ROLE of RIBOSOMAL PROTEIN Us9/Ys16 in TRANSLATION INITIATION AND

Total Page:16

File Type:pdf, Size:1020Kb

ROLE of RIBOSOMAL PROTEIN Us9/Ys16 in TRANSLATION INITIATION AND ROLE OF RIBOSOMAL PROTEIN uS9/yS16 IN TRANSLATION INITIATION AND ELONGATION IN YEAST Saccharomyces cerevisiae. SUPRIYA JINDAL Bachelor of Science in Biochemistry Aligarh Muslim University July 2008 Master of Science in Biochemistry Aligarh Muslim University July 2010 Submitted in partial fulfillment of requirement for the degree DOCTOR OF PHILOSOPHY IN REGULATORY BIOLOGY with specialization in Cellular and Molecular Medicine at the CLEVELAND STATE UNIVERSITY May 2019 @SupriyaCopywright We hereby approve this dissertation for Supriya Jindal Candidate for the Doctor of Philosophy in Regulatory Biology degree for the Department of Biological, Geological and Environmental Sciences and the CLEVELAND STATE UNIVERSITY College of Graduate Studies Dissertation Chairperson, Dr. Anton A. Komar BGES, 02/11/2019 Dissertation Committee Member, Dr. Barsanjit Mazumder BGES, 02/11/2019 Dissertation Committee Member, Dr. G. Valentin Börner BGES, 02/26/2019 Dissertation Committee Member, Dr. Donna Driscoll Cleveland Clinic, 01/22/2019 Dissertation Committee Member, Dr. Girish C. Shukla BGES, 02/23/2019 Dissertation Committee Member, Dr. William Merrick Case Western Reserve, 01/23/2019 Student’s Date of Defense: November 29, 2018 Dedicated to my parents and my brother ACKNOWLEDGEMENTS First and foremost I would like to acknowledge and sincerely thank Dr. Anton A. Komar for being my PhD mentor. His continued guidance, support and encouragement made it possible to successfully finish this work. He would not just give direction to my research but constantly motivated me to think and try things on my own. He always supported me through my thick and thin, whether it was losing my father or having my daughter, and yet did not let me lose sight of my research goals. His commitment, diligence and dedication towards his work will always be an inspiration for me. I believe under his mentorship, I learnt not only the necessary research skills but also the confidence to be able to solve a problem, be whatever area of life it is. I thank Dr. G. Valentine Bӧrner, Dr. Barsanjit Mazumder and Dr. Donna Driscoll for being a part of my advisory committee and giving their valuable time, suggestions and criticisms, which significantly improved my thesis work. Dr. Girish C. Shukla and Dr. Wiliam Merrick for agreeing to be a part of my dissertation defense committee and all the faculty member of the department and graduate program for their help as needed. I would also like to express my thankfulness to the graduate program for giving me the opportunity to teach as teaching assistant which was a very valuable experience. I would like to acknowledge the Cellular and Molecular Medicine Specialization program for two years funding support towards this work and Cleveland State University for providing the Doctoral Dissertation Research Expense Award Fellowship to finish my doctoral studies. I would like to acknowledge and thank my lab mates Sujata Jha, Arnab Ghosh and Nishant Singh for the initial guidance and training that I received in the lab. Also my thanks to the help and support I received from other members of the lab Puja Nanavaty, Artyem and Aanchal Agrawal over the years. A special thanks to Amra Ismail, who helped me in the last phase of my experiments while I was pregnant and delivered my baby. I would like to thank all the students, post docs and research assistants (both past and present) from the department for their help during the years with special mention to Sonal, Subhra, Kuldeep, Nikhil, Rima, Jey, Savita, Jayeeta, Jagjit, and Amit. I really valued our scientific discussions and experience sharing on many occasions, as well as the help I received in letting me borrow things many times from your lab for my thesis work. I would also like to thank the TA‟s of the department for their help on many occasions especially Subhra, Aanchal, Amra, and Ali. I would like to thank Dr. Girish Shukla for many friendly yet insightful discussions, and guidance, and going out of his way to help me in many occasions; Dr. Crystal M. Weyman for numerous help; Dr. Donald Lindmark and Dr. Ralph Gibson for their help when I was working as a teaching assistant under their supervision. I would also like to thank all the staff members of Department of Biological, Geological and Environmental Sciences and Cleveland State University (especially Michelle Zinner, Suzie Moreno, Monica Warner and Carolee Pichler) for their help and support. I thank Cleveland State University, College of Sciences and Health Professions, Department of Biological, Geological and Environmental Sciences, Cellular and Molecular Medicine Program and Center for Gene Regulation in Health and Disease for numerous funding and facilities, which were essential for the success of my work. Finally, my acknowledgements to my family: my (late) father and my mother who were my first teachers in life and who laid a strong foundation for my upbringing and education, my brother who always supported and encouraged me to be successful and independent, my husband who always stood strong with me and supported me in every possible way and, my 5 months old daughter who has been very cooperative and patient with me. Last, but not the least, my spiritual teacher Sri Sri: his knowledge and wisdom has been my life jacket in the toughest of the moments, who shows me things and life in bigger perspective and continuously inspires me to work selflessly and contribute to the world. ROLE OF RIBOSOMAL PROTEIN uS9/yS16 IN TRANSLATION INITIATION AND ELONGATION IN YEAST Saccharomyces cerevisiae. SUPRIYA JINDAL ABSTRACT The process of translation in all living cells is performed by ribosomes and is divided into four major steps (initiation, elongation, termination and ribosome recycling). Ribosomes consist of ribosomal RNA (rRNA) and proteins and are composed of two subunits small and large. There are three major sites for tRNA binding within ribosome: the (aminoacyl) A-site which accepts the aminoacyl (aa)-tRNA; the P-site, where the peptidyl-tRNA is formed and the (exit) E-site, where deacylated tRNA exits the ribosome. These sites are formed by both rRNA and ribosomal proteins. Though rRNA are involved in the catalysis of protein synthesis, the contribution of individual ribosomal proteins to protein synthesis is not fully understood in molecular terms. Yeast ribosomal protein uS9/yRps16, is universally conserved and is located on the solvent side of the small ribosomal subunit. It has a long protruding C-terminal tail (CTT) which extends towards the mRNA cleft. This CTT contributes to the formation of the ribosomal P-site. uS9/yRps16 last positively charged C terminal residue (Arg), is invariably conserved and is believed to enhance interaction of the negatively charged initiator tRNA, when base-paired to AUG codon in the P site. However, biochemical evidence in support of this notion is limited. Our biochemical analysis of the uS9 mutants showed that the C terminus of uS9 plays an vii important role during translation initiation. We found that uS9 C-terminal residues (their exact location and nature) are critical for efficient recruitment of the eIF2•GTP•Met- Met tRNAi ternary complex and for responding properly to an AUG codon in the P-site, during scanning phase of initiation. These residues also regulate hydrolysis of GTP (from Met eIF2•GTP•Met-tRNAi complex) to GDP and Pi. Furthermore, deletion of the last two residues of uS9 CTT, exhibits resistance to anisomycin, decreased association of elongation factor eEF1A to polyribosomes at the A-site and decreased programmed ribosomal frameshift (PRF) efficiency, thus showing that uS9 C terminal region modulates elongation fidelity. Therefore, we propose that uS9 CTT is critical for proper control of the complex interplay of events surrounding accommodation of initiator and elongator tRNAs in the P- and A-sites of the ribosome. viii TABLE OF CONTENTS Page ABSTRACT ...................................................................................................................... vii LIST OF TABLES .......................................................................................................... xiii LIST OF FIGURES ......................................................................................................... xiv LIST OF ABBREVIATIONS ........................................................................................ xiiv CHAPTER I. INTRODUCTION ............................................................................................... 1 1.1 Overview of translation ................................................................. 1 1.2 Translation machinery .................................................................... 2 1.2.1 Ribosomes (Composition and Evolution) .......................... 2 1.2.2 Translation factors and their evolution ............................... 8 1.3 Eukaryotic translation initiation .................................................. 15 1.4 Translation reinitiation ................................................................. 23 1.5 Eukaryotic translation elongation ................................................. 27 1.6 Programmed ribosomal frameshifting .......................................... 31 1.6.1 Programmed -1 ribosomal frameshifting .......................... 31 1.6.2 Programmed +1 ribosomal frameshifting .......................... 32 1.7 Ribosomal proteins ....................................................................... 34 1.7.1 Importance of ribosomal proteins ....................................
Recommended publications
  • Transcriptome-Wide Sites of Collided Ribosomes Reveal Principles of Translational Pausing
    bioRxiv preprint doi: https://doi.org/10.1101/710061; this version posted May 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing Alaaddin Bulak Arpata, Ang´elicaLiechtia, Mara De Matosa, Ren´eDreosa, Peggy Janicha,b, David Gatfielda,∗ aCenter for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland bpresent address: Krebsliga Schweiz, 3001 Bern, Switzerland Abstract Translation initiation is the major regulatory step defining the rate of protein production from an mRNA. Meanwhile, the impact of non-uniform ribosomal elongation rates is largely unknown. Using a modified ribosome profiling protocol based on footprints from two closely packed ribosomes (dis- omes), we have mapped ribosomal collisions transcriptome-wide in mouse liver. We uncover that the stacking of an elongating onto a paused ribosome occurs frequently and scales with translation rate, trapping ∼10% of translating ribosomes in the disome state. A distinct class of pause sites, indepen- dent of translation rate, is indicative of deterministic pausing signals. Pause site association with specific amino acids, peptide motifs and nascent polypeptide structure, is suggestive of programmed pausing as a widespread mechanism associated with protein folding. Evolutionary conservation at disome sites indicates functional relevance of translational pausing. Collectively, our disome profiling approach allows unique insights into gene regulation occurring at the step of translation elongation. ∗Lead Contact: Email address: [email protected] (David Gatfield) bioRxiv preprint doi: https://doi.org/10.1101/710061; this version posted May 5, 2020.
    [Show full text]
  • Influence of Wobble Uridine Modifications on Eukaryotic Translation
    Influence of Wobble Uridine Modifications on Eukaryotic Translation Hasan Tükenmez Department of Molecular Biology Umeå University Umeå, Sweden 2016 Copyright © Hasan Tükenmez ISBN: 978-91-7601-540-7 Cover Image: 3D structure of a tRNA molecule (see Figure 3B for details). Printed by: UmU-tryckservice, Umeå University Umeå, Sweden, 2016 Success is not final, failure is not fatal: it is the courage to continue that counts. Winston Churchill Table of Contents Papers in This Thesis........................................................... VI Abbreviations...................................................................... VII Abstract............................................................................... VIII Introduction........................................................................ 1 1. The Translation Process and Translational Control.................... 1 1.1. Translation Initiation................................................................................... 1 1.2. Translation Elongation................................................................................ 3 1.3. Translation Termination and Ribosome Recycling..................................... 5 1.4. Translation Errors and Frameshifting......................................................... 5 2. Transfer RNA............................................................................. 8 2.1. tRNA Modifications in Saccharomyces cerevisiae..................................... 9 2.2. Formation of tRNA Wobble Uridine Modifications in S. cerevisiae.........
    [Show full text]
  • ABSTRACT Title of Dissertation: the IMPACT of TRANSLATIONAL
    ABSTRACT Title of Dissertation: THE IMPACT OF TRANSLATIONAL FIDELITY ON HUMAN HEALTH Carolina Marques dos Santos Vieira, Doctor of Philosophy, 2018 Dissertation directed by: Professor and Chair, Jonathan D. Dinman, Department of Cell Biology and Molecular Genetics Ribosomopathies are a class of diseases resulting from mutations in genes encoding ribosomal proteins and ribosome biogenesis factors. Pleiotropic clinical presentations of different ribosomopathies has been taken as evidence of specialized ribosomes. Alternatively, gene dosage effects have been proposed to account for the observed differences. A yeast genetics approach was used to address this issue. Due to a historical gene duplication event, S. cerevisiae cells harbor two ohnologs for most ribosomal proteins. Deletion of one yeast ribosomal protein ohnolog was used to mimic haploinsufficiency in diploid cells (i.e. pseudo-haploinsufficient yeast). Further, insertion of a second copy of the undeleted ohnolog into the locus of the deleted ohnolog enabled separation of effects due to gene dosage from those due to ribosomal protein ohnolog identity. We found that significant changes in translational fidelity in the ribosomal protein ohnolog deletion strains were corrected by ohnolog duplication. Changes in gene dosage, particularly as they may affect the abundance of an enzyme as central as the ribosome, can impart stress through far reaching effects on cellular metabolism. Thus, as an orthogonal approach, we also examined the stress profiles of cells harboring the cbf5-D95A allele (model of X-linked Dyskeratosis Congenita) and the rps23a-R69K allele (model of MacInnes Syndrome). RNA-seq analysis revealed increased expression of proteins involved in response to oxidative stress in cbf5-D95A cells.
    [Show full text]
  • Requirements and Rationale for Amber Translation As Pyrrolysine Dissertation
    REQUIREMENTS AND RATIONALE FOR AMBER TRANSLATION AS PYRROLYSINE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By David Gordon Longstaff, B.Sc. (Hons), M.S. ***** The Ohio State University 2007 Dissertation Committee: Dr. Joseph A. Krzycki, Adviser Approved by Dr. Charles J. Daniels Dr. John N. Reeve Dr. F. Robert Tabita Adviser Graduate Program in Microbiology ABSTRACT Methanosarcina spp. are capable of utilizing methylamines as growth substrates for methanogenesis. The methylamine methyltransferases responsible for initiating this process contain an unusual amino acid, pyrrolysine, encoded by an in-frame amber codon. This dissertation examines how pyrrolysine has infiltrated the genetic code of Methanosarcina acetivorans, and the rationale for this amino acid being maintained. Amber translation as pyrrolysine requires a specific pyrrolysyl-tRNA synthetase, encoded by pylS, that catalyzes the ligation of pyrrolysine onto an amber-decoding tRNA (tRNApyl), encoded by pylT. Expression of the pylT and pylS genes in E. coli, in the presence of an exogenous source of pyrrolysine, is sufficient to allow amber translation as pyrrolysine in this organism (Chapter 2). In the Methanosarcina spp., three other genes, pylB, pylC, pylD, have been identified that are thought to be co-transcribed with pylTS. Co-expression of pylBCD with pylT and pylS in E. coli allowed amber translation as pyrrolysine to occur in the absence of an exogenous source of pyrrolysine, showing that PylB, PylC and PylD play a role in pyrrolysine biosynthesis. This suggests the pyl operon acts as a genetic code expansion cassette allowing the transmissible genetic encoding of pyrrolysine (Chapter 3).
    [Show full text]
  • Translational Accuracy of a Tethered Ribosome
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.12.988394; this version posted March 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Translational accuracy of a tethered ribosome Celine Fabret1, and Olivier Namy1 1 Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.. Abstract Ribosomes are evolutionary conserved ribonucleoprotein complexes that function as two separate subunits in all kingdoms. During translation initiation, the two subunits assemble to form the mature ribosome, which is responsible for translating the messenger RNA. When the ribosome reaches a stop codon, release factors promote translation termination and peptide release, and recycling factors then dissociate the two subunits, ready for use in a new round of translation. A tethered ribosome, called Ribo-T, in which the two subunits are covalently linked to form a single entity, was recently described in Escherichia coli1. A hybrid ribosomal RNA (rRNA) consisting of both the small and large subunit rRNA sequences was engineered. The ribosome with inseparable subunits generated in this way was shown to be functional and to sustain cell growth. Here, we investigated the translational properties of Ribo-T. We analyzed its behavior in -1 or +1 frameshifting, stop codon readthrough, and internal translation initiation. Our data indicate that covalent attachment of the two subunits modifies the properties of the ribosome, altering its ability to initiate and terminate translation correctly.
    [Show full text]
  • Pausing of Chloroplast Ribosomes Is Induced by Multiple Features and Is Linked to the Assembly of Photosynthetic Complexes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Copenhagen University Research Information System Pausing of chloroplast ribosomes is induced by multiple features and is linked to the assembly of photosynthetic complexes Gawronski, Piotr; Jensen, Poul Erik; Karpinski, Stanislaw; Leister, Dario Michael; Scharff, Lars Published in: Plant Physiology DOI: 10.1104/pp.17.01564 Publication date: 2018 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Gawronski, P., Jensen, P. E., Karpinski, S., Leister, D. M., & Scharff, L. (2018). Pausing of chloroplast ribosomes is induced by multiple features and is linked to the assembly of photosynthetic complexes. Plant Physiology, 176(3), 2557-2569. https://doi.org/10.1104/pp.17.01564 Download date: 08. apr.. 2020 Pausing of Chloroplast Ribosomes Is Induced by Multiple Features and Is Linked to the Assembly of Photosynthetic Complexes1[OPEN] Piotr Gawronski, a,b Poul Erik Jensen,a Stanisław Karpinski, b,c Dario Leister,a,d,2 and Lars B. Scharffa aCopenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark bDepartment of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland cPlant Breeding and Acclimatization Institute, National Research Institute, Radzików, 05-870 Błonie, Poland dPlant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, 82152 Planegg- Martinsried, Germany ORCID IDs: 0000-0002-9773-3109 (P.G.); 0000-0001-6524-7723 (P.E.J.); 0000-0002-4328-1207 (S.K.); 0000-0003-1897-8421 (D.L.); 0000-0003-0210-3428 (L.B.S.).
    [Show full text]
  • Genetics and Growth Regulation in Salmonella Enterica
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1052 Genetics and Growth Regulation in Salmonella enterica JESSICA M. BERGMAN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-9100-0 UPPSALA urn:nbn:se:uu:diva-235224 2014 Dissertation presented at Uppsala University to be publicly examined in B21, BMC, Husargatan 3, Uppsala, Tuesday, 16 December 2014 at 09:00 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Professor Stanley Maloy (San Diego State University, USA). Abstract Bergman, J. M. 2014. Genetics and Growth Regulation in Salmonella enterica. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1052. 59 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9100-0. Most free-living bacteria will encounter different environments and it is therefore critical to be able to rapidly adjust to new growth conditions in order to be competitively successful. Responding to changes requires efficient gene regulation in terms of transcription, RNA stability, translation and post-translational modifications. Studies of an extremely slow-growing mutant of Salmonella enterica, with a Glu125Arg mutant version of EF-Tu, revealed it to be trapped in a stringent response. The perceived starvation was demonstrated to be the result of increased mRNA cleavage of aminoacyl-tRNA synthetase genes leading to lower prolyl-tRNA levels. The mutant EF-Tu caused an uncoupling of transcription and translation, leading to increased turnover of mRNA, which trapped the mutant in a futile stringent response. To examine the essentiality of RNase E, we selected and mapped three classes of extragenic suppressors of a ts RNase E phenotype.
    [Show full text]
  • Exploring Novel Triggers for Messenger Rna Decay in Eukaryotes
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Killing The Messenger: Exploring Novel Triggers For Messenger Rna Decay In Eukaryotes Lee Elliott Vandivier University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, Biology Commons, and the Genetics Commons Recommended Citation Vandivier, Lee Elliott, "Killing The Messenger: Exploring Novel Triggers For Messenger Rna Decay In Eukaryotes" (2017). Publicly Accessible Penn Dissertations. 2621. https://repository.upenn.edu/edissertations/2621 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2621 For more information, please contact [email protected]. Killing The Messenger: Exploring Novel Triggers For Messenger Rna Decay In Eukaryotes Abstract The lifecycle of messenger RNAs is regulated by multiple layers beyond their primary sequence. In addition to carrying the information for protein synthesis, mRNAs are decorated with RNA binding proteins, marked with covalent chemical modifications, and fold into intricate secondary structures. However, the full set of information encoded by these “epitranscriptomic” layers is only partially understood, and is often only characterized for select transcripts. Thus, it is crucial to develop and apply transcriptome-wide analytical tools to probe the location and functional relevance of epitranscriptome features. In this dissertation, I focus on applying such methods toward better understanding determinants of mRNA stability, through using 1) High Throughput Annotation of Modified Nucleotides, 2) nuclease- mediated probing of RNA secondary structure, and 3) detection of partial mRNA degradation from RNA sequencing. I observe that chemical modifications tend ot mark uncapped and small RNA fragments derived from mRNAs in plants and humans, suggesting a link between modifications and mRNA stability.
    [Show full text]
  • Recoding of Translation in Turtle Mitochondrial Genomes: Programmed Frameshift Mutations and Evidence of a Modified Genetic Code
    RECODING OF TRANSLATION IN TURTLE MITOCHONDRIAL GENOMES: PROGRAMMED FRAMESHIFT MUTATIONS AND EVIDENCE OF A MODIFIED GENETIC CODE Robert David Russell B.Sc.H. (Biology), Queen's University, 2003 B.A. (Computer Science), Queen's University, 2003 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In the Department of Molecular Biology and Biochemistry O Robert David Russell 2006 SIMON FRASER UNIVERSITY Summer 2006 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. APPROVAL NAME: Robert David Russell DEGREE: Master of Science (Molecular Biology and Biochemistry) TITLE OF THESIS: Recoding of Translation in Turtle Mitochondria1 Genomes: Programmed Frameshift Mutations and Evidence of a Modified Genetic Code EXAMINING COMMITTEE: CHAIR: Dr. Melanie O'Neill Assistant Professor, Dept. of Chemistry Dr. Andrew T. Beckenbach Senior Supervisor Professor, Dept. of Biological Sciences Dr. David L. Baillie Supervisory Committee Member Professor, Dept. of Molecular Biology and Biochemistry Dr. Peter J. Unrau Supervisory Committee Member Assistant Professor, Dept. of Molecular Biology and Biochemistry Dr. Barry M. Honda Public Examiner Professor, Dept. of Molecular Biology and Biochemistry Date Approved: August 2,2006 u~lv~~srnlSIMON FRASER I' bra ry DECLARATION OF PARTIAL COPYRIGHT LICENCE The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users.
    [Show full text]
  • Translation Mechanism in Production of Cocksfoot Mottle Virus Proteins
    Recent Publications in this Series: MÄKELÄINEN KATRI MÄKELÄINEN KATRI View metadata, citation and similar papers at core.ac.uk brought to you by CORE 6/2005 Sanna Edelman provided by Helsingin yliopiston digitaalinen arkisto Mucosa-Adherent Lactobacilli: Commensal and Pathogenic Characteristics 7/2005 Leena Karhinen Glycosylation and Sorting Of Secretory Proteins in the Endoplasmic Reticulum of the Yeast Saccharomyces cerevisiae 8/2005 Saurabh Sen Functional Studies on alpha2-Adrenergic Receptor Subtypes Proteins Virus of Cocksfoot Mottle Mechanisms in Production Translation Translation: Lost in Proteins Virus of Cocksfoot Mottle Mechanisms in Production Translation Translation: Lost in 9/2005 Tiina E. Raevaara Functional Significance of Minor MLH1 Germline Alterations Found in Colon Cancer Patients 10/2005 Katja Pihlainen Liquid Chromatography and Atmospheric Pressure Ionisation Mass Spectrometry in Analysing Drug Seizures 11/2005 Pietri Puustinen Posttranslational Modifications of Potato Virus A Movement Related Proteins CP and VPg 12/2005 Irmgard Suominen Paenibacillus and Bacillus Related to Paper and Spruce Tree 13/2005 Heidi Hyytiäinen Regulatory Networks Controlling Virulence in the Plant Pathogen Erwinia Carotovora Ssp. Carotovora 14/2005 Sanna Janhunen Lost in Translation: Translation Mechanisms in Different Responses of the Nigrostriatal and Mesolimbic Dopaminergic Pathways to Nicotinic Receptor Agonists 15/2005 Denis Kainov Packaging Motors of Cystoviruses Production of Cocksfoot Mottle Virus Proteins 16/2005 Ivan Pavlov Heparin-Binding
    [Show full text]
  • Regulation of Programmed Ribosomal Frameshifting by Co-Translational Refolding RNA Hairpins
    Regulation of Programmed Ribosomal Frameshifting by Co-Translational Refolding RNA Hairpins Che-Pei Cho, Szu-Chieh Lin, Ming-Yuan Chou, Hsiu-Ting Hsu, Kung-Yao Chang* Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China Abstract RNA structures are unwound for decoding. In the process, they can pause the elongating ribosome for regulation. An example is the stimulation of -1 programmed ribosomal frameshifting, leading to 39 direction slippage of the reading-frame during elongation, by specific pseudoknot stimulators downstream of the frameshifting site. By investigating a recently identified regulatory element upstream of the SARS coronavirus (SARS-CoV) 21 frameshifting site, it is shown that a minimal functional element with hairpin forming potential is sufficient to down-regulate21 frameshifting activity. Mutagenesis to disrupt or restore base pairs in the potential hairpin stem reveals that base-pair formation is required for21 frameshifting attenuation in vitro and in 293T cells. The attenuation efficiency of a hairpin is determined by its stability and proximity to the frameshifting site; however, it is insensitive to E site sequence variation. Additionally, using a dual luciferase assay, it can be shown that a hairpin stimulated +1 frameshifting when placed upstream of a +1 shifty site in yeast. The investigations indicate that the hairpin is indeed a cis-acting programmed reading-frame switch modulator. This result provides insight into mechanisms governing21 frameshifting stimulation and attenuation. Since the upstream hairpin is unwound (by a marching ribosome) before the downstream stimulator, this study’s findings suggest a new mode of translational regulation that is mediated by the reformed stem of a ribosomal unwound RNA hairpin during elongation.
    [Show full text]
  • Transcriptome-Wide Sites of Collided Ribosomes Reveal Principles of Translational Pausing
    Downloaded from genome.cshlp.org on August 3, 2020 - Published by Cold Spring Harbor Laboratory Press Research Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing Alaaddin Bulak Arpat,1,2 Angélica Liechti,1 Mara De Matos,1 René Dreos,1,2 Peggy Janich,1 and David Gatfield1 1Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; 2Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland Translation initiation is the major regulatory step defining the rate of protein production from an mRNA. Meanwhile, the impact of nonuniform ribosomal elongation rates is largely unknown. Using a modified ribosome profiling protocol based on footprints from two closely packed ribosomes (disomes), we have mapped ribosomal collisions transcriptome-wide in mouse liver. We uncover that the stacking of an elongating onto a paused ribosome occurs frequently and scales with trans- lation rate, trapping ∼10% of translating ribosomes in the disome state. A distinct class of pause sites is indicative of deter- ministic pausing signals. Pause site association with specific amino acids, peptide motifs, and nascent polypeptide structure is suggestive of programmed pausing as a widespread mechanism associated with protein folding. Evolutionary conservation at disome sites indicates functional relevance of translational pausing. Collectively, our disome profiling approach allows unique insights into gene regulation occurring at the step of translation elongation. [Supplemental material is available for this article.] The translation of messenger RNA (mRNA) to protein is a central variation on overall translation speed of an mRNA has been sug- step in gene expression. Knowledge of this process has exploded gested early on (Dana and Tuller 2012) and, in general, how to in- since the emergence of ribosome profiling (Ribo-seq), a technique terpret apparent local differences in footprint densities is not fully based on the high-throughput sequencing of the ∼30-nt mRNA resolved.
    [Show full text]