A Sense Discrimination Engine for English, Chinese and Other Languages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Talk Bank: a Multimodal Database of Communicative Interaction
Talk Bank: A Multimodal Database of Communicative Interaction 1. Overview The ongoing growth in computer power and connectivity has led to dramatic changes in the methodology of science and engineering. By stimulating fundamental theoretical discoveries in the analysis of semistructured data, we can to extend these methodological advances to the social and behavioral sciences. Specifically, we propose the construction of a major new tool for the social sciences, called TalkBank. The goal of TalkBank is the creation of a distributed, web- based data archiving system for transcribed video and audio data on communicative interactions. We will develop an XML-based annotation framework called Codon to serve as the formal specification for data in TalkBank. Tools will be created for the entry of new and existing data into the Codon format; transcriptions will be linked to speech and video; and there will be extensive support for collaborative commentary from competing perspectives. The TalkBank project will establish a framework that will facilitate the development of a distributed system of allied databases based on a common set of computational tools. Instead of attempting to impose a single uniform standard for coding and annotation, we will promote annotational pluralism within the framework of the abstraction layer provided by Codon. This representation will use labeled acyclic digraphs to support translation between the various annotation systems required for specific sub-disciplines. There will be no attempt to promote any single annotation scheme over others. Instead, by promoting comparison and translation between schemes, we will allow individual users to select the custom annotation scheme most appropriate for their purposes. -
International Computer Science Institute Activity Report 2007
International Computer Science Institute Activity Report 2007 International Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, CA 94704-1198 USA phone: (510) 666 2900 (510) fax: 666 2956 [email protected] http://www.icsi.berkeley.edu PRINCIPAL 2007 SPONSORS Cisco Defense Advanced Research Projects Agency (DARPA) Disruptive Technology Offi ce (DTO, formerly ARDA) European Union (via University of Edinburgh) Finnish National Technology Agency (TEKES) German Academic Exchange Service (DAAD) Google IM2 National Centre of Competence in Research, Switzerland Microsoft National Science Foundation (NSF) Qualcomm Spanish Ministry of Education and Science (MEC) AFFILIATED 2007 SPONSORS Appscio Ask AT&T Intel National Institutes of Health (NIH) SAP Volkswagen CORPORATE OFFICERS Prof. Nelson Morgan (President and Institute Director) Dr. Marcia Bush (Vice President and Associate Director) Prof. Scott Shenker (Secretary and Treasurer) BOARD OF TRUSTEES, JANUARY 2008 Prof. Javier Aracil, MEC and Universidad Autónoma de Madrid Prof. Hervé Bourlard, IDIAP and EPFL Vice Chancellor Beth Burnside, UC Berkeley Dr. Adele Goldberg, Agile Mind, Inc. and Pharmaceutrix, Inc. Dr. Greg Heinzinger, Qualcomm Mr. Clifford Higgerson, Walden International Prof. Richard Karp, ICSI and UC Berkeley Prof. Nelson Morgan, ICSI (Director) and UC Berkeley Dr. David Nagel, Ascona Group Prof. Prabhakar Raghavan, Stanford and Yahoo! Prof. Stuart Russell, UC Berkeley Computer Science Division Chair Mr. Jouko Salo, TEKES Prof. Shankar Sastry, UC Berkeley, Dean -
Collection of Usage Information for Language Resources from Academic Articles
Collection of Usage Information for Language Resources from Academic Articles Shunsuke Kozaway, Hitomi Tohyamayy, Kiyotaka Uchimotoyyy, Shigeki Matsubaray yGraduate School of Information Science, Nagoya University yyInformation Technology Center, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan yyyNational Institute of Information and Communications Technology 4-2-1 Nukui-Kitamachi, Koganei, Tokyo, 184-8795, Japan fkozawa,[email protected], [email protected], [email protected] Abstract Recently, language resources (LRs) are becoming indispensable for linguistic researches. However, existing LRs are often not fully utilized because their variety of usage is not well known, indicating that their intrinsic value is not recognized very well either. Regarding this issue, lists of usage information might improve LR searches and lead to their efficient use. In this research, therefore, we collect a list of usage information for each LR from academic articles to promote the efficient utilization of LRs. This paper proposes to construct a text corpus annotated with usage information (UI corpus). In particular, we automatically extract sentences containing LR names from academic articles. Then, the extracted sentences are annotated with usage information by two annotators in a cascaded manner. We show that the UI corpus contributes to efficient LR searches by combining the UI corpus with a metadata database of LRs and comparing the number of LRs retrieved with and without the UI corpus. 1. Introduction Thesaurus1. In recent years, such language resources (LRs) as corpora • He also employed Roget’s Thesaurus in 100 words of and dictionaries are being widely used for research in the window to implement WSD. -
A Resource of Corpus-Derived Typed Predicate Argument Structures for Croatian
CROATPAS: A Resource of Corpus-derived Typed Predicate Argument Structures for Croatian Costanza Marini Elisabetta Ježek University of Pavia University of Pavia Department of Humanities Department of Humanities costanza.marini01@ [email protected] universitadipavia.it Abstract 2014). The potential uses and purposes of the resource range from multilingual The goal of this paper is to introduce pattern linking between compatible CROATPAS, the Croatian sister project resources to computer-assisted language of the Italian Typed-Predicate Argument learning (CALL). Structure resource (TPAS1, Ježek et al. 2014). CROATPAS is a corpus-based 1 Introduction digital collection of verb valency structures with the addition of semantic Nowadays, we live in a time when digital tools type specifications (SemTypes) to each and resources for language technology are argument slot, which is currently being constantly mushrooming all around the world. developed at the University of Pavia. However, we should remind ourselves that some Salient verbal patterns are discovered languages need our attention more than others if following a lexicographical methodology they are not to face – to put it in Rehm and called Corpus Pattern Analysis (CPA, Hegelesevere’s words – “a steadily increasing Hanks 2004 & 2012; Hanks & and rather severe threat of digital extinction” Pustejovsky 2005; Hanks et al. 2015), (2018: 3282). According to the findings of initiatives such as whereas SemTypes – such as [HUMAN], [ENTITY] or [ANIMAL] – are taken from a the META-NET White Paper Series (Tadić et al. shallow ontology shared by both TPAS 2012; Rehm et al. 2014), we can state that and the Pattern Dictionary of English Croatian is unfortunately among the 21 out of 24 Verbs (PDEV2, Hanks & Pustejovsky official languages of the European Union that are 2005; El Maarouf et al. -
From CHILDES to Talkbank
From CHILDES to TalkBank Brian MacWhinney Carnegie Mellon University MacWhinney, B. (2001). New developments in CHILDES. In A. Do, L. Domínguez & A. Johansen (Eds.), BUCLD 25: Proceedings of the 25th annual Boston University Conference on Language Development (pp. 458-468). Somerville, MA: Cascadilla. a similar article appeared as: MacWhinney, B. (2001). From CHILDES to TalkBank. In M. Almgren, A. Barreña, M. Ezeizaberrena, I. Idiazabal & B. MacWhinney (Eds.), Research on Child Language Acquisition (pp. 17-34). Somerville, MA: Cascadilla. Recent years have seen a phenomenal growth in computer power and connectivity. The computer on the desktop of the average academic researcher now has the power of room-size supercomputers of the 1980s. Using the Internet, we can connect in seconds to the other side of the world and transfer huge amounts of text, programs, audio and video. Our computers are equipped with programs that allow us to view, link, and modify this material without even having to think about programming. Nearly all of the major journals are now available in electronic form and the very nature of journals and publication is undergoing radical change. These new trends have led to dramatic advances in the methodology of science and engineering. However, the social and behavioral sciences have not shared fully in these advances. In large part, this is because the data used in the social sciences are not well- structured patterns of DNA sequences or atomic collisions in super colliders. Much of our data is based on the messy, ill-structured behaviors of humans as they participate in social interactions. Categorizing and coding these behaviors is an enormous task in itself. -
The British National Corpus Revisited: Developing Parameters for Written BNC2014 Abi Hawtin (Lancaster University, UK)
The British National Corpus Revisited: Developing parameters for Written BNC2014 Abi Hawtin (Lancaster University, UK) 1. The British National Corpus 2014 project The ESRC Centre for Corpus Approaches to Social Science (CASS) at Lancaster University and Cambridge University Press are working together to create a new, publicly accessible corpus of contemporary British English. The corpus will be a successor to the British National Corpus, created in the early 1990s (BNC19941). The British National Corpus 2014 (BNC2014) will be of the same order of magnitude as BNC1994 (100 million words). It is currently projected that the corpus will reach completion in mid-2018. Creation of the spoken sub-section of BNC2014 is in its final stages; this paper focuses on the justification and development of the written sub- section of BNC2014. 2. Justification for BNC2014 There are now many web-crawled corpora of English, widely available to researchers, which contain far more data than will be included in Written BNC2014. For example, the English TenTen corpus (enTenTen) is a web-crawled corpus of Written English which currently contains approximately 19 billion words (Jakubíček et al., 2013). Web-crawling processes mean that this huge amount of data can be collected very quickly; Jakubíček et al. (2013: 125) note that “For a language where there is plenty of material available, we can gather, clean and de-duplicate a billion words a day.” So, with extremely large and quickly-created web-crawled corpora now becoming commonplace in corpus linguistics, the question might well be asked why a new, 100 million word corpus of Written British English is needed. -
Comprehensive and Consistent Propbank Light Verb Annotation Claire Bonial,1 Martha Palmer2 1U.S
Comprehensive and Consistent PropBank Light Verb Annotation Claire Bonial,1 Martha Palmer2 1U.S. Army Research Laboratory, 2University of Colorado, Boulder 12800 Powder Mill Rd., Adelphi, MD, USA E-mail: [email protected], [email protected] Abstract Recent efforts have focused on expanding the annotation coverage of PropBank from verb relations to adjective and noun relations, as well as light verb constructions (e.g., make an offer, take a bath). While each new relation type has presented unique annotation challenges, ensuring consistent and comprehensive annotation of light verb constructions has proved particularly challenging, given that light verb constructions are semi-productive, difficult to define, and there are often borderline cases. This research describes the iterative process of developing PropBank annotation guidelines for light verb constructions, the current guidelines, and a comparison to related resources. Keywords: light verb constructions, semantic role labeling, NLP resources 2. PropBank Background 1. Introduction PropBank annotation consists of two tasks: sense annotation and role annotation. The PropBank lexicon The goal of PropBank (Palmer et al., 2005) is to supply provides a listing of the coarse-grained senses of a verb, consistent, general-purpose labeling of semantic roles noun, or adjective relation, and the set of roles associated across different syntactic realizations. With over two with each sense (thus, called a “roleset”). The roles are million words from diverse genres, the benchmark listed as argument numbers (Arg0 – Arg6) and annotated corpus supports the training of automatic correspond to verb-specific roles. For example: semantic role labelers, which in turn support other Natural Language Processing (NLP) areas, such as Offer-01 (transaction, proposal): machine translation. -
3 Corpus Tools for Lexicographers
Comp. by: pg0994 Stage : Proof ChapterID: 0001546186 Date:14/5/12 Time:16:20:14 Filepath:d:/womat-filecopy/0001546186.3D31 OUP UNCORRECTED PROOF – FIRST PROOF, 14/5/2012, SPi 3 Corpus tools for lexicographers ADAM KILGARRIFF AND IZTOK KOSEM 3.1 Introduction To analyse corpus data, lexicographers need software that allows them to search, manipulate and save data, a ‘corpus tool’. A good corpus tool is the key to a comprehensive lexicographic analysis—a corpus without a good tool to access it is of little use. Both corpus compilation and corpus tools have been swept along by general technological advances over the last three decades. Compiling and storing corpora has become far faster and easier, so corpora tend to be much larger than previous ones. Most of the first COBUILD dictionary was produced from a corpus of eight million words. Several of the leading English dictionaries of the 1990s were produced using the British National Corpus (BNC), of 100 million words. Current lexico- graphic projects we are involved in use corpora of around a billion words—though this is still less than one hundredth of one percent of the English language text available on the Web (see Rundell, this volume). The amount of data to analyse has thus increased significantly, and corpus tools have had to be improved to assist lexicographers in adapting to this change. Corpus tools have become faster, more multifunctional, and customizable. In the COBUILD project, getting concordance output took a long time and then the concordances were printed on paper and handed out to lexicographers (Clear 1987). -
Università Degli Studi Di Macerata
UNIVERSITÀ DEGLI STUDI DI MACERATA Dipartimento di Studi Umanistici – Lingue, Mediazione, Storia, Lettere, Filosofia Corso di Laurea Magistrale in Lingue Moderne per la Comunicazione e la Cooperazione Internazionale (ClasseLM-38) Traduzione per laComunicazione Internazionale – inglese -mod. B STRUMENTI E TECNOLOGIE PER LA TRADUZIONESPECIALISTICA 1 What is a corpus? Some (authoritative) definitions • “a collection of naturally-occurring language text, chosen to characterize a state or variety of a language” (Sinclair, 1991:171) • “a collection of texts assumed to be representative of a given language, dialect, or other subset of a language, to be used for linguistic analysis” (Francis, 1992:7) • “a closed set of texts in machine-readable form established for general or specific purposes by previously defined criteria” (Engwall, 1992:167) • “a finite-sized body of machine-readable text, sampled in order to be maximally representative of the language variety under consideration” (McEnery & Wilson, 1996:23) • “a collection of (1) machine-readable (2) authentic texts […] which is (3) sampled to be (4) representative of a particular language or language variety” (McEnery et al., 2006:5) What is / is not a corpus…? • A newspaper archive on CD-ROM? The answer is • An online glossary? always “NO” • A digital library (e.g. Project (see Gutenberg)? definition) • All RAI 1 programmes (e.g. for spoken TV language) Corpora vs. web •Corpora: – Usually stable •searches can be replicated – Control over contents •we can select the texts to be included, or have control over selection strategies – Ad-hoc linguistically-aware software to investigate them •concordancers can sort / organise concordance lines • Web (as accessed via Google or other search engines): – Very unstable •results can change at any time for reasons beyond our control – No control over contents •what/how many texts are indexed by Google’s robots? – Limited control over search results •cannot sort or organise hits meaningfully; they are presented randomly Click here for another corpus vs. -
Exploring Methods and Resources for Discriminating Similar Languages
Exploring Methods and Resources for Discriminating Similar Languages Marco Lui♥♣, Ned Letcher♥, Oliver Adams♥, Long Duong♥♣, Paul Cook♥ and Timothy Baldwin♥♣ ♥ Department of Computing and Information Systems The University of Melbourne ♣ NICTA Victoria [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract The Discriminating between Similar Languages (DSL) shared task at VarDial challenged partici- pants to build an automatic language identification system to discriminate between 13 languages in 6 groups of highly-similar languages (or national varieties of the same language). In this paper, we describe the submissions made by team UniMelb-NLP, which took part in both the closed and open categories. We present the text representations and modeling techniques used, including cross-lingual POS tagging as well as fine-grained tags extracted from a deep grammar of English, and discuss additional data we collected for the open submissions, utilizing custom- built web corpora based on top-level domains as well as existing corpora. 1 Introduction Language identification (LangID) is the problem of determining what natural language a document is written in. Studies in the area often report high accuracy (Cavnar and Trenkle, 1994; Dunning, 1994; Grefenstette, 1995; Prager, 1999; Teahan, 2000). However, recent work has shown that high accu- racy is only achieved under ideal conditions (Baldwin and Lui, 2010), and one area that needs further work is accurate discrimination between closely-related languages (Ljubesiˇ c´ et al., 2007; Tiedemann and Ljubesiˇ c,´ 2012). The problem has been explored for specific groups of confusable languages, such as Malay/Indonesian (Ranaivo-Malancon, 2006), South-Eastern European languages (Tiedemann and Ljubesiˇ c,´ 2012), as well as varieties of English (Lui and Cook, 2013), Portuguese (Zampieri and Gebre, 2012), and Spanish (Zampieri et al., 2013). -
Unit 1: Introduction
Corpus building and investigation for the Humanities: An on-line information pack about corpus investigation techniques for the Humanities Unit 1: Introduction David Evans, University of Nottingham 1.1 What a corpus is A corpus is defined here as a principled collection of naturally occurring texts which are stored on a computer to permit investigation using special software. A corpus is principled because texts are selected for inclusion according to pre-defined research purposes. Usually texts are included on external rather than internal criteria. For example, a researcher who wants to investigate metaphors used in university lectures will attempt to collect a representative sample of lectures across a number of disciplines, rather than attempting to collect lectures that include a lot of figurative language. Most commercially available corpora are made up of samples of a particular language variety which aim to be representative of that variety. Here are some examples of some of the different types of corpora and how they represent a particular variety: General corpora An example of a general corpus is the British National Corpus which “… aims to represent the universe of contemporary British English [and] to capture the full range of varieties of language use.” (Aston & Burnard 1998: 5). As a result of this aim the corpus is very large (containing some 100 million words) and contains a balance of texts from a wide variety of different domains of spoken and written language. Large general corpora are sometimes referred to as reference corpora because they are often used as a baseline against which judgements about the language varieties held in more specialised corpora can be made. -
Better Web Corpora for Corpus Linguistics and NLP
Masaryk University Faculty of Informatics Better Web Corpora For Corpus Linguistics And NLP Doctoral Thesis Vít Suchomel Brno, Spring 2020 Masaryk University Faculty of Informatics Better Web Corpora For Corpus Linguistics And NLP Doctoral Thesis Vít Suchomel Brno, Spring 2020 Declaration Hereby I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Vít Suchomel Advisor: Pavel Rychlý i Acknowledgements I would like to thank my advisors, prof. Karel Pala and prof. Pavel Rychlý for their problem insight, help with software design and con- stant encouragement. I am also grateful to my colleagues from Natural Language Process- ing Centre at Masaryk University and Lexical Computing, especially Miloš Jakubíček, Pavel Rychlý and Aleš Horák, for their support of my work and invaluable advice. Furthermore, I would like to thank Adam Kilgarriff, who gave me a wonderful opportunity to work for a leading company in the field of lexicography and corpus driven NLP and Jan Pomikálek who helped me to start. I thank to my wife Kateřina who supported me a lot during writing this thesis. Of those who have always accepted me and loved me in spite of my failures, God is the greatest. ii Abstract The internet is used by computational linguists, lexicographers and social scientists as an immensely large source of text data for various NLP tasks and language studies. Web corpora can be built in sizes which would be virtually impossible to achieve using traditional corpus creation methods.