All Possible Generators of Supersymmetries of the S-Matrix
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Questions in Quantum Physics: a Personal View
Questions in quantum physics: a personal view Rudolf Haag Waldschmidtstraße 4b, D–83727 Schliersee-Neuhaus, Germany Abstract An assessment of the present status of the theory, some immediate tasks which are suggested thereby and some questions whose answers may require a longer breath since they relate to significant changes in the conceptual and mathematical structure of the theory. 1 Introduction Personal views are shaped by past experiences and so it may be worth while pondering a little about accidental circumstances which channelled the course of one’s own thinking. Meeting the right person at the right time, stumbling across a book or article which suddenly opens a new window. Fifty years ago, as eager students at Munich University just entering the phase of our own scientific research, we were studying the enormous papers by Julian Schwinger on Quantum Electrodynamics, following the arguments line by line but not really grasping the message. I remember the feelings of frustration, realizing that we were far away from the centers of action. But, mixed with this, also some dismay which did not only refer to the enormous arsenal of formalism in the new arXiv:hep-th/0001006v1 3 Jan 2000 developments of QED but began with the standard presentation of the interpretation of Quantum Theory. I remember long discussions with my thesis advisor Fritz Bopp, often while circling some blocks of streets ten times late in the evening, where we looked in vain for some reality behind the enigma of wave-particle dualism. Why should physical quantities correspond to operators in Hilbert space? Why should probabilities be described as absolute squares of amplitudes?, etc., etc. -
From Algebraic Quantum Field Theory to Effective Quantum Gravity
Algebraic approach to QFT Quantum gravity Locality and beyond: from algebraic quantum field theory to effective quantum gravity Kasia Rejzner University of York Local Quantum Physics and beyond in memoriam Rudolf Haag, 26.09.2016 Kasia Rejzner Locality and beyond 1 / 26 Algebraic approach to QFT Quantum gravity Outline of the talk 1 Algebraic approach to QFT AQFT LCQFT pAQFT 2 Quantum gravity Effective quantum gravity Observables The author of a beautiful book Local Quantum Physics. One of the fathers of LQP. We will all miss him. AQFT Algebraic approach to QFT LCQFT Quantum gravity pAQFT The father of Local Quantum Physics Rudolf Haag (1922 – 2016). Kasia Rejzner Locality and beyond 2 / 26 One of the fathers of LQP. We will all miss him. AQFT Algebraic approach to QFT LCQFT Quantum gravity pAQFT The father of Local Quantum Physics Rudolf Haag (1922 – 2016). The author of a beautiful book Local Quantum Physics. Kasia Rejzner Locality and beyond 2 / 26 We will all miss him. AQFT Algebraic approach to QFT LCQFT Quantum gravity pAQFT The father of Local Quantum Physics Rudolf Haag (1922 – 2016). The author of a beautiful book Local Quantum Physics. One of the fathers of LQP. Kasia Rejzner Locality and beyond 2 / 26 AQFT Algebraic approach to QFT LCQFT Quantum gravity pAQFT The father of Local Quantum Physics Rudolf Haag (1922 – 2016). The author of a beautiful book Local Quantum Physics. One of the fathers of LQP. We will all miss him. Kasia Rejzner Locality and beyond 2 / 26 It started as the axiomatic framework of Haag-Kastler[ Haag & Kastler 64]: a model is defined by associating to each region O of Minkowski spacetime the algebra A(O) of observables that can be measured in O. -
Lecture 1 – Symmetries & Conservation
LECTURE 1 – SYMMETRIES & CONSERVATION Contents • Symmetries & Transformations • Transformations in Quantum Mechanics • Generators • Symmetry in Quantum Mechanics • Conservations Laws in Classical Mechanics • Parity Messages • Symmetries give rise to conserved quantities . Symmetries & Conservation Laws Lecture 1, page1 Symmetry & Transformations Systems contain Symmetry if they are unchanged by a Transformation . This symmetry is often due to an absence of an absolute reference and corresponds to the concept of indistinguishability . It will turn out that symmetries are often associated with conserved quantities . Transformations may be: Active: Active • Move object • More physical Passive: • Change “description” Eg. Change Coordinate Frame • More mathematical Passive Symmetries & Conservation Laws Lecture 1, page2 We will consider two classes of Transformation: Space-time : • Translations in (x,t) } Poincaré Transformations • Rotations and Lorentz Boosts } • Parity in (x,t) (Reflections) Internal : associated with quantum numbers Translations: x → 'x = x − ∆ x t → 't = t − ∆ t Rotations (e.g. about z-axis): x → 'x = x cos θz + y sin θz & y → 'y = −x sin θz + y cos θz Lorentz (e.g. along x-axis): x → x' = γ(x − βt) & t → t' = γ(t − βx) Parity: x → x' = −x t → t' = −t For physical laws to be useful, they should exhibit a certain generality, especially under symmetry transformations. In particular, we should expect invariance of the laws to change of the status of the observer – all observers should have the same laws, even if the evaluation of measurables is different. Put differently, the laws of physics applied by different observers should lead to the same observations. It is this principle which led to the formulation of Special Relativity. -
The Homology Theory of the Closed Geodesic Problem
J. DIFFERENTIAL GEOMETRY 11 (1976) 633-644 THE HOMOLOGY THEORY OF THE CLOSED GEODESIC PROBLEM MICHELINE VIGUE-POIRRIER & DENNIS SULLIVAN The problem—does every closed Riemannian manifold of dimension greater than one have infinitely many geometrically distinct periodic geodesies—has received much attention. An affirmative answer is easy to obtain if the funda- mental group of the manifold has infinitely many conjugacy classes, (up to powers). One merely needs to look at the closed curve representations with minimal length. In this paper we consider the opposite case of a finite fundamental group and show by using algebraic calculations and the work of Gromoll-Meyer [2] that the answer is again affirmative if the real cohomology ring of the manifold or any of its covers requires at least two generators. The calculations are based on a method of the second author sketched in [6], and he wishes to acknowledge the motivation provided by conversations with Gromoll in 1967 who pointed out the surprising fact that the available tech- niques of algebraic topology loop spaces, spectral sequences, and so forth seemed inadequate to handle the "rational problem" of calculating the Betti numbers of the space of all closed curves on a manifold. He also acknowledges the help given by John Morgan in understanding what goes on here. The Gromoll-Meyer theorem which uses nongeneric Morse theory asserts the following. Let Λ(M) denote the space of all maps of the circle S1 into M (not based). Then there are infinitely many geometrically distinct periodic geodesies in any metric on M // the Betti numbers of Λ(M) are unbounded. -
10 Group Theory and Standard Model
Physics 129b Lecture 18 Caltech, 03/05/20 10 Group Theory and Standard Model Group theory played a big role in the development of the Standard model, which explains the origin of all fundamental particles we see in nature. In order to understand how that works, we need to learn about a new Lie group: SU(3). 10.1 SU(3) and more about Lie groups SU(3) is the group of special (det U = 1) unitary (UU y = I) matrices of dimension three. What are the generators of SU(3)? If we want three dimensional matrices X such that U = eiθX is unitary (eigenvalues of absolute value 1), then X need to be Hermitian (real eigenvalue). Moreover, if U has determinant 1, X has to be traceless. Therefore, the generators of SU(3) are the set of traceless Hermitian matrices of dimension 3. Let's count how many independent parameters we need to characterize this set of matrices (what is the dimension of the Lie algebra). 3 × 3 complex matrices contains 18 real parameters. If it is to be Hermitian, then the number of parameters reduces by a half to 9. If we further impose traceless-ness, then the number of parameter reduces to 8. Therefore, the generator of SU(3) forms an 8 dimensional vector space. We can choose a basis for this eight dimensional vector space as 00 1 01 00 −i 01 01 0 01 00 0 11 λ1 = @1 0 0A ; λ2 = @i 0 0A ; λ3 = @0 −1 0A ; λ4 = @0 0 0A (1) 0 0 0 0 0 0 0 0 0 1 0 0 00 0 −i1 00 0 01 00 0 0 1 01 0 0 1 1 λ5 = @0 0 0 A ; λ6 = @0 0 1A ; λ7 = @0 0 −iA ; λ8 = p @0 1 0 A (2) i 0 0 0 1 0 0 i 0 3 0 0 −2 They are called the Gell-Mann matrices. -
Quantum Mechanical Laws - Bogdan Mielnik and Oscar Rosas-Ruiz
FUNDAMENTALS OF PHYSICS – Vol. I - Quantum Mechanical Laws - Bogdan Mielnik and Oscar Rosas-Ruiz QUANTUM MECHANICAL LAWS Bogdan Mielnik and Oscar Rosas-Ortiz Departamento de Física, Centro de Investigación y de Estudios Avanzados, México Keywords: Indeterminism, Quantum Observables, Probabilistic Interpretation, Schrödinger’s cat, Quantum Control, Entangled States, Einstein-Podolski-Rosen Paradox, Canonical Quantization, Bell Inequalities, Path integral, Quantum Cryptography, Quantum Teleportation, Quantum Computing. Contents: 1. Introduction 2. Black body radiation: the lateral problem becomes fundamental. 3. The discovery of photons 4. Compton’s effect: collisions confirm the existence of photons 5. Atoms: the contradictions of the planetary model 6. The mystery of the allowed energy levels 7. Luis de Broglie: particles or waves? 8. Schrödinger’s wave mechanics: wave vibrations explain the energy levels 9. The statistical interpretation 10. The Schrödinger’s picture of quantum theory 11. The uncertainty principle: instrumental and mathematical aspects. 12. Typical states and spectra 13. Unitary evolution 14. Canonical quantization: scientific or magic algorithm? 15. The mixed states 16. Quantum control: how to manipulate the particle? 17. Measurement theory and its conceptual consequences 18. Interpretational polemics and paradoxes 19. Entangled states 20. Dirac’s theory of the electron as the square root of the Klein-Gordon law 21. Feynman: the interference of virtual histories 22. Locality problems 23. The idea UNESCOof quantum computing and future – perspectives EOLSS 24. Open questions Glossary Bibliography Biographical SketchesSAMPLE CHAPTERS Summary The present day quantum laws unify simple empirical facts and fundamental principles describing the behavior of micro-systems. A parallel but different component is the symbolic language adequate to express the ‘logic’ of quantum phenomena. -
Spin in Relativistic Quantum Theory∗
Spin in relativistic quantum theory∗ W. N. Polyzou, Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242 W. Gl¨ockle, Institut f¨urtheoretische Physik II, Ruhr-Universit¨at Bochum, D-44780 Bochum, Germany H. Wita la M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Krak´ow,Poland today Abstract We discuss the role of spin in Poincar´einvariant formulations of quan- tum mechanics. 1 Introduction In this paper we discuss the role of spin in relativistic few-body models. The new feature with spin in relativistic quantum mechanics is that sequences of rotationless Lorentz transformations that map rest frames to rest frames can generate rotations. To get a well-defined spin observable one needs to define it in one preferred frame and then use specific Lorentz transformations to relate the spin in the preferred frame to any other frame. Different choices of the preferred frame and the specific Lorentz transformations lead to an infinite number of possible observables that have all of the properties of a spin. This paper provides a general discussion of the relation between the spin of a system and the spin of its elementary constituents in relativistic few-body systems. In section 2 we discuss the Poincar´egroup, which is the group relating inertial frames in special relativity. Unitary representations of the Poincar´e group preserve quantum probabilities in all inertial frames, and define the rel- ativistic dynamics. In section 3 we construct a large set of abstract operators out of the Poincar´egenerators, and determine their commutation relations and ∗During the preparation of this paper Walter Gl¨ockle passed away. -
Numdam:AIHPA 1996__64 4 385 0
ANNALES DE L’I. H. P., SECTION A RUDOLF HAAG IZUMI OJIMA On the problem of defining a specific theory within the frame of local quantum physics Annales de l’I. H. P., section A, tome 64, no 4 (1996), p. 385-393 <http://www.numdam.org/item?id=AIHPA_1996__64_4_385_0> © Gauthier-Villars, 1996, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincare, Vol. 64, n° 4, 1996, 385 Physique theorique On the problem of defining a specific theory within the frame of local quantum physics Rudolf HAAG Waldschmidtstraße 4B D-83727 Schliersee, Germany. Izumi OJIMA Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-01, Japan. ABSTRACT. - The notion and use of germs of states are discussed. La notion de germe d’état et son utilisation sont 1’ objet de cette discussion. 1. INTRODUCTION The customary procedure of defining a specific theory or model in Quantum Field Theory starts by writing down a Lagrangean in terms of point-like fields. This defines first of all a classical field theory which is then subjected to a process called "quantization", either in the old fashioned form of replacing the numerical-valued fields by field operators with commutation relations or by a Feynman-Schwinger functional integral which should directly give the correlation functions of fields in the vacuum state. -
Random Perturbation to the Geodesic Equation
The Annals of Probability 2016, Vol. 44, No. 1, 544–566 DOI: 10.1214/14-AOP981 c Institute of Mathematical Statistics, 2016 RANDOM PERTURBATION TO THE GEODESIC EQUATION1 By Xue-Mei Li University of Warwick We study random “perturbation” to the geodesic equation. The geodesic equation is identified with a canonical differential equation on the orthonormal frame bundle driven by a horizontal vector field of norm 1. We prove that the projections of the solutions to the perturbed equations, converge, after suitable rescaling, to a Brownian 8 motion scaled by n(n−1) where n is the dimension of the state space. Their horizontal lifts to the orthonormal frame bundle converge also, to a scaled horizontal Brownian motion. 1. Introduction. Let M be a complete smooth Riemannian manifold of dimension n and TxM its tangent space at x M. Let OM denote the space of orthonormal frames on M and π the projection∈ that takes an orthonormal n frame u : R TxM to the point x in M. Let Tuπ denote its differential at u. For e Rn→, let H (e) be the basic horizontal vector field on OM such that ∈ u Tuπ(Hu(e)) = u(e), that is, Hu(e) is the horizontal lift of the tangent vector n u(e) through u. If ei is an orthonormal basis of R , the second-order dif- { } n ferential operator ∆H = i=1 LH(ei)LH(ei) is the Horizontal Laplacian. Let wi, 1 i n be a family of real valued independent Brownian motions. { t ≤ ≤ } P The solution (ut,t<ζ), to the following semi-elliptic stochastic differen- n i tial equation (SDE), dut = i=1 Hut (ei) dwt, is a Markov process with 1 ◦ infinitesimal generator 2 ∆H and lifetime ζ. -
Chapter 1 Group and Symmetry
Chapter 1 Group and Symmetry 1.1 Introduction 1. A group (G) is a collection of elements that can ‘multiply’ and ‘di- vide’. The ‘multiplication’ ∗ is a binary operation that is associative but not necessarily commutative. Formally, the defining properties are: (a) if g1, g2 ∈ G, then g1 ∗ g2 ∈ G; (b) there is an identity e ∈ G so that g ∗ e = e ∗ g = g for every g ∈ G. The identity e is sometimes written as 1 or 1; (c) there is a unique inverse g−1 for every g ∈ G so that g ∗ g−1 = g−1 ∗ g = e. The multiplication rules of a group can be listed in a multiplication table, in which every group element occurs once and only once in every row and every column (prove this !) . For example, the following is the multiplication table of a group with four elements named Z4. e g1 g2 g3 e e g1 g2 g3 g1 g1 g2 g3 e g2 g2 g3 e g1 g3 g3 e g1 g2 Table 2.1 Multiplication table of Z4 3 4 CHAPTER 1. GROUP AND SYMMETRY 2. Two groups with identical multiplication tables are usually considered to be the same. We also say that these two groups are isomorphic. Group elements could be familiar mathematical objects, such as numbers, matrices, and differential operators. In that case group multiplication is usually the ordinary multiplication, but it could also be ordinary addition. In the latter case the inverse of g is simply −g, the identity e is simply 0, and the group multiplication is commutative. -
Lecture Notes on Supersymmetry
Lecture Notes on Supersymmetry Kevin Zhou [email protected] These notes cover supersymmetry, closely following the Part III and MMathPhys Supersymmetry courses as lectured in 2017/2018 and 2018/2019, respectively. The primary sources were: • Fernando Quevedo's Supersymmetry lecture notes. A short, clear introduction to supersym- metry covering the topics required to formulate the MSSM. Also see Ben Allanach's revised version, which places slightly more emphasis on MSSM phenomenology. • Cyril Closset's Supersymmetry lecture notes. A comprehensive set of supersymmetry lecture notes with more emphasis on theoretical applications. Contains coverage of higher SUSY, and spinors in various dimensions, the dynamics of 4D N = 1 gauge theories, and even a brief overview of supergravity. • Aitchison, Supersymmetry in Particle Physics. A friendly introductory book that covers the basics with a minimum of formalism; for instance, the Wess{Zumino model is introduced without using superfields. Also gives an extensive treatment of subtleties in two-component spinor notation. The last half covers the phenomenology of the MSSM. • Wess and Bagger, Supersymmetry and Supergravity. An incredibly terse book that serves as a useful reference. Most modern sources follow the conventions set here. Many pages consist entirely of equations, with no words. We will use the conventions of Quevedo's lecture notes. As such, the metric is mostly negative, and a few other signs are flipped with respect to Wess and Bagger's conventions. The most recent version is here; please report any errors found to [email protected]. 2 Contents Contents 1 Introduction 3 1.1 Motivation.........................................3 1.2 The Poincare Group....................................6 1.3 Spinors in Four Dimensions................................9 1.4 Supersymmetric Quantum Mechanics.......................... -
Arxiv:1908.07505V1 [Gr-Qc] 20 Aug 2019 Ysrmne N Hbeo Tnl Nnt,T H Bulk
MPP-2019-180 Gravitational memory in the bulk Henk Bart Max-Planck-Institut f¨ur Physik, F¨ohringer Ring 6, 80805 M¨unchen, Germany [email protected] Abstract A method for detecting gravitational memory is proposed. It makes use of ingoing null geodesics instead of timelike geodesics in the original formulation by Christodoulou. It is argued that the method is applicable in the bulk of a space- time. In addition, it is shown that BMS symmetry generators in Newman-Unti gauge have an interpretation in terms of the memory effect. This generalises the connection between BMS supertranslations and gravitational memory, discovered by Strominger and Zhiboedov at null infinity, to the bulk. arXiv:1908.07505v1 [gr-qc] 20 Aug 2019 1 Introduction In General Relativity, there exists the gravitational memory effect, which was discov- ered by Zel’dovich and Polnarev [1], then studied by Braginsky and Thorne [2, 3] in the linearised theory, and at null infinity by Christodoulou in the nonlinear theory in [4]. It is a statement about how the relative distance between geodesics permanently changes after the passing of a burst of radiation. This effect is conceptually nontrivial in the following sense. Usually, one imagines that a ring of test particles subject to a gravitational plane wave oscillates in the + or × polarisation directions, and then returns to its initial state. The gravitational memory effect states that this is not true; the relative distance between test particles of the ring is permanently changed after the passing of the wave. The effect is often referred to as the Christodoulou memory effect, because Christoudoulou made the observation1 that gravitational backreaction in the linearised theory cannot be ignored.