Genome Sequence of the Cauliflower Mushroom Sparassis Crispa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix K. Survey and Manage Species Persistence Evaluation
Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site. -
SOMA News March 2011
VOLUME 23 ISSUE 7 March 2011 SOMA IS AN EDUCATIONAL ORGANIZATION DEDICATED TO MYCOLOGY. WE ENCOURAGE ENVIRONMENTAL AWARENESS BY SHARING OUR ENTHUSIASM THROUGH PUBLIC PARTICIPATION AND GUIDED FORAYS. WINTER/SPRING 2011 SPEAKER OF THE MONTH SEASON CALENDAR March Connie and Patrick March 17th » Meeting—7pm —“A Show and Tell”— Sonoma County Farm Bureau Speaker: Connie Green & Patrick March 17th—7pm Hamilton Foray March. 19th » Salt Point April April 21st » Meeting—7pm Sonoma County Farm Bureau Speaker: Langdon Cook Foray April 23rd » Salt Point May May 19th » Meeting—7pm Sonoma County Farm Bureau Speaker: Bob Cummings Foray May: Possible Morel Camping! eparated at birth but from the same litter Connie Green and Patrick Hamilton have S traveled (endured?) mushroom journeys together for almost two decades. They’ve been to the humid and hot jaguar jungles of Chiapas chasing tropical mushrooms and to EMERGENCY the cloud forests of the Sierra Madre for boletes and Indigo milky caps. In the cold and wet wilds of Alaska they hiked a spruce and hemlock forest trail to watch grizzly bears MUSHROOM tearing salmon bellies just a few yards away. POISONING IDENTIFICATION In the remote Queen Charlotte Islands their bush plane flew over “fields of golden chanterelles,” landed on the ocean, and then off into a zany Zodiac for a ride over a cold After seeking medical attention, contact and roiling sea alongside some low flying puffins to the World Heritage Site of Ninstints. Darvin DeShazer for identification at The two of them have gazed at glaciers and berry picked on muskeg bogs. More than a (707) 829-0596. -
Effects of Sparassis Crispa in Medical Therapeutics: a Systematic Review and Meta-Analysis of Randomized Controlled Trials
International Journal of Molecular Sciences Article Effects of Sparassis crispa in Medical Therapeutics: A Systematic Review and Meta-Analysis of Randomized Controlled Trials Le Thi Nhu Ngoc 1, You-Kwan Oh 2, Young-Jong Lee 3,* and Young-Chul Lee 1,* ID 1 Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do 13120, Korea; [email protected] 2 School of Chemical and Biomolecular Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-Gu, Busan 46241, Korea; [email protected] 3 Department of Herbology, College of Korean Medicine, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do 13120, Korea * Correspondence: [email protected] (Y.-J.L.); [email protected] (Y.-C.L.); Tel.: +82-31-750-5415 (Y.-J.L.); +82-31-750-8751 (Y.-C.L.); Fax: +82-31-750-5416 (Y.-J.L.); +82-31-750-4748 (Y.-C.L.) Received: 31 March 2018; Accepted: 9 May 2018; Published: 16 May 2018 Abstract: In this study, we investigated the therapeutic potential and medical applications of Sparassis crispa (S. crispa) by conducting a systematic review of the existing literature and performing a meta-analysis. The original efficacy treatment of the mushroom extract is considered primarily and searched in electronic databases. A total of 623 articles were assessed, 33 randomized controlled experiments were included after the manual screening, and some papers, review articles, or editorials that did not contain data were excluded. A comparative standard means difference (SMD) and a funnel plot between control and S. crispa groups were used as parameters to demonstrate the beneficial effects of S. -
Mating-Type Locus Organization and Mating-Type Chromosome Differentiation in the Bipolar Edible Button Mushroom Agaricus Bisporus
G C A T T A C G G C A T genes Article Mating-Type Locus Organization and Mating-Type Chromosome Differentiation in the Bipolar Edible Button Mushroom Agaricus bisporus Marie Foulongne-Oriol 1 , Ozgur Taskent 2, Ursula Kües 3, Anton S. M. Sonnenberg 4, Arend F. van Peer 4 and Tatiana Giraud 2,* 1 INRAE, MycSA, Mycologie et Sécurité des Aliments, 33882 Villenave d’Ornon, France; [email protected] 2 Ecologie Systématique Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France; [email protected] 3 Molecular Wood Biotechnology and Technical Mycology, Goettingen Center for Molecular Biosciences (GZMB), Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany; [email protected] 4 Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; [email protected] (A.S.M.S.); [email protected] (A.F.v.P.) * Correspondence: [email protected] Abstract: In heterothallic basidiomycete fungi, sexual compatibility is restricted by mating types, typically controlled by two loci: PR, encoding pheromone precursors and pheromone receptors, and HD, encoding two types of homeodomain transcription factors. We analysed the single mating-type locus of the commercial button mushroom variety, Agaricus bisporus var. bisporus, and of the related Citation: Foulongne-Oriol, M.; variety burnettii. We identified the location of the mating-type locus using genetic map and genome Taskent, O.; Kües, U.; Sonnenberg, information, corresponding to the HD locus, the PR locus having lost its mating-type role. We A.S.M.; van Peer, A.F.; Giraud, T. -
Fungal Diversity in the Mediterranean Area
Fungal Diversity in the Mediterranean Area • Giuseppe Venturella Fungal Diversity in the Mediterranean Area Edited by Giuseppe Venturella Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Fungal Diversity in the Mediterranean Area Fungal Diversity in the Mediterranean Area Editor Giuseppe Venturella MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Giuseppe Venturella University of Palermo Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) (available at: https://www.mdpi.com/journal/diversity/special issues/ fungal diversity). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-978-2 (Hbk) ISBN 978-3-03936-979-9 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Giuseppe Venturella Fungal Diversity in the Mediterranean Area Reprinted from: Diversity 2020, 12, 253, doi:10.3390/d12060253 .................... 1 Elias Polemis, Vassiliki Fryssouli, Vassileios Daskalopoulos and Georgios I. -
Review Article Natural Products and Biological Activity of the Pharmacologically Active Cauliflower Mushroom Sparassis Crispa
Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 982317, 9 pages http://dx.doi.org/10.1155/2013/982317 Review Article Natural Products and Biological Activity of the Pharmacologically Active Cauliflower Mushroom Sparassis crispa Takashi Kimura Research&DevelopmentCenter,UnitikaLtd.,23Uji-Kozakura,Uji,Kyoto611-0021,Japan Correspondence should be addressed to Takashi Kimura; [email protected] Received 4 October 2012; Accepted 25 February 2013 Academic Editor: Fabio Ferreira Perazzo Copyright © 2013 Takashi Kimura. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Sparassis crispa, also known as cauliflower mushroom, is an edible mushroom with medicinal properties. Its cultivation became popular in Japan about 10 years ago, a phenomenon that has been attributed not only to the quality of its taste, but also to its potential for therapeutic applications. Herein, I present a comprehensive summary of the pharmacological activities and mechanisms of action of its bioactive components, such as beta-glucan, and other physiologically active substances. In particular, the immunomodulatory mechanisms of the beta-glucan components are presented herein in detail. 1. Introduction 2. Chemical Constituents and Bioactive Components of S. crispa Medicinal mushrooms have an established history of use in traditional Asian therapies. Over the past 2 to 3 decades, Scientific investigation has led to the isolation of many com- scientific and medical research in Japan, China, and Korea, pounds from S. crispa that have been shown to have health- and more recently in the United States, has increasingly promoting activities. -
Conservation Status Assessment
Element Ranking Form Oregon Biodiversity Information Center Conservation Status Assessment Scientific Name: Sparassis radicata Classification: Fungus Assessment area: Global Heritage Rank: G4 Rank Date: 6/15/2018 Rank Reasons: Name now Sparassis radicata (previously Sparassis crispa) based on presentation at the Oregon Mycological Society, 2/23/2015; Wang, Z., et al., 2004 supports that Sparassis radicata is our western cauliflower mushroom and Sparassis crispa is the eastern counterpart; Index Fungorum and Mycobank still have Sparassis crispa (1821) as the current name and Sparassis radicata (1917) as a synonym. S. Loring is unsure how to handle this species, globally or by each state. This is not a rare species on the west coast, but goes extremely under-reported to agency databases and herbariums. Loring frequently sees it throughout forested areas of the PNW. It turns up multiple times at nearly all forays in the PNW. It is a prized edible and commonly documented via online mushrooms forums. Range Extent: H = >2,500,000 sq km (> 1,000,000 sq mi) Comments: Previously considered a synonym of Sparassis crispa, Sparassis radicata has been determined in recent genetic studies to be a distinct species separate from Sparassis crispa specimens in Europe and Asia (Wang et al., 2004). Sparassis radicata present in Northern California to southern British Columbia; Idaho; disjunct sites in eastern North America: Tennessee (Wang et al., 2004), and Georgia (cited in Light and Woehrel, 2009); additional sites certaintly present. Given these S. radicata sites, the range is well over 2.5 million sq km. Population Size: Not assessed Comments: None Number of Occurrences: D = 81 - 300 Comments: Given the relatively recent taxonomic change with this species, exact counts are unknown, but it is an often-encountered species in the Pacific Northwest and likely falls within this range. -
Draft Genome Sequence of a Monokaryotic
Draft genome sequence of a monokaryotic model brown-rot fungus Postia (Rhodonia) placenta SB12 Jill Gaskell, Phil Kersten, Luis Larrondo, Paulo Canessa, Diego Martínez, David Hibbett, Monika Schmoll, Christian Kubicek, Angel Martinez, Jagjit Yadav, et al. To cite this version: Jill Gaskell, Phil Kersten, Luis Larrondo, Paulo Canessa, Diego Martínez, et al.. Draft genome sequence of a monokaryotic model brown-rot fungus Postia (Rhodonia) placenta SB12. Genomics Data, Elsevier, 2017, 14, pp.21-23. 10.1016/j.gdata.2017.08.003. hal-01802856 HAL Id: hal-01802856 https://hal.archives-ouvertes.fr/hal-01802856 Submitted on 8 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Genomics Data 14 (2017) 21–23 Contents lists available at ScienceDirect Genomics Data journal homepage: www.elsevier.com/locate/gdata Data in Brief Draft genome sequence of a monokaryotic model brown-rot fungus Postia MARK (Rhodonia) placenta SB12 Jill Gaskella, Phil Kerstena, Luis F. Larrondob, Paulo Canessab,c, Diego Martinezd,1, David Hibbette, Monika Schmollf, Christian P. Kubicekg, Angel T. Martinezh, Jagjit Yadavi, Emma Masterj, Jon Karl Magnusonk, Debbie Yaverl, Randy Berkal, Kathleen Lailm, Cindy Chenm, Kurt LaButtim, Matt Nolanm, Anna Lipzenm, Andrea Aertsm, Robert Rileym, Kerrie Barrym, ⁎ Bernard Henrissatn,o,p,q, Robert Blanchetter, Igor V. -
Universidade Federal De Santa Catarina Para a Obtenção Do Grau De Mestre Em Biologia De Fungos, Algas E Plantas
0 Gesieli Kaipper Figueiró ASPECTOS TAXONÔMICOS E FILOGENÉTICOS DE Antrodia s.l. COM A INCLUSÃO DE ESPÉCIMES DA REGIÃO NEOTROPICAL Dissertação submetida ao Programa de Pós Graduação em Biologia de Fungos, Algas e Plantas da Universidade Federal de Santa Catarina para a obtenção do Grau de mestre em Biologia de Fungos, Algas e Plantas. Orientador: Prof. Dr. Elisandro Ricardo Drechsler dos Santos. Coorientador: Dr. Gerardo Lucio Robledo. Florianópolis 2015 1 2 3 AGRADECIMENTOS Aos meus orientadores Ricardo e Gerardo, pelo aprendizado, confiança e disponibilidade durante esses dois anos, não tenho palavras para agradecê-los; Aos professores do programa de Pós-Graduação em Biologia de Fungos, Algas e Plantas pelo conhecimento transmitido durante a realização das disciplinas; Agradeço aos curadores dos Herbários CORD, FLOR, IBOT e URM, pelos empréstimos de materiais; Agradeço à Prof.ª Maria Alice pelo conhecimento transmitido e por todas as conversas e experiências no micolab; Ao Mateus Arduvino Reck pela amizade, aprendizado e disponibilidade para me ajudar sempre; Ao Dr. Aristóteles Góes Neto, que por meio do projeto “FungiBrBol” forneceu subsídios indispensáveis para a execução das análises moleculares deste trabalho; Agradeço imensamente a Val, Diogo e Carlos que tiveram toda a paciência do mundo me ensinando as coisas mais básicas e lindas sobre o mundo dos Fungos; Também sou grata aos colegas do Micolab pela amizade e carinho de sempre, compartilhando momentos de alegrias e tristezas, almoços de domingos e todas as datas comemorativas -
A Revised Family-Level Classification of the Polyporales (Basidiomycota)
fungal biology 121 (2017) 798e824 journal homepage: www.elsevier.com/locate/funbio A revised family-level classification of the Polyporales (Basidiomycota) Alfredo JUSTOa,*, Otto MIETTINENb, Dimitrios FLOUDASc, € Beatriz ORTIZ-SANTANAd, Elisabet SJOKVISTe, Daniel LINDNERd, d €b f Karen NAKASONE , Tuomo NIEMELA , Karl-Henrik LARSSON , Leif RYVARDENg, David S. HIBBETTa aDepartment of Biology, Clark University, 950 Main St, Worcester, 01610, MA, USA bBotanical Museum, University of Helsinki, PO Box 7, 00014, Helsinki, Finland cDepartment of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden dCenter for Forest Mycology Research, US Forest Service, Northern Research Station, One Gifford Pinchot Drive, Madison, 53726, WI, USA eScotland’s Rural College, Edinburgh Campus, King’s Buildings, West Mains Road, Edinburgh, EH9 3JG, UK fNatural History Museum, University of Oslo, PO Box 1172, Blindern, NO 0318, Oslo, Norway gInstitute of Biological Sciences, University of Oslo, PO Box 1066, Blindern, N-0316, Oslo, Norway article info abstract Article history: Polyporales is strongly supported as a clade of Agaricomycetes, but the lack of a consensus Received 21 April 2017 higher-level classification within the group is a barrier to further taxonomic revision. We Accepted 30 May 2017 amplified nrLSU, nrITS, and rpb1 genes across the Polyporales, with a special focus on the Available online 16 June 2017 latter. We combined the new sequences with molecular data generated during the Poly- Corresponding Editor: PEET project and performed Maximum Likelihood and Bayesian phylogenetic analyses. Ursula Peintner Analyses of our final 3-gene dataset (292 Polyporales taxa) provide a phylogenetic overview of the order that we translate here into a formal family-level classification. -
Combination of Beta Glucan, Honey and Chlorhexidine in the Wound Management in a Cat a Case Report
DOI: 10.2478/fv-2019-0040 FOLIA VETERINARIA, 63, 4: 70—77, 2019 COMBINATION OF BETA GLUCAN, HONEY AND CHLORHEXIDINE IN THE WOUND MANAGEMENT IN A CAT A CASE REPORT Micháľová, A.1, Micháľ, M.2, Fialkovičová, M.1 1University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice 2Animed s.r.o., Borovianska 76, 960 01 Zvolen Slovakia [email protected] ABSTRACT ability to moisturize defective tissues, and to make a pro- tective film that hinder the intersection of impurities Wound management is one of the oldest and one and decrease secondary contamination, are the benefits of the most frequent therapeutic activities in medi- of a gel formulation, that is the most appropriate exter- cine. Over the centuries there has been described and nal form of application in veterinary practice that can tested many therapeutic substances for the treatment improve and accelerate a successful healing process of of wounds with various effects. Due to the discovery of wounds in animals. antibiotics, a wound management regime used to be lim- ited only to a local application. Over years, it has been Key words: beta glucan; chlorhexidine digluconate; shown, that comprehensive therapy which uses only an- honey; wounds tibacterial preparations, also may contain some negative points (resistance of aggressive pathogens, toxicity, aller- gic reactions, etc.). According to studies, the best solu- INTRODUCTION tion to this problem is a local application, using prepara- tions that ensure the sterility of the affected parts of the Beta glucan skin, and the utilization of agents that are able to accel- Beta glucans belongs to prominent immunomodulators erate the granulation and lead to the healing process of and activators of white blood cells, especially macrophages the wound. -
Genera of Corticioid Fungi: Keys, Nomenclature and Taxonomy Article
Studies in Fungi 5(1): 125–309 (2020) www.studiesinfungi.org ISSN 2465-4973 Article Doi 10.5943/sif/5/1/12 Genera of corticioid fungi: keys, nomenclature and taxonomy Gorjón SP BIOCONS – Department of Botany and Plant Physiology, University of Salamanca, 37007 Salamanca, Spain Gorjón SP 2020 – Genera of corticioid fungi: keys, nomenclature, and taxonomy. Studies in Fungi 5(1), 125–309, Doi 10.5943/sif/5/1/12 Abstract A review of the worldwide corticioid homobasidiomycetes genera is presented. A total of 620 genera are considered with comments on their taxonomy and nomenclature. Of them, about 420 are accepted and keyed out, described in detail with remarks on their taxonomy and systematics. Key words – Corticiaceae – Crust fungi – Diversity – Homobasidiomycetes Introduction Corticioid fungi are a diverse and heterogeneous group of fungi mainly referred to basidiomycete fungi in which basidiomes are generally resupinate. Basidiome construction is often simple, and in most cases, only generative hyphae are found. In more structured basidiomes, those with a reflexed margin or with a pileate surface, more or less sclerified hyphae are usually found. Even the basidiome structure is apparently not very complex, hymenophore configuration should be highly variable finding smooth surfaces or different variations to increase the spore production area such as rugose, tuberculate, aculeate, merulioid, folded, or poroid hymenial surfaces. It is often thought that corticioid fungi produce unattractive and little variable forms and, in most cases, they go unnoticed by most mycologists as ungraceful forms that ‘cover sticks and look like a paint stain’. Although the macroscopic variability compared to other fungi is, but not always, usually limited, under the microscope they surprise with a great diversity of forms of basidia, cystidia, spores and other microscopic elements (Hjortstam et al.