ngawethu Ngaka and Phakamani Xaba organizations and agencies which can use this guidance to advance cycad Meeting Reports conservation. 2nd Nong Nooch Cycad Horticulture Workshop 25 Official website of CSG: Anders Lindstrom http://www.cycadgroup.org/ Plant Conservation Genetics Workshop 26 Co-Chairs Caroline Iacuaniello, Stephanie Steele & Christy Powell John Donaldson Patrick Griffith CSG Members 28 Vice Chairs Michael Calonje Cristina Lopez-Gallego Red List Authority Coordinator De Wet Bosenberg CSG Newsletter Committee JS Khuraijam, Editor Irene Terry Andrew P. -
TITULO: Análisis De Conos De Chamal (Dioon Edule Lindl) En Una
Mongabay.com Open Access Journal - Tropical Conservation Science Vol.6 (2):268-282, 2013 Research Article Strobilus and seed production of Dioon edule (Zamiaceae) in a population with low seedling density in San Luis Potosí, Mexico Raymundo Mora1, Laura Yáñez-Espinosa1,2, Joel Flores3, and Nadya Nava-Zárate4 1Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí. Av. Dr. Manuel Nava 8, Zona Universitaria Poniente, San Luis Potosí, S.L.P, México, C.P. 78290, e-mail: [email protected] 2Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí. Altair 200, Col. Del Llano, San Luis Potosí, S.L.P., México, C.P. 78377, e-mail: [email protected] 3División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa San José 2055, Col. Lomas 4 Sección, San Luis Potosí, S.L.P., México, C.P. 78216, e-mail: [email protected] 4Facultad de Estomatología, Universidad Autónoma de San Luis Potosí. Av. Dr. Manuel Nava 2, Zona Universitaria Poniente, San Luis Potosí, S.L.P., México, C.P. 78290. e-mail: [email protected] Corresponding author: Laura Yáñez-Espinosa, e-mail: [email protected] Abstract. We describe strobilus and seed development in a Dioon edule (chamal, palma, dameu’) population characterized by low seedling and high adult tree density, in order to improve conservation decisions for this endangered cycad species. Female strobili required 16-17 months and male 4-5 months to develop. During this period 80% female and 100% male strobili were not damaged by herbivores. The method of cone analysis used to evaluate seed production of pines was modified for D. -
Coevolution of Cycads and Dinosaurs George E
Coevolution of cycads and dinosaurs George E. Mustoe* INTRODUCTION TOXICOLOGY OF EXTANT CYCADS cycads suggests that the biosynthesis of ycads were a major component of Illustrations in textbooks commonly these compounds was a trait that C forests during the Mesozoic Era, the depict herbivorous dinosaurs browsing evolved early in the history of the shade of their fronds falling upon the on cycad fronds, but biochemical evi- Cycadales. Brenner et al. (2002) sug- scaly backs of multitudes of dinosaurs dence from extant cycads suggests that gested that macrozamin possibly serves a that roamed the land. Paleontologists these reconstructions are incorrect. regulatory function during cycad have long postulated that cycad foliage Foliage of modern cycads is highly toxic growth, but a strong case can be made provided an important food source for to vertebrates because of the presence that the most important reason for the reptilian herbivores, but the extinction of two powerful neurotoxins and carcin- evolution of cycad toxins was their of dinosaurs and the contemporaneous ogens, cycasin (methylazoxymethanol- usefulness as a defense against foliage precipitous decline in cycad popula- beta-D-glucoside) and macrozamin (beta- predation at a time when dinosaurs were tions at the close of the Cretaceous N-methylamine-L-alanine). Acute symp- the dominant herbivores. The protective have generally been assumed to have toms triggered by cycad foliage inges- role of these toxins is evidenced by the resulted from different causes. Ecologic tion include vomiting, diarrhea, and seed dispersal characteristics of effects triggered by a cosmic impact are abdominal cramps, followed later by loss modern cycads. a widely-accepted explanation for dino- of coordination and paralysis of the saur extinction; cycads are presumed to limbs. -
Comparative Biology of Cycad Pollen, Seed and Tissue - a Plant Conservation Perspective
Bot. Rev. (2018) 84:295–314 https://doi.org/10.1007/s12229-018-9203-z Comparative Biology of Cycad Pollen, Seed and Tissue - A Plant Conservation Perspective J. Nadarajan1,2 & E. E. Benson 3 & P. Xaba 4 & K. Harding3 & A. Lindstrom5 & J. Donaldson4 & C. E. Seal1 & D. Kamoga6 & E. M. G. Agoo7 & N. Li 8 & E. King9 & H. W. Pritchard1,10 1 Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK; e-mail: [email protected] 2 The New Zealand Institute for Plant & Food Research Ltd, Private Bag 11600, Palmerston North 4442, New Zealand; e-mail [email protected] 3 Damar Research Scientists, Damar, Cuparmuir, Fife KY15 5RJ, UK; e-mail: [email protected]; [email protected] 4 South African National Biodiversity Institute, Kirstenbosch National Botanical Garden, Cape Town, Republic of South Africa; e-mail: [email protected]; [email protected] 5 Nong Nooch Tropical Botanical Garden, Chonburi 20250, Thailand; e-mail: [email protected] 6 Joint Ethnobotanical Research Advocacy, P.O.Box 27901, Kampala, Uganda; e-mail: [email protected] 7 De La Salle University, Manila, Philippines; e-mail: [email protected] 8 Fairy Lake Botanic Garden, Shenzhen, Guangdong, People’s Republic of China; e-mail: [email protected] 9 UNEP-World Conservation Monitoring Centre, Cambridge, UK; e-mail: [email protected] 10 Author for Correspondence; e-mail: [email protected] Published online: 5 July 2018 # The Author(s) 2018 Abstract Cycads are the most endangered of plant groups based on IUCN Red List assessments; all are in Appendix I or II of CITES, about 40% are within biodiversity ‘hotspots,’ and the call for action to improve their protection is long- standing. -
35 Ideal Landscape Cycads
3535 IdealIdeal LandscapeLandscape CycadsCycads Conserve Cycads by Growing Them -- Preservation Through Propagation Select Your Plant Based on these Features: Exposure: SunSun ShadeShade ☻☻ ColdCold☻☻ Filtered/CoastalFiltered/Coastal SunSun ▲▲ Leaf Length and Spread: Compact, Medium or Large? Growth Rate and Ultimate Plant Size Climate: Subtropical, Mediterranean, Temperate? Dry or Moist? Leaves -- Straight or Arching? Ocean-Loving, Salt-Tolerant, Wind-Tolerant CeratozamiaCeratozamiaCeratozamiaCeratozamia SpeciesSpeciesSpeciesSpecies ☻Shade Loving ☻Cold TolerTolerantant ▲Filtered/Coastal Sun 16 named + several undescribed species Native to Mexico, Guatemala & Belize Name originates from Greek ceratos (horned), and azaniae, (pine cone) Pinnate (feather-shaped) leaves, lacking a midrib, and horned, spiny cones Shiny, darker green leaves arching or upright, often emerging red or brown Less “formal” looking than other cycads Prefer Shade ½ - ¾ day, or afternoon shade Generally cold-tolerant CeratozamiaCeratozamia ---- SuggestedSuggested SpeciesSpecies ☻Shade Loving ☻Cold TolerTolerantant ▲Filtered/Coastal Sun Ceratozamia mexicana Tropical looking but cold-tolerant, native to dry mountainous areas in the Sierra Madre Mountains (Mexican Rockies). Landscape specimen works well with water features, due to arching habit. Prefers shade, modest height, with a spread of up to 10 feet. Trunk grows to 2 feet tall. Leaflets can be narrow or wider (0.75-2 inches). CeratozamiaCeratozamia ---- SuggestedSuggested SpeciesSpecies ☻Shade Loving ☻Cold TolerTolerantant ▲Filtered/Coastal Sun Ceratozamia latifolia Rare Ceratozamia named for its broad leaflets. Native to cloud forests of the Sierra Madre mountains of Mexico, underneath oak trees. Emergent trunk grows to 1 foot tall, 8 inches in diameter. New leaves emerge bronze, red or chocolate brown, hardening off to bright green, semiglossy, and grow to 6 feet long. They are flat lance-shaped, asymmetric, and are broadest above middle, growing to 10 inches long and 2 inches wide. -
Rhyzobius Lophanthae Introduced Against Asian
ABSTRACT Too Little and Too Late???? Asian Cycad Scale (ACS) Chronology Asian cycad scale (ACS), Aulacaspis yasumatsui, was 1972 – Aulacaspis yasumatsui described in Thailand first detected in Tumon, Guam in December 2003 in front Rhyzobius lophanthae introduced against Asian 1996 – ACS detected in Florida of a hotel where Cycas revoluta, an introduced ornamental 1998 – ACS detected in Hawaii cycad and Cycas micronesica, an indigenous cycad were cycad scale, Aulacaspis yasumatsui, on Guam 2003 – ACS detected on cycads used for landscaping in Guam’s planted. The scale is believed to have been imported from Tumon Bay hotel district Hawaii in 1998 on ornamental cycads. The scale currently R.H. Miller1, A. Moore1, R.N. Muniappan1, A.P. Brooke2 and T.E. Marler1. 2004 – ACS spreads to Cycas revoluta and C. micronesica infests introduced and indigenous cycads on about two 1CNAS-AES, University of Guam, Mangilao, Guam (fadang) throughout Guam thirds of Guam’s 354 square kilometers. Severe 2Guam National Wildlife Refuge, Dededo, Guam 2005 – Ryzobius lophanthae and Coccobius fulvus released on infestations have been observed to kill both species within Guam; Plans made to preserve C. micronesica germplasm from a few months. We fear that C. micronesica may be Guam on the nearby island of Tinian threatened with extinction should the scale spread to the few other Micronesian islands that harbor it. Rhyzobius lophanthae, a coccinellid introduced to Asian Cycad Scale Management Hawaii in 1894 for other scale insects, was imported from Biological Control Agents on Guam Maui to Guam in November 2004 and released on C. Rhyzobius lophanthae micronesica at the Guam National Wildlife Refuge at • Introduced in Hawaii in 1894; Guam ??? 1930s Ritidian point in February 2005. -
A Global Analysis of the Distribution and Conservation Status Of
Journal of Biogeography (J. Biogeogr.) (2015) 42, 809–820 SYNTHESIS Fighting their last stand? A global analysis of the distribution and conservation status of gymnosperms Yann Fragniere1,Sebastien Betrisey2,3,Leonard Cardinaux1, Markus Stoffel4,5 and Gregor Kozlowski1,2* 1Natural History Museum Fribourg, CH-1700 ABSTRACT Fribourg, Switzerland, 2Department of Biology Aim Gymnosperms are often described as a marginal and threatened group, and Botanic Garden, University of Fribourg, members of which tend to be out-competed by angiosperms and which therefore CH-1700 Fribourg, Switzerland, 3Conservation Biogeography, Department of preferentially persist at higher latitudes and elevations. The aim of our synthesis Geosciences, University of Fribourg, CH-1700 was to test these statements by investigating the global latitudinal and elevational Fribourg, Switzerland, 4Dendrolab.ch, distribution of gymnosperms, as well as their conservation status, using all extant Institute of Geological Sciences, University of gymnosperm groups (cycads, gnetophytes, ginkgophytes and conifers). 5 Bern, CH-3012 Bern, Switzerland, Institute Location Worldwide. for Environmental Sciences, Climatic Change and Climate Impacts, University of Geneva, Methods We developed a database of 1014 species of gymnosperms containing CH-1227 Carouge, Switzerland latitudinal and elevational distribution data, as well as their global conservation status, as described in the literature. The 1014 species comprised 305 cycads, 101 gnetophytes, the only living representative of ginkgophytes, and 607 conifers. Generalized additive models, frequency histograms, kernel density estimations and distribution maps based on Takhtajan’s floristic regions were used. Results Although the diversity of gymnosperms decreases at equatorial lati- tudes, approximately 50% of the extant species occur primarily between the tropics. More than 43% of gymnosperms can occur at very low elevations (≤ 200 m a.s.l.). -
D. Stevensonii Has Closer Phylogenetic Affinities with Carretera a Coatepec No
Systematics and Biodiversity 7 (1): 73–79 Issued 22 February 2009 doi:10.1017/S1477200008002879 Printed in the United Kingdom C The Natural History Museum Fernando Nicolalde-Morejon´ 1, Reciprocal illumination of morphological Francisco Vergara-Silva2,∗, Jorge Gonzalez-Astorga´ 3, characters upon a molecular hypothesis Andrew P. Vovides1 & Alejandro Espinosa de los Monteros4 supports the proposal of a new species of 1Laboratorio de Biolog´ıa Evolutiva de Cycadales, cycad from Mexico Departamento de Biolog´ıa Evolutiva, Instituto de Ecolog´ıa, A.C., km 2.5 Antigua Carretera a Coatepec No. 351, Xalapa Abstract The new species Dioon stevensonii, from the Rio Balsas basin spanning 91070, Veracruz, Mexico 2Laboratorio de Sistem´atica the states of Michoacan´ and Guerrero, Mexico, is described and illustrated. The de- Molecular, Instituto de Biolog´ıa scription of this species implies a recircumscription of the populations of Dioon that (Jard´ın Bot´anico), Universidad Nacional Aut´onoma de M´exico, constitutethepreviouslycharacterisedD.tomasellii,whichalsoincludespopulations 3er Circuito Exterior Ciudad located in Durango, Nayarit and Jalisco. Dioon stevensonii differs from its congeners Universitaria, Coyoac´an04510, in characters of both vegetative and reproductive structures – namely, leaflet con- M´exico, D.F., Mexico 3Laboratorio de Gen´etica de tour shape, leaflet curvature and reflection of the megasporophyll tips. Despite its Poblaciones, Departamento de morphological affinities with D. tomasellii, complementary cladistic analyses of mo- Biolog´ıaEvolutiva, Instituto de Ecolog´ıa, A.C., km 2.5 Antigua lecular matrices indicate that D. stevensonii has closer phylogenetic affinities with Carretera a Coatepec No. 351, the D. edule and D. spinulosum species groups, which are distributed along the Gulf Xalapa 91070, Veracruz, Mexico of Mexico and Caribbean seaboards. -
Technical Background Document in Support of the Mid-Term Review of the Global Strategy for Plant Conservation (GSPC)
Technical background document for the mid-term review of the GSPC Technical background document in support of the mid-term review of the Global Strategy for Plant Conservation (GSPC) Compiled by Botanic Gardens Conservation International (BGCI) in association with the Global Partnership for Plant Conservation (GPPC) and the Secretariat of the Convention on Biological Diversity 1 Technical background document for the mid-term review of the GSPC Contents Introduction ......................................................................................................................................5 Section 1: Progress in national / regional implementation of the GSPC ................................................6 The GSPC and National / Regional Biodiversity Strategies and Action Plans ........................................... 6 Progress in plant conservation as reported in 5th National Reports to the CBD ...................................... 7 Reviews from regional workshops ............................................................................................................ 8 Progress in China ....................................................................................................................................... 8 Progress in Brazil ....................................................................................................................................... 9 Progress in Europe ................................................................................................................................. -
Insect Pollination of Cycads 9 10 Alicia Toon1, L
1 2 DR. ALICIA TOON (Orcid ID : 0000-0002-1517-2601) 3 4 5 Article type : Invited Review 6 7 8 Insect pollination of cycads 9 10 Alicia Toon1, L. Irene Terry2, William Tang3, Gimme H. Walter1, and Lyn G. Cook1 11 12 1The University of Queensland, School of Biological Sciences, Brisbane, Qld, 4072, 13 Australia 2 14 University of Utah, School of Biological Sciences, Salt Lake City, UT 84112, USA 15 3 USDA APHIS PPQ South Florida, P.O.Box 660520, Miami, FL 33266, USA 16 17 Corresponding author: Alicia Toon 18 [email protected] Ph: +61 (0) 411954179 19 Goddard Building, The University of Queensland, School of Biological Sciences, Brisbane, 20 Qld, 4072, Australia. 21 22 23 24 25 26 27 28 29 30 Manuscript Author 31 This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/AEC.12925 This article is protected by copyright. All rights reserved 32 33 Acknowledgements 34 We would like to thank Dean Brookes for discussions about genetic structure in cycad 35 pollinating thrips populations. Also, thanks to Mike Crisp for discussions about plant 36 diversification and Paul Forster for information on Australian cycads. This work was funded 37 by ARC Discovery Grant DP160102806. 38 39 Abstract 40 Most cycads have intimate associations with their insect pollinators that parallel those of 41 well-known flowering plants, such as sexually-deceptive orchids and the male wasps and 42 bees they deceive.