A Primer of Commutative Algebra

Total Page:16

File Type:pdf, Size:1020Kb

A Primer of Commutative Algebra A Primer of Commutative Algebra James S. Milne April 10, 2010, v2.20 Abstract These notes prove the basic theorems in commutative algebra required for alge- braic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses. Available at www.jmilne.org/math/. Contents 1 Rings and algebras......................2 2 Ideals...........................3 3 Noetherian rings.......................8 4 Unique factorization...................... 13 5 Integrality......................... 15 6 Rings of fractions....................... 20 7 Direct limits......................... 24 8 Tensor Products....................... 26 9 Flatness.......................... 30 10 Finitely generated projective modules............... 34 11 The Hilbert Nullstellensatz................... 40 12 The max spectrum of a ring................... 43 13 Dimension theory for finitely generated k-algebras........... 51 14 Primary decompositions.................... 54 15 Artinian rings........................ 58 16 Dimension theory for noetherian rings............... 59 17 Regular local rings...................... 63 18 Connections with geometry................... 65 NOTATIONS AND CONVENTIONS Our convention is that rings have identity elements,1 and homomorphisms of rings respect the identity elements. A unit of a ring is an element admitting an inverse. The units of a c 2009, 2010 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permission from the copyright holder. 1An element e of a ring A is an identity element if ea a ae for all elements a of the ring. It is usually D D denoted 1A or just 1. Some authors call this a unit element, but then an element can be a unit without being a unit element. Worse, a unit need not be the unit. 1 1 RINGS AND ALGEBRAS 2 2 ring A form a group, which we denote by A. Throughout “ring” means “commutative ring”. Following Bourbaki, we let N 0;1;2;::: . For a field k, kal denotes an algebraic D f g closure of k. X YX is a subset of Y (not necessarily proper). X def YX is defined to be Y , or equals Y by definition. D X YX is isomorphic to Y . X YX and Y are canonically isomorphic (or there is a given or unique isomorphism). ' ACKNOWLEDGEMENTS I thank the following for providing corrections and comments for earlier versions of these notes: Keenan Kidwell, Andrew McLennan, Shu Otsuka. 1 Rings and algebras Let A be a ring. A subring of A is a subset that contains 1A and is closed under addition, multiplication, and the formation of negatives. An A-algebra is a ring B together with a homomorphism iB A B.A homomorphism of A-algebras B C is a homomorphism W ! ! of rings ' B C such that '.iB .a// iC .a/ for all a A. W ! D 2 Elements x1;:::;xn of an A-algebra B are said to generate it if every element of B can be expressed as a polynomial in the xi with coefficients in iB .A/, i.e., if the homomorphism of A-algebras AŒX1;:::;Xn B acting as iB on A and sending Xi to xi is surjective. We ! then write B .iB A/Œx1;:::;xn. D A ring homomorphism A B is of finite type, and B is a finitely generated A-algebra, ! if B is generated by a finite set of elements as an A-algebra. A ring homomorphism A B is finite, and B is a finite3 A-algebra, if B is finitely ! generated as an A-module. If A B and B C are finite ring homomorphisms, then so ! ! also is their composite A C . ! Let k be a field, and let A be a k-algebra. When 1A 0, the map k A is injective, ¤ ! and we can identify k with its image, i.e., we can regard k as a subring of A. When 1A 0, D the ring A is the zero ring 0 . f g Let AŒX be the ring of polynomials in the symbol X with coefficients in A. If A is an integral domain, then deg.fg/ deg.f / deg.g/, and so AŒX is also an integral domain; D C moreover, AŒX A . D Let A be an algebra over a field k. If A is an integral domain and finite as a k-algebra, then it is a field because, for each nonzero a A, the k-linear map x ax A A is 2 7! W ! injective, and hence is surjective, which shows that a has an inverse. If A is an integral domain and each element of A is algebraic over k, then for each a A, kŒa is an integral 2 domain finite over k, and hence contains an inverse of a; again A is a field. PRODUCTS AND IDEMPOTENTS An element e of a ring A is idempotent if e2 e. For example, 0 and 1 are both idempotents D — they are called the trivial idempotents. Idempotents e1;:::;en are orthogonal if ei ej 0 D 2 This notation differs from that of Bourbaki, who writes A for the multiplicative monoid A r 0 and A f g for the group of units. We shall rarely need the former, and is overused. 3This is Bourbaki’s terminology (AC V 1, 1). Finite homomorphisms of rings correspond to finite maps of varieties and schemes. Some other authors say “module-finite”. 2 IDEALS 3 for i j . Any sum of orthogonal idempotents is again idempotent. A set e1;:::;en of ¤ f g orthogonal idempotents is complete if e1 en 1. Any set of orthogonal idempo- C C D tents e1;:::;en can be made into a complete set of orthogonal idempotents by adding the f g idempotent e 1 .e1 en/. D C C If A A1 An (direct product of rings), then the elements D i ei .0;:::;1;:::;0/; 1 i n; D Ä Ä form a complete set of orthogonal idempotents in A. Conversely, if e1;:::;en is a com- 4 f g plete set of orthogonal idempotents in A, then Aei becomes a ring with the addition and multiplication induced by that of A, and A Ae1 Aen. ' 2 Ideals Let A be a ring. An ideal a in A is a subset such that a is a subgroup of A regarded as a group under addition; ˘ a a, r A ra a: ˘ 2 2 ) 2 The ideal generated by a subset S of A is the intersection of all ideals a containing S — it is easy to verify that this is in fact an ideal, and that it consists of all finite sums of the P form ri si with ri A, si S. The ideal generated by the empty set is the zero ideal 0 . 2 2 f g When S a;b;::: , we write .a;b;:::/ for the ideal it generates. D f g An ideal is principal if it is generated by a single element. Such an ideal .a/ is proper if and only a is not a unit. Thus a ring A is a field if and only if 1A 0 and A contains no ¤ nonzero proper ideals. Let a and b be ideals in A. The set a b a a; b b is an ideal, denoted a b. f C j 2 2 g C The ideal generated by ab a a; b b is denoted by ab. Clearly ab consists of all finite P f j 2 2 g sums ai bi with ai a and bi b, and if a .a1;:::;am/ and b .b1;:::;bn/, then 2 2 D D ab .a1b1;:::;ai bj ;:::;ambn/. Note that ab aA a and ab Ab b, and so D D D ab a b: (1) \ The kernel of a homomorphism A B is an ideal in A. Conversely, for any ideal a in ! a ring A, the set of cosets of a in A forms a ring A=a, and a a a is a homomorphism 7! C ' A A=a whose kernel is a. There is a one-to-one correspondence W ! b '.b/ ideals of A containing a 7! ideals of A=a : (2) 1 f g '! .b/ b f g [ For any ideal b of A, ' 1'.b/ a b. D C The ideals of A B are all of the form a b with a and b ideals in A and B. To see this, note that if c is an ideal in A B and .a;b/ c, then .a;0/ .1;0/.a;b/ c and 2 D 2 .0;b/ .0;1/.a;b/ c. Therefore, c a b with D 2 D a a .a;0/ c ; b b .0;b/ c : D f j 2 g D f j 2 g An ideal p in A is prime if p A and ab p a p or b p. Thus p is prime if and ¤ 2 ) 2 2 only if the quotient ring A=p is nonzero and has the property that ab 0; b 0 a 0; D ¤ ) D 4 But Aei is not a subring of A if n 1 because its identity element is ei 1 : However, the map a ¤ ¤ A 7! aei A Aei realizes Aei as a quotient of A. W ! 2 IDEALS 4 i.e., A=p is an integral domain. Note that if p is prime and a1 an p, then at least one 2 of the ai p (because either a1 p or a2 an p; if the latter, then either a2 p or 2 2 2 2 a3 an p; etc.). 2 An ideal m in A is maximal if it is a maximal element of the set of proper ideals in A.
Recommended publications
  • Fundamental Algebraic Geometry
    http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA.
    [Show full text]
  • MATH 145 NOTES 1. Meta Stuff and an Overview of Algebraic Geometry
    MATH 145 NOTES ARUN DEBRAY AUGUST 21, 2015 These notes were taken in Stanford’s Math 145 class in Winter 2015, taught by Ravi Vakil. I TEXed these notes up using vim, and as such there may be typos; please send questions, comments, complaints, and corrections to [email protected]. CONTENTS 1. Meta Stuff and an Overview of Algebraic Geometry: 1/5/151 2. Projective Space and Fractional Linear Transformations: 1/7/153 3. Diophantine Equations and Classifying Conics: 1/9/155 4. Quadratics and Cubics: 1/12/15 6 5. Cubics: 1/14/15 8 6. The Elliptic Curve Group and the Zariski Topology: 1/16/159 7. Affine Varieties and Noetherian Rings: 1/21/15 11 8. Localization and Varieties: 1/23/15 13 9. Hilbert’s Nullstellensatz: 1/26/15 14 10. Affine Varieties: 1/28/15 15 11. Affine Schemes: 1/30/15 17 12. Regular Functions and Regular Maps: 2/2/15 18 13. Rational Functions: 2/4/15 20 14. Rational Maps: 2/6/15 21 15. Varieties and Sheaves: 2/9/15 23 16. From Rational Functions to Rational Maps: 2/11/15 24 17. Varieties and Pre-Varieties: 2/13/15 25 18. Presheaves, Sheaves, and Affine Schemes: 2/18/15 26 19. Morphisms of Varieties and Projective Varieties: 2/20/15 28 20. Products and Projective Varieties: 2/23/15 29 21. Varieties in Action: 2/25/15 31 22. Dimension: 2/27/15 32 23. Smoothness and Dimension: 3/2/15 33 24. The Tangent and Cotangent Spaces: 3/6/15 35 25.
    [Show full text]
  • Generic Flatness for Strongly Noetherian Algebras
    Journal of Algebra 221, 579–610 (1999) Article ID jabr.1999.7997, available online at http://www.idealibrary.com on Generic Flatness for Strongly Noetherian Algebras M. Artin* Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 View metadata, citation and similar papersE-mail: at core.ac.uk [email protected] brought to you by CORE provided by Elsevier - Publisher Connector L. W. Small Department of Mathematics, University of California at San Diego, La Jolla, California 92093 E-mail: [email protected] and J. J. Zhang Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195 E-mail: [email protected] Communicated by J. T. Stafford Received November 18, 1999 Key Words: closed set; critically dense; generically flat; graded ring; Nullstellen- satz; strongly noetherian; universally noetherian. © 1999 Academic Press CONTENTS 0. Introduction. 1. Blowing up a critically dense sequence. 2. A characterization of closed sets. 3. Generic flatness. 4. Strongly noetherian and universally noetherian algebras. 5. A partial converse. *All three authors were supported in part by the NSF and the third author was also supported by a Sloan Research Fellowship. 579 0021-8693/99 $30.00 Copyright © 1999 by Academic Press All rights of reproduction in any form reserved. 580 artin, small, and zhang 0. INTRODUCTION In general, A will denote a right noetherian associative algebra over a commutative noetherian ring R.LetR0 be a commutative R-algebra. If R0 is finitely generated over R, then a version of the Hilbert basis theorem 0 asserts that A ⊗R R is right noetherian. We call an algebra A strongly right 0 0 noetherian if A ⊗R R is right noetherian whenever R is noetherian.
    [Show full text]
  • The Harvard College Mathematics Review
    The Harvard College Mathematics Review Volume 3 Spring 2011 In this issue: CHRISTOPHER POLICASTRO Artin's Conjecture ZHAO CHEN, KEVIN DONAGHUE & ALEXANDER ISAKOV A Novel Dual-Layered Approach to Geographic Profiling in Serial Crimes MICHAEL J. HOPKINS The Three-Legged Theorem MLR A Student Publication of Harvard College Website. Further information about The HCMR can be Sponsorship. Sponsoring The HCMR supports the un found online at the journal's website, dergraduate mathematics community and provides valuable high-level education to undergraduates in the field. Sponsors will be listed in the print edition of The HCMR and on a spe http://www.thehcmr.org/ fl) cial page on the The HCMR's website, (1). Sponsorship is available at the following levels: Instructions for Authors. All submissions should in clude the name(s) of the author(s), institutional affiliations (if Sponsor $0 - $99 any), and both postal and e-mail addresses at which the cor Fellow $100-$249 responding author may be reached. General questions should Friend $250 - $499 be addressed to Editor-in-Chief Rediet Abebe at hcmr@ hcs . Contributor $500-$1,999 harvard.edu. Donor $2,000 - $4,999 Patron $5,000 - $9,999 Articles. The Harvard College Mathematics Review invites Benefactor $10,000 + the submission of quality expository articles from undergrad uate students. Articles may highlight any topic in undergrad Contributors ■ Jane Street Capital • The Harvard Uni uate mathematics or in related fields, including computer sci versity Mathematics Department ence, physics, applied mathematics, statistics, and mathemat Cover Image. The image on the cover depicts several ical economics. functions, whose common zero locus describes an algebraic Authors may submit articles electronically, in .pdf, .ps, or .dvi format, to [email protected], or in hard variety (which is in this case an elliptic curve).
    [Show full text]
  • Arxiv:1507.04134V1 [Math.RA]
    NILPOTENT, ALGEBRAIC AND QUASI-REGULAR ELEMENTS IN RINGS AND ALGEBRAS NIK STOPAR Abstract. We prove that an integral Jacobson radical ring is always nil, which extends a well known result from algebras over fields to rings. As a consequence we show that if every element x of a ring R is a zero of some polynomial px with integer coefficients, such that px(1) = 1, then R is a nil ring. With these results we are able to give new characterizations of the upper nilradical of a ring and a new class of rings that satisfy the K¨othe conjecture, namely the integral rings. Key Words: π-algebraic element, nil ring, integral ring, quasi-regular element, Jacobson radical, upper nilradical 2010 Mathematics Subject Classification: 16N40, 16N20, 16U99 1. Introduction Let R be an associative ring or algebra. Every nilpotent element of R is quasi-regular and algebraic. In addition the quasi-inverse of a nilpotent element is a polynomial in this element. In the first part of this paper we will be interested in the connections between these three notions; nilpo- tency, algebraicity, and quasi-regularity. In particular we will investigate how close are algebraic elements to being nilpotent and how close are quasi- regular elements to being nilpotent. We are motivated by the following two questions: Q1. Algebraic rings and algebras are usually thought of as nice and well arXiv:1507.04134v1 [math.RA] 15 Jul 2015 behaved. For example an algebraic algebra over a field, which has no zero divisors, is a division algebra. On the other hand nil rings and algebras, which are of course algebraic, are bad and hard to deal with.
    [Show full text]
  • Solutions to Assignment 5
    Solutions to Assignment 5 Throughout, A is a commutative ring with 0 6= 1. 1. We say that a ∈ A is a zerodivisor if there exists b 6= 0 in A such that ab = 0. (This differs from Lang’s definition only to the extent that 0 will be called a zerodivisor.) Let F be the set of all ideals of A in which every element is a zerodivisor. (a) Prove that F has maximal elements. (b) Prove that every maximal element of F is a prime ideal. (c) Conclude that the set of zerodivisors is a union of prime ideals. Solution: (a) Since (0) ∈ F, the set F is nonempty. Given a chain {aα} of elements of F, it S is easily seen that α aα is an ideal as well. Since each element of this ideal is a zerodivisor, it S follows that α aα ∈ F. By Zorn’s Lemma, the set F has maximal elements. (b) Let p ∈ F be a maximal element. If x∈ / p and y∈ / p, then the ideals p + (x) and p + (y) are strictly bigger than p, and hence there exist nonzerodivisors a ∈ p + (x) and b ∈ p + (y). But then ab ∈ p + (xy) is a nonzerodivisor, and so xy∈ / p. Consequently p is a prime ideal. (c) If x ∈ A is a zerodivisor, then every element of the ideal (x) is a zerodivisor. Hence (x) ∈ F, and so (x) ⊆ p for some prime ideal p ∈ F. It follows that [ {x | x ∈ A is a zerodivisor} = p. p∈F 2. Let a be a nilpotent element of A.
    [Show full text]
  • [Nilradical of a Ring] Let N ⊂ a Consist of All Nilpotent Elements. Prove That N
    ALGEBRA 1: PROBLEM SET 10 A = a commutative ring in all the problems below. Problem 1. [Nilradical of a ring] Let n ⊂ A consist of all nilpotent elements. Prove that \ n = p p⊂A prime ideal Problem 2. Let a ⊂ A be the set of all zero{divisors of A. Is a an ideal of A? Problem 3. Let n 2 A be a nilpotent element and u 2 A be a unit (that is, u has a multiplicative inverse). Prove that u + n is again a unit. Problem 4. Let S ⊂ A be a set such that 0 62 S and r; s 2 S implies rs 2 S (multiplicatively closed set). Let p be an ideal which is maximal among the ideals not intersecting S. That is, maximal with respect to inclusion, from the following set: IS = fa ⊂ A an ideal such that a \ S = ;g Prove that p is prime. Problem 5. If for every x 2 A there exists an n ≥ 2 such that xn = x, then prove that every prime ideal in A is maximal. Problem 6. Let B be another commutative ring and let f : A ! B be a ring homomorphism. Let p ⊂ A be a prime ideal and define b ⊂ B to be the ideal generated by f(p). Prove or disprove: b is a prime ideal. Problem 7. Let K be a field and R = K[[x]] be the ring of formal power series in a variable x with coefficients from K. Prove that R is a local ring, with unique maximal ideal m = (x).
    [Show full text]
  • Hilbert Specialization of Parametrized Varieties 2 Holds in the Case of a K(T )-Variety of Codimension Bigger Than 1
    HILBERT SPECIALIZATION OF PARAMETRIZED VARIETIES ANGELO IADAROLA Abstract. Hilbert specialization is an important tool in Field Arithmetic and Arithmetic Geometry, which has usually been intended for polynomials, hence hypersurfaces, and at scalar values. In this article, first, we extend this tool to prime ideals, hence affine varieties, and offer an application to the study of the irreducibility of the intersection of varieties. Then, encouraged by recent results, we consider the more general situation in which the specialization is done at polynomial values, instead of scalar values. 1. Introduction Hilbert Irreducibility Theorem has been a core result in Field Arithmetic for many decades. A simple form, see for example [FJ08, Page 218], says that, given an irreducible polynomial P (T, Y ) in Q(T )[Y ], one can find infinitely many t ∈ Q such that the so-called specialized polynomial P (t, Y ) is irreducible in Q[Y ]. This result has been generalized under many aspects. First of all, the notion of Hilbertian field has been introduced to identify all those fields K for which the previous statement is verified in the case of polynomials, which are separable in Y , if we replace Q with K, see for example [FJ08, Page 218]. Moreover, if K is of characteristic 0 or imperfect, the same result holds if we replace a separable irreducible polynomial in two variables P (T, Y ) in K(T )[Y ] with several irreducible polynomials P1(T , Y ),...,Pn(T , Y ) in K(T )[Y ] in two arrays of variables, T = (T1,...,Tr) and Y = (Y1,...,Ys) for r, s positive integers: we can find a Zariski- r dense subset H ⊂ AK such that the polynomial Pi(t, Y ) is irreducible in K[Y ] for every t ∈ H and i =1,...,n, see for example [FJ08, Section 12.1].
    [Show full text]
  • Gps Abh1.Pdf
    1 Lecture L6: Pause and Refresh By reading the following summaries of the first five lectures, the rest of the book may become intelligible without studying the details of those lectures. In the first lecture we have introduced the basic structures of algebra such as groups, rings, fields, vector spaces, ideals, modules, polynomials, rational functions, euclidean domains, principal ideal domains, and unique factorization domains. In the second lecture, after introducing power series, meromorphic series, and valuations, we show the equivalence of well-ordering and Zorn's Lemma and use them to establish the existence of vector space basis, transcendence basis, algebraic closure, and maximal ideals. The third lecture deals with the power series theorems of Newton, Hensel, and Weierstrass. The fourth and fifth lectures deal with ideals, modules, varieties, and models which are the avatars of varieties full of local rings. x1: SUMMARY OF LECTURE L1 ON QUADRATIC EQUATIONS For sets (= collections of objects) S and T , a map φ : S ! T is an assignment which to every x 2 S, i.e., to every element (= object) x of S, assigns φ(x) 2 T ; this may be written x 7! φ(x); the element φ(x) is called the image of x under φ; we put dom(φ) = S and ran(φ) = T and call these the domain and range of φ respectively. The composition of maps φ : S ! T and : T ! U is the map φ : S ! U given by ( φ)(x) = (φ(x)). The map φ is injective, or is an injection, if φ(x) = φ(y) ) x = y.A subset of S is a set R whose objects are amongst the objects of S; we write R ⊂ S; we may also write S ⊃ R and call S an overset of R.
    [Show full text]
  • Grundlehren Der Mathematischen Wissenschaften 334 a Series of Comprehensive Studies in Mathematics
    Grundlehren der mathematischen Wissenschaften 334 A Series of Comprehensive Studies in Mathematics Series editors M. Berger B. Eckmann P. de la Harpe F. Hirzebruch N. Hitchin L. Hörmander M.-A. Knus A. Kupiainen G. Lebeau M.Ratner D.Serre Ya.G.Sinai N.J.A. Sloane B. Totaro A. Vershik M. Waldschmidt Editor-in-Chief A. Chenciner J. Coates S.R.S. Varadhan Edoardo Sernesi Deformations of Algebraic Schemes ABC Edoardo Sernesi Universitá "Roma Tre" Department of Mathematics Largo San Leonardo Murialdo 1 00146 Roma, Italy e-mail: [email protected] Library of Congress Control Number: 2006924565 Mathematics Subject Classification (2000): 14D15, 14B12 ISSN 0072-7830 ISBN-10 3-540-30608-0 Springer Berlin Heidelberg New York ISBN-13 978-3-540-30608-5 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com c Springer-Verlag Berlin Heidelberg 2006 Printed in The Netherlands The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Igor R. Shafarevich Schemes and Complex Manifolds Third Edition
    Igor R. Shafarevich Basic Algebraic Geometry 2 Schemes and Complex Manifolds Third Edition Basic Algebraic Geometry 2 Igor R. Shafarevich Basic Algebraic Geometry 2 Schemes and Complex Manifolds Third Edition Igor R. Shafarevich Translator Algebra Section Miles Reid Steklov Mathematical Institute Mathematics Institute of the Russian Academy of Sciences University of Warwick Moscow, Russia Coventry, UK ISBN 978-3-642-38009-9 ISBN 978-3-642-38010-5 (eBook) DOI 10.1007/978-3-642-38010-5 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2013945857 Mathematics Subject Classification (2010): 14-01 Translation of the 3rd Russian edition entitled “Osnovy algebraicheskoj geometrii”. MCCME, Moscow 2007, originally published in Russian in one volume © Springer-Verlag Berlin Heidelberg 1977, 1994, 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • A Primer of Commutative Algebra
    A Primer of Commutative Algebra James S. Milne August 15, 2014, v4.01 Abstract These notes collect the basic results in commutative algebra used in the rest of my notes and books. Although most of the material is standard, the notes include a few results, for example, the affine version of Zariski’s main theorem, that are difficult to find in books. Contents 1 Rings and algebras......................3 2 Ideals...........................3 3 Noetherian rings.......................9 4 Unique factorization...................... 14 5 Rings of fractions....................... 18 6 Integral dependence...................... 24 7 The going-up and going-down theorems.............. 30 8 Noether’s normalization theorem................. 33 9 Direct and inverse limits.................... 35 10 Tensor Products....................... 38 11 Flatness.......................... 43 12 Finitely generated projective modules............... 49 13 Zariski’s lemma and the Hilbert Nullstellensatz............ 57 14 The spectrum of a ring..................... 60 15 Jacobson rings and max spectra.................. 68 16 Artinian rings........................ 73 17 Quasi-finite algebras and Zariski’s main theorem............ 74 18 Dimension theory for finitely generated k-algebras........... 81 19 Primary decompositions.................... 86 20 Dedekind domains...................... 91 21 Dimension theory for noetherian rings............... 96 22 Regular local rings...................... 100 23 Flatness and fibres...................... 102 24 Completions......................... 105 A Solutions to the exercises..................... 107 References........................... 108 Index............................. 109 c 2009, 2010, 2011, 2012, 2013, 2014 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permission from the copyright holder. Available at www.jmilne.org/math/. 1 CONTENTS 2 Notations and conventions Our convention is that rings have identity elements,1 and homomorphisms of rings respect the identity elements.
    [Show full text]