Towards a Recursive Monte-Carlo Generator of Quark Jets with Spin
Total Page:16
File Type:pdf, Size:1020Kb
INT Workshop, Feb. 24-28, 2014 Towards a Recursive Monte-Carlo generator of quark jets with spin Zouina Belghobsi* Laboratoire de Physique Théorique, Univ. de Jijel, Algeria Xavier ARTRU** Institut de Physique Nucléaire de Lyon, France *[email protected] **[email protected] Introduction • A jet model which takes into account the quark spin of freedom must start with quantum amplitudes rather than probabilities. • A « toy model » following this principle was built [X. Artru, DSPIN- 09] using Pauli spinors and inspired from the multiperipheral 3 model and the classical "string + P0 " mechanism • It generated Collins and Longitudinal jet handedness effects. • This model was too simplified: hadrons were not on mass-shell. • We present an improved model with mass-shell constraints. Outlines • Quark-Multiperipheral (Q-M) and String Fragmentation (SF) models. • SF model = particular type of Q-M model 3 • The semi-classical "string + P0 " mechanism : discussion and some predictions • Semi-quantization of the string fragmentation model with spin • ab initio splitting algorithm (for recursive Monte-Carlo code) • "renormalized" input • a non-recursive mechanisms : permuted string diagrams Two models of q+q hadronization Quark Multiperipheral (QM) model String Fragmentation (SF) model h h h …. h h h hN h3 2 1 N 3 2 1 q N q4 q3 q2 q0 q1 γ* String diagram Confinement built-in Feynman diagram with a loop Cascade of "quark decays" = bad model : confinement violated Quark momenta in the Quark Multiperipheral model. 1) time- and longitudinal components momentum h h h N h3 2 1 diagram pN q0 q N q4 q3 q2 qN q0 q1 p2 q2 q p1 1 γ∗ p0 q1 = internal momentum → no classical meaning. + p- p Cutoff in |q+q-| → approximate ordering pz of p1, p2, p3,… in rapidity Quark momenta in the Quark Multiperipheral model. 2) transverse momenta Transverse momentum diagram p2T p1T = -q2T p3T q3T q p4T 4T py q 5T O p = q p 6T 6T px 5T Cutoff in qT → cutoff in pT + Local Compensation of Transverse Momenta - a cutoff in pT alone does not give a cutoff in qT - what about JETSET (LUZDIS) ? String Fragmentation model: space-time picture h1 hN light yoyo h = hadron 2 q2 quark q1 antiquark q0 t massive yoyo M = √s z γ* Time- and longitudinal quark momenta in the SF model hadron ‘‘birth’’ H1 Q1 t Hn qq pair + Q X- X n creation z qn O canonical momentum SF model ≈ QM model: = mechanical momentum q is symmetrical of OQ of the quark n n + flow of string about the X+ axis momentum through OQn ( in units κ= string tension =1) 3 The semi-classical « string + P0 » mechanism Hypothesis : the (qq) pair is created with the vacuum quantum numbers, ++ 3 therefore in the 0 = P0 state. [Le Yaouang et al] -qT string string L q q qT Azimutal correlation between qT and Squark → transverse polarization of inclusive hyperons [Lund group] → mechanism of Collins effect [X.A, J. Czyzewski, H.Yabuki] 3 Predictions of string + P0 1) for string decay in pseudoscalar mesons only : leading quark −q2T +q3T q3 q2 L 4 L3 L2 q4 q3 q2 q1 −q3T q2T meson h3 meson h2 meson h1 • alternate Collins effects • large Relative Collins Effect (or "Interference Fragmentation Function") • large Collins effect for the 2nd-rank (or unfavored) meson (due to qT - Sq correlations on both sides) 2) for a leading vector meson A The quark model says : S1 in a 1− vector meson of linear polarization A, the quark and antiquark polarizations are symmetrical about the plane ⊥ A S2 • If A along Oz the Collins effect is in azimuth φ(S1) + π/2 (opposite to the pion one) • If A ⊥ Oz it is in the azimuth 2φ(A) - φ(S1) - π/2 • On the average, the Collins effect is -1/3 the pion one [J. Czyzewski 1996] 3) Hidden spin effects (effect without external polarization) q The S - q correlation acts upon the p 2 n q T 〈 T 〉 qn+1 of the unfavored hadrons. 2 2 〈pT 〉pion > 2 〈qT 〉quark For a vector meson, of linear polarization 2 2 q - along Oz : 〈pT 〉v.m. < 2 〈qT 〉quark n - along Ox : 2 2 2 〈px 〉v.m. < 〈qT 〉quark < 〈py 〉v.m. qn+1 2 2 On the average, 〈pT 〉v.m. < 〈pT 〉pion Semi-quantized hadronization model Spin has non-classical properties (positivity constraints, entanglement). One needs a (semi-) quantum model of hadronization. We propose a model which borrows: • The spin structure of the Quark Multiperipheral model (but using Pauli spinors) • The dynamics of the String Fragmentation model Non-quantized, spin-blind, string model : the Lund-symmetric model Exclusive distribution : Q1 hn Probability(qq → h1+h2 … +hN ) ∝ exp{-2b × (blue area) } Qn × contour terms n=N 2 2 × ∏n=2 exp{-π (mqn +qnT ) / κ} ← tunnel O κ = string tension; 2b = string fragility Splitting function : 2 2 a 2 2 f(q→h+q’) ∝ exp{-b (mh +pT )/z } × (1-z) × exp{-π (m’q +q’T ) / κ} ↑ ↑ ↑ area contour tunnel Semi-quantization of the SF model, incuding spin Following Feynman, to each classical history we associate a quantum amplitude MN(q0,qN, … q2,q1) = exp{ i × (string action) } × quark propagators × vertex matrices The amplitude MN is invariant under • rotation about jet axis Lorentz subgroup • boost along jet axis • parity • quark chain reversal (basis of the symmetric Lund model) But : • No full Lorentz invariance (not required, once the jet axis is given). • Pauli spinors are sufficient. 1) action of the massive string Astring = − (κ − i b) × {hatched bleu area} κ − i b is analoguous to m – i γ /2 Quark propagator (1/2) H H’ quark Q antiquark tunnel H H’ propagator = quark propagator × antiquark propagator O × tunnel factor × spin-dependent ‘‘Feynman numerator’’ Quark propagator (2/2) quark propagator : (p’-) α antiquark propagator : (p+) α 2 2 tunnelling factor exp{ -π (mq +qT )/2κ } ‘‘spin numerator’’ : µ - σz σ.qT (analogue of m+γ·p) + - α 2 2 Total : (p p’ ) exp{-π (mq +qT )/2κ} (µ - σz σ.qT) • µ is a complex parameter ≠ mq • (p+p’-)α gives a Regge-like rapidity gap distribution 2 2 • Schwinger mechanism : α = (mq +qT ) (b - iκ) /2 Vertex spin matrices V h Q Q’ O 0 Pseudo-scalar meson (π, K, η ) : V = σz (analogue of γ5) Vector meson : V = GLAz + GT σ.AT σz Translation into propagator and vertex function for the QM picture h q' q propagators : + − + − α Δ(q) = exp{ (iκ-b) (q q )/2 } (q q - i0) (µ - σz σ.qT) vertex function (for pseudoscalars) : + − + − -α Γ(q',h,q) = exp{ (b-iκ)q q‘ /2 } (-q q' ) σz What splitting function does it give for a recursive Monte-Carlo code ? • the ab initio method has been presented at DSPIN-11 [X.A. & Zouina Belghobsi]. The "initio" or input consists in the quark propagator and q-h-q vertices • it requires a preliminary task : solving a matrix-valued integral equation • using a "renormalized input", we can replace the integral equation by an ordinary integration (much easier) Next slides: - review the ab initio method - present the "renormalized input" method The ab initio method Ladder unitarity diagram (q ) (q ) (multiperipheral picture) ρ 0 ρ 1 q 0 q1 hadronization "cross section" † σ (q1+ q0 → X) = ∑N ∫ dp1 … dpN Tr{ MN ρ(q0) MN ρ(q1) } = Tr{ Σ(q1) ρ(q1) } (implicit q0-dependence) Cross section matrix, Σ(q1) = ρ(q0) or acceptance matrix for q1 q1 2 2 - + α(ladder) Σ(q) = [ β(qT ) + γ(qT ) σ · (z × qT) ] |q0 q | ( "output" Regge ) Contains the single-spin asymmetry AN = |qT| γ / β Integral equation for the acceptance matrix Σ(q) In the ladder approximation, ∫ d3p T†(q',h,q) Σ(q') T(q',h,q) = Σ(q) Σ(q') h = Σ(q) q' q h T = Γ Δ = q' q Δ and Γ are the inputs Monte-Carlo algorithm for the splitting q → h+p' - step 1 : draw the momentum p with the probabilty 3 † F(q→ h+X) ∝ d p Trace{ Σ(q') T ρ(q) T } T† Σ(q') h ρ(q) T - step 2 : calculate the density matrix of the new quark ρ(q') = T ρ(q) T† ρ(q') = h ρ(q) - generate the jet by iterating step 1 and step 2 Renormalized input h' The physic is invariant under the "renormalization" Δ(q’) Δ(q) Δ(q) → |q+q-|λ Λ(q) Δ(q) Λ(q) Γ(q',h,q) → |q'+q-|λ Λ-1(q') Γ(q',h,q) Λ-1(q) insert Λ-1(q’) Λ-1(q) Λ(q) Λ(q) - + 2λ † wherefrom Σ(q) → | q0 q | Λ (q) Σ(q) Λ(q) One can choose λ and Λ such that Σ(q) → 1 (unit matrix). The new Γ(q',h,q) is taken as renormalized input. The new Δ(q) is deduced from [ Δ†(q) Δ(q) ] -1 ≡ U(q) = ∫ d3p Γ†(q',h,q) Γ(q',h,q) This equation replaces the integral equation ∫ T† Σ T = Σ Steps 1 and 2 proceeds as before with Σ(q') = 1 Physical meaning of U(q) in the string model Γ† j j U(q) = h i i Γ Q U(q) is the density of propagators in the M4(q) space. For the spin variable, it is a density matrix + – + – a 2 2 U(q) = exp(-b Q Q ) × (Q Q ) × [ β(qT ) + γ(qT ) σ · (z × qT) ] Symmetric Lund model spin dependence Physical meaning of renormalized Γ(q',h,q) Γ† j' j h H i' i Γ = input Q’ Q W(q',h,q) = Γ†(q',h,q) Γ(q',h,q) is the density of vertices in the M4(q') × M4(q) space In spin space, it is a positive (4×4) matrix (after a partial transposition).