The Biogeochemistry of Submerged Coastal Karst Features in West Central Florida

Total Page:16

File Type:pdf, Size:1020Kb

The Biogeochemistry of Submerged Coastal Karst Features in West Central Florida University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 9-30-2010 The Biogeochemistry of Submerged Coastal Karst Features in West Central Florida Keith Michael Garman University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons, Cell Biology Commons, Molecular Biology Commons, and the Oncology Commons Scholar Commons Citation Garman, Keith Michael, "The Biogeochemistry of Submerged Coastal Karst Features in West Central Florida" (2010). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/3444 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The biogeochemistry of submerged coastal karst features in West Central Florida by Keith Michael Garman A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Cell Biology, Microbiology and Molecular Biology College of Arts and Sciences University of South Florida Co-major Professor: James R. Garey, Ph.D. Co-major Professor: Valerie J. Harwood, Ph.D. Kathleen M. Scott, Ph.D. John H. Paul, Ph.D. Date of Approval September 30, 2010 Keywords: anchialine, biodiversity, cave, spring, geochemistry © Copyright 2010, Keith Michael Garman DEDICATION This dissertation is dedicated to my wife, Sherry. Without her tireless support and participation in hundreds of exploration and research dives, this work would not have been possible. I have been very fortunate to have her in my life and to share so many adventures with her. Many of these adventures were part of obtaining the data on which this paper was based. ACKNOWLEDGEMENTS This work was partially supported by a NASA astrobiology grant and NSF grant 0221834 and 0344372 to J.R.G and from research grants provided by the National Association for Cave Diving to K.M.G. The authors thank research diver Sherry Garman for assistance with diving. The authors also thank Subsurface Evaluations Inc. of Tampa, Florida, and Jetsam Technologies of Port Moody, BC, for additional support. TABLE OF CONTENTS LIST OF TABLES ..............................................................................................v LIST OF FIGURES .......................................................................................... vii ABSTRACT ..............................................................................................x PREFACE ..............................................................................................1 Cave Systems ..............................................................................................2 Anchialine Cave Systems ........................................................................................3 Anoxic Marine Basins..............................................................................................3 Sulfur Cycling in Anoxic Marine Basins .....................................................3 Nitrogen Cycling in Anoxic Marine Basins.................................................5 Examples of Anoxic Marine Basins ............................................................6 Black Sea .........................................................................................7 Crater Lakes .....................................................................................7 Blue Holes and Cenotés ...................................................................8 Benthic Macrofauna in the Gulf of Mexico ...........................................................11 Current Study ............................................................................................13 References ............................................................................................14 CHAPTER ONE: FAUNA AND WATER QUALITY OF HABITATS IN THE SUBMERGED KARST FEATURES OF WEST CENTRAL FLORIDA ............18 Abstract ............................................................................................18 Introduction ............................................................................................19 General Hydrogeology of West Central Florida ........................................20 Submarine Groundwater Discharge ...........................................................22 Anoxic Marine Basins................................................................................26 Water Quality of Springs ...........................................................................27 Cave Fauna ............................................................................................27 Current Survey ...........................................................................................29 Materials and Methods ...........................................................................................31 Water Quality Measurements ....................................................................31 Seepage Rates and Velocity .......................................................................32 Particulate Analyses ...................................................................................33 Cave Flora and Fauna Collection and Identification .................................33 Identification of Bacteria Types .....................................................34 Bacteria Counts ..............................................................................34 Results and Discussion ..........................................................................................35 i Freshwater Sinkholes and Karst Windows ................................................35 Eagle’s Nest Sink (aka Lost Sink) .................................................35 Description .........................................................................35 Water Quality.....................................................................36 Flora and Fauna .................................................................36 Ward’s Sink ...................................................................................38 Description .........................................................................38 Water Quality.....................................................................38 Flora and Fauna .................................................................40 Arch Sink .......................................................................................40 Description .........................................................................40 Water Quality.....................................................................41 Flora and Fauna .................................................................41 Jewel Sink ......................................................................................42 Description .........................................................................42 Water Quality.....................................................................42 Flora and Fauna .................................................................44 Coastal Springs Wall Spring (aka Health Spring)....................................................44 Description .........................................................................44 Water Quality.....................................................................45 Flora and Fauna .................................................................47 Salt Spring ......................................................................................49 Description .........................................................................49 Water Quality.....................................................................50 Flora and Fauna .................................................................56 Gar Spring ......................................................................................57 Description .........................................................................57 Water Quality.....................................................................58 Flora and Fauna .................................................................58 Cauldron Spring .............................................................................59 Description .........................................................................59 Water Quality.....................................................................59 Flora and Fauna .................................................................60 Spring #822-241A ..........................................................................60 Description .........................................................................60 Water Quality.....................................................................64 Flora and Fauna .................................................................69 Double Keyhole Spring..................................................................71 Description .........................................................................71 Water Quality.....................................................................72 Flora and Fauna .................................................................74 Sulphur Spring ...............................................................................74 Description .........................................................................74 Water Quality.....................................................................79
Recommended publications
  • Protistology Review of Diversity and Taxonomy of Cercomonads
    Protistology 3 (4), 201217 (2004) Protistology Review of diversity and taxonomy of cercomonads Alexander P. Myl’nikov 1 and Serguei A. Karpov 2 1 Institute for the Biology of Inland Waters, Borok, Yaroslavl district, Russia 2 Biological Faculty, Herzen Pedagogical State University, St. Petersburg, Russia Summary Cercomonads are very common heterotrophic flagellates in water and soil. Phylogenetically they are a key group of a protistan phylum Cercozoa. Morphological and taxonomical analysis of cercomonads reveals that the order Cercomonadida (Vickerman) Mylnikov, 1986 includes two families: Cercomonadidae Kent, 1880 (=Cercobodonidae Hollande, 1942) and Heteromitidae Kent, 1880 em. Mylnikov, 2000 (=Bodomorphidae Hollande, 1952), which differ in several characters: body shape, temporary/habitual pseudopodia, presence/absence of plasmodia stage and microtubular cone, type of extrusomes. The family Cercomonadidae includes Cercomonas Dujardin, 1841 and Helkesimastix Woodcock et Lapage, 1914. All species of Cercobodo are transferred to the genus Cercomonas. The family Heteromitidae includes Heteromita Dujardin, 1841 emend. Mylnikov et Karpov, Protaspis Skuja, 1939, Allantion Sandon, 1924, Sainouron Sandon, 1924, Cholamonas Flavin et al., 2000 and Katabia Karpov et al., 2003. The names Bodomorpha and Sciviamonas are regarded as junior synonyms of Heteromita. The genus Proleptomonas Woodcock, 1916 according to its morphology is not a cercomonad, and is not included in the order. The genus Massisteria Larsen and Patterson, 1988 is excluded from
    [Show full text]
  • 'Regulation' of Gutless Annelid Ecology by Endosymbiotic Bacteria
    MARINE ECOLOGY PROGRESS SERIES Published January 3 Mar. Ecol. Prog. Ser. 'Regulation' of gutless annelid ecology by endosymbiotic bacteria ' Zoological Institute, University of Hamburg, Martin-Luther-King-Platz 3, D-2000 Hamburg 13, Germany Woods Hole Oceanographic Institution. Coastal Research Lab, Woods Hole, Massachusetts 02543, USA ABSTRACT: In studies on invertebrates from sulphidic environments which exploit reduced substances through symbiosis with bacteria, experimental ecological results are often underrepresented. For such studies the gutless oligochaete Inanidrilus leukodermatus is suitable due to its mobility and local abundance. It contains endosymbiotic sulphur-oxidizing bacteria and inhabits the sediment layers around the redox potential discontinuity (RPD) with access to both microoxic and sulphidic conditions. By experimental manipulation of physico-chemical gradients we have shown that the distribution pattern of these worms directly results from active migrations towards the variable position of the RPD, demonstrating the ecological relevance of the concomitant chemical conditions for these worms. Their distributional behaviour probably helps to optimize metabolic conditions for the endosymbiotic bacteria, coupling the needs of symbiont physiology with host behavioural ecology. The substantial bacterial role in the ecophysiology of the symbiosis was confirmed by biochemical analyses (stable isotope ratios for C and N; assays of lipid and amino acid composition) which showed that a dominant portion of the biochemical
    [Show full text]
  • The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
    The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach.
    [Show full text]
  • Platyhelminthes) at the Queensland Museum B.M
    VOLUME 53 ME M OIRS OF THE QUEENSLAND MUSEU M BRIS B ANE 30 NOVE mb ER 2007 © Queensland Museum PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 Volume 53 is complete in one part. NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Editor in Chief. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qm.qld.gov.au/organisation/publications/memoirs/guidetoauthors.pdf A Queensland Government Project Typeset at the Queensland Museum THE STUDY OF TURBELLARIANS (PLATYHELMINTHES) AT THE QUEENSLAND MUSEUM B.M. ANGUS Angus, B.M. 2007 11 30: The study of turbellarians (Platyhelminthes) at the Queensland Museum. Memoirs of the Queensland Museum 53(1): 157-185. Brisbane. ISSN 0079-8835. Turbellarian research was largely ignored in Australia, apart from some early interest at the turn of the 19th century. The modern study of this mostly free-living branch of the phylum Platyhelminthes was led by Lester R.G. Cannon of the Queensland Museum. A background to the study of turbellarians is given particularly as it relates to the efforts of Cannon on symbiotic fauna, and his encouragement of visiting specialists and students.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments Haydn Rubelmann III University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 11-12-2014 A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments Haydn Rubelmann III University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Marine Biology Commons, and the Microbiology Commons Scholar Commons Citation Rubelmann, Haydn III, "A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5432 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments by Haydn Rubelmann III A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Cell Biology, Microbiology and Molecular Biology College of Arts and Sciences University of South Florida Major Professor: James R. Garey, Ph.D. Randy Larsen, Ph.D. Kathleen Scott, Ph.D. David Merkler, Ph.D. Date of Approval: November 12, 2014 Keywords: environmental microbiology, extremophiles, shallow-water hydrothermal vents, anoxic marine pits Copyright © 2014, Haydn Rubelmann III DEDICATION I would like to dedicate this dissertation to three of my personal champions: my grandfather, Haydn Rubelmann Sr. (1929 - 2004), who encouraged me to pursue an academic career; my stepfather, Dale Jones (1954 - 2008), who was the best father anyone could ever hope for, and my husband, Eduardo Godoy, who suffered through not only 8 years of my doctoral tenure, but a grueling civil liberty injustice that almost wedged the Caribbean Sea between us.
    [Show full text]
  • Marine Ecological Genomics: When Genomics Meets Marine Ecology
    MARINE ECOLOGY PROGRESS SERIES Vol. 332: 257–273, 2007 Published March 5 Mar Ecol Prog Ser OPENPEN ACCESSCCESS Marine ecological genomics: when genomics meets marine ecology Samuel Dupont*, Karen Wilson, Mathias Obst, Helen Sköld, Hiroaki Nakano, Michael C. Thorndyke Kristineberg Marine Station, 566 Kristineberg, 45034 Fiskebäckskil, Sweden ABSTRACT: Genomics, proteomics and metabolomics (the ’omic’ technologies) have revolutionized the way we work and are able to think about working, and have opened up hitherto unimagined opportunities in all research fields. In marine ecology, while ‘standard’ molecular and genetic approaches are well known, the newer technologies are taking longer to make an impact. In this review we explore the potential and promise offered by genomics, genome technologies, expressed sequence tag (EST) collections, microarrays, proteomics and bar coding for modern marine ecology. Methods are succinctly presented with both benefits and limitations discussed. Through examples from the literature, we show how these tools can be used to answer fundamental ecological questions, e.g. ‘what is the relationship between community structure and ecological function in ecosystems?’; ‘how can a species and the phylogenetic relationship between taxa be identified?’; ‘what are the fac- tors responsible for the limits of the ecological niche?’; or ‘what explains the variations in life-history patterns among species?’ The impact of ecological ideas and concepts on genomic science is also dis- cussed. KEY WORDS: Sequencing · ESTs · Microarrays · Proteomics · Barcoding Resale or republication not permitted without written consent of the publisher INTRODUCTION isms have been sequenced and analyzed since the publication of the first complete genome in 1995, and Genome-based technologies are revolutionizing our today a new organism is sequenced nearly every week understanding of biology at all levels, from genes to (Rogers & Venter 2005, Van Straalen & Roelofs 2006).
    [Show full text]
  • Marteilia Refringens and Marteilia Pararefringens Sp
    Parasitology Marteilia refringens and Marteilia pararefringens sp. nov. are distinct parasites cambridge.org/par of bivalves and have different European distributions Research Article 1,2 1,2,3 1 4 5 Cite this article: Kerr R et al (2018). Marteilia R. Kerr , G. M. Ward , G. D. Stentiford , A. Alfjorden , S. Mortensen , refringens and Marteilia pararefringens sp. nov. J. P. Bignell1,S.W.Feist1, A. Villalba6,7, M. J. Carballal6, A. Cao6, I. Arzul8, are distinct parasites of bivalves and have different European distributions. Parasitology D. Ryder1 and D. Bass1,3 145, 1483–1492. https://doi.org/10.1017/ S003118201800063X 1Pathology and Microbial Systematics Theme, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK; 2Biosciences, College of Life and Environmental Sciences, Received: 19 July 2017 3 Revised: 16 January 2018 Stocker Road, University of Exeter, Exeter EX4 4QD, UK; Department of Life Sciences, The Natural History 4 Accepted: 8 February 2018 Museum, Cromwell Road, SW7 5BD, London, UK; Division of fish, Department of animal health and antimicrobial First published online: 11 June 2018 strategies, National Veterinary Institute (SVA), Sweden; 5Institute of Marine Research, PO. Box 1870, Nordnes, 5817 Bergen, Norway; 6Centro de Investigacións Mariñas, Consellería do Mar da Xunta de Galicia, 36620 Vilanova de Key words: Arousa, Spain; 7Department of Life Sciences, University of Alcalá, 28871 Alcalá de Henares, Spain and 8Institut Marteilia refringens; Marteilia pararefringens; Français de Recherche pour l’Exploitation de la Mer (Ifremer), Laboratoire de Génétique et Pathologie des ITS1 rDNA; IGS rDNA; Paramyxida; Mollusques Marins, Avenue de Mus de Loup, 17390 La Tremblade, France Ascetosporea; Mytilus edulis; Ostrea edulis Author for correspondence: Abstract Grant D.
    [Show full text]
  • Marteilia Refringens and Marteilia Pararefringens Sp
    Parasitology Marteilia refringens and Marteilia pararefringens sp. nov. are distinct parasites cambridge.org/par of bivalves and have different European distributions Research Article 1,2 1,2,3 1 4 5 Cite this article: Kerr R et al (2018). Marteilia R. Kerr , G. M. Ward , G. D. Stentiford , A. Alfjorden , S. Mortensen , refringens and Marteilia pararefringens sp. nov. J. P. Bignell1,S.W.Feist1, A. Villalba6,7, M. J. Carballal6, A. Cao6, I. Arzul8, are distinct parasites of bivalves and have different European distributions. Parasitology D. Ryder1 and D. Bass1,3 145, 1483–1492. https://doi.org/10.1017/ S003118201800063X 1Pathology and Microbial Systematics Theme, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK; 2Biosciences, College of Life and Environmental Sciences, Received: 19 July 2017 3 Revised: 16 January 2018 Stocker Road, University of Exeter, Exeter EX4 4QD, UK; Department of Life Sciences, The Natural History 4 Accepted: 8 February 2018 Museum, Cromwell Road, SW7 5BD, London, UK; Division of fish, Department of animal health and antimicrobial First published online: 11 June 2018 strategies, National Veterinary Institute (SVA), Sweden; 5Institute of Marine Research, PO. Box 1870, Nordnes, 5817 Bergen, Norway; 6Centro de Investigacións Mariñas, Consellería do Mar da Xunta de Galicia, 36620 Vilanova de Key words: Arousa, Spain; 7Department of Life Sciences, University of Alcalá, 28871 Alcalá de Henares, Spain and 8Institut Marteilia refringens; Marteilia pararefringens; Français de Recherche pour l’Exploitation de la Mer (Ifremer), Laboratoire de Génétique et Pathologie des ITS1 rDNA; IGS rDNA; Paramyxida; Mollusques Marins, Avenue de Mus de Loup, 17390 La Tremblade, France Ascetosporea; Mytilus edulis; Ostrea edulis Author for correspondence: Abstract Grant D.
    [Show full text]
  • At-Risk Species Assessment on Southern National Forests, Refuges, and Other Protected Areas
    David Moynahan | St. Marks NWR At-Risk Species Assessment on Southern National Forests, Refuges, and Other Protected Areas National Wildlife Refuge Association Mark Sowers, Editor October 2017 1001 Connecticut Avenue NW, Suite 905, Washington, DC 20036 • 202-417-3803 • www.refugeassociation.org At-Risk Species Assessment on Southern National Forests, Refuges, and Other Protected Areas Table of Contents Introduction and Methods ................................................................................................3 Results and Discussion ......................................................................................................9 Suites of Species: Occurrences and Habitat Management ...........................................12 Progress and Next Steps .................................................................................................13 Appendix I: Suites of Species ..........................................................................................17 Florida Panhandle ............................................................................................................................18 Peninsular Florida .............................................................................................................................28 Southern Blue Ridge and Southern Ridge and Valley ...............................................................................................................................39 Interior Low Plateau and Cumberland Plateau, Central Ridge and Valley ...............................................................................................46
    [Show full text]
  • Animal Phylogeny and the Ancestry of Bilaterians: Inferences from Morphology and 18S Rdna Gene Sequences
    EVOLUTION & DEVELOPMENT 3:3, 170–205 (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences Kevin J. Peterson and Douglas J. Eernisse* Department of Biological Sciences, Dartmouth College, Hanover NH 03755, USA; and *Department of Biological Science, California State University, Fullerton CA 92834-6850, USA *Author for correspondence (email: [email protected]) SUMMARY Insight into the origin and early evolution of the and protostomes, with ctenophores the bilaterian sister- animal phyla requires an understanding of how animal group, whereas 18S rDNA suggests that the root is within the groups are related to one another. Thus, we set out to explore Lophotrochozoa with acoel flatworms and gnathostomulids animal phylogeny by analyzing with maximum parsimony 138 as basal bilaterians, and with cnidarians the bilaterian sister- morphological characters from 40 metazoan groups, and 304 group. We suggest that this basal position of acoels and gna- 18S rDNA sequences, both separately and together. Both thostomulids is artifactal because for 1000 replicate phyloge- types of data agree that arthropods are not closely related to netic analyses with one random sequence as outgroup, the annelids: the former group with nematodes and other molting majority root with an acoel flatworm or gnathostomulid as the animals (Ecdysozoa), and the latter group with molluscs and basal ingroup lineage. When these problematic taxa are elim- other taxa with spiral cleavage. Furthermore, neither brachi- inated from the matrix, the combined analysis suggests that opods nor chaetognaths group with deuterostomes; brachiopods the root lies between the deuterostomes and protostomes, are allied with the molluscs and annelids (Lophotrochozoa), and Ctenophora is the bilaterian sister-group.
    [Show full text]
  • Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes
    University of Rhode Island DigitalCommons@URI Biological Sciences Faculty Publications Biological Sciences 9-26-2018 Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Christopher E. Lane Et Al Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Sina M. Adla,* , David Bassb,c , Christopher E. Laned, Julius Lukese,f , Conrad L. Schochg, Alexey Smirnovh, Sabine Agathai, Cedric Berneyj , Matthew W. Brownk,l, Fabien Burkim,PacoCardenas n , Ivan Cepi cka o, Lyudmila Chistyakovap, Javier del Campoq, Micah Dunthornr,s , Bente Edvardsent , Yana Eglitu, Laure Guillouv, Vladimır Hamplw, Aaron A. Heissx, Mona Hoppenrathy, Timothy Y. Jamesz, Anna Karn- kowskaaa, Sergey Karpovh,ab, Eunsoo Kimx, Martin Koliskoe, Alexander Kudryavtsevh,ab, Daniel J.G. Lahrac, Enrique Laraad,ae , Line Le Gallaf , Denis H. Lynnag,ah , David G. Mannai,aj, Ramon Massanaq, Edward A.D. Mitchellad,ak , Christine Morrowal, Jong Soo Parkam , Jan W. Pawlowskian, Martha J. Powellao, Daniel J. Richterap, Sonja Rueckertaq, Lora Shadwickar, Satoshi Shimanoas, Frederick W. Spiegelar, Guifre Torruellaat , Noha Youssefau, Vasily Zlatogurskyh,av & Qianqian Zhangaw a Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, S7N 5A8, SK, Canada b Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
    [Show full text]