Crustal Deformation Model of the Beppu-Shimabara Graben Area, Central Kyushu, Japan, Based on Inversion of Three-Component GNSS

Total Page:16

File Type:pdf, Size:1020Kb

Crustal Deformation Model of the Beppu-Shimabara Graben Area, Central Kyushu, Japan, Based on Inversion of Three-Component GNSS Mochizuki and Mitsui Earth, Planets and Space (2016) 68:177 DOI 10.1186/s40623-016-0550-x LETTER Open Access Crustal deformation model of the Beppu Shimabara graben area, central Kyushu, Japan, −based on inversion of three‑component GNSS data in 2000–2010 Kazuma Mochizuki and Yuta Mitsui* Abstract The 2016 Kumamoto earthquakes, including an Mw-7 right-lateral earthquake on April 15 (UTC), occurred along faults within the Beppu Shimabara graben in central Kyushu, Japan. Previous studies showed that the graben area was under heterogeneous− stress conditions with north–south T-axes and spreading in a north–south direction. Here, we construct a detailed crustal deformation model using three-component Global Navigation Satellite System data in 2000–2010 and considering the distribution of geological fault traces in this area. Our inversion analysis suggests that the strain accumulation rate for the right-lateral seismic slip segment (corresponding to the Futagawa fault), where the largest of the 2016 Kumamoto earthquakes ruptured, was several times smaller than the other segments in the Beppu Shimabara graben. Furthermore, we observe distinct subsidence along the Beppu Shimabara graben. Our base model− attributes the subsidence to deflation of magma reservoirs beneath volcanoes,− but the observed vertical velocities are poorly fit. In order to improve the fitting results for the vertical deformation, we need more sophisticated volcano-deformation model (such as a sill-like deformation source for Mt. Aso) or graben model. Keywords: The 2016 Kumamoto earthquakes, Kyushu, GNSS, Crustal deformation, Beppu Shimabara graben, Volcano, Block-fault model, Nucleation − Introduction Tada (1984, 1985) investigated crustal deformation The 2016 Kumamoto earthquakes, including an Mw-7 of the Kyushu region using repeated triangulation sur- earthquake on April 15 (UTC), struck a central part of veys for 1892–1982 and found that the Beppu−Shima- the island of Kyushu, southwest Japan. These earthquakes bara graben, going across the central Kyushu region in occurred along faults within the Beppu−Shimabara an east–west direction, was spreading in a north–south graben area. The graben area includes some volcanoes, direction about a rate of 15 mm/year. Tada interpreted notably Mt. Aso with a large caldera whose area is about the Beppu−Shimabara graben as a terminal part of 400 km2 (Fig. 1). Around the source region of the 2016 the Okinawa Trough (a back-arc basin) extending events, several M6 class historical earthquakes occurred southward. in 1895, 1894, 1889, 1848, 1723, 1625, 1619 (Utsu 1979; On the basis of horizontal displacement data observed Usami 2013). This area is under heterogeneous stress by Global Navigation Satellite System (GNSS) for 1996– conditions associated with both right-lateral faults and 2002, Nishimura and Hashimoto (2006) constructed a normal faults (Matsumoto et al. 2015), whose T-axes block-fault model for southwest Japan including rotation trend north–south. of rigid blocks and elastic strain accumulation on inland faults and subduction zone interfaces. Their model *Correspondence: [email protected] included a block boundary along the Beppu−Shima- Department of Geosciences, Shizuoka University, Suruga‑ku, bara graben. Loveless and Meade (2010) also made a Shizuoka 422‑8529, Japan © The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Mochizuki and Mitsui Earth, Planets and Space (2016) 68:177 Page 2 of 9 three-component (both horizontal and vertical) GNSS data in 2000–2010. Methods We use time-series data of the F3 solution (Nakagawa et al. 2009) observed in a GNSS array by Geospatial Infor- mation Authority of Japan, GEONET. We examine posi- tions at 65 stations from January 2000 to January 2010, located in a range of 129.8°E–132°E and 31.9°N–34°N. We express displacements relative to a fixed station, Maebaru, numbered 0450, at 130.251°E and 33.536°N. We estimate velocities at all the stations as follows. First, we remove the offsets related to antenna replace- ment. Next, we calculate median values for each month (121 months during the above period). Then we exclude effects of non-stationary deformation due to nearby large events from the median time series, using fault models in previous studies: the 2001 Geiyo earthquake (Geospa- tial Information Authority of Japan 2001), the 2003–2004 Fig. 1 Epicenter locations of the 2016 Kumamoto earthquakes in Bungo slow slip events (Geospatial Information Author- Kyushu island, southwest Japan. The beach-ball symbols illustrate ity of Japan 2004), and the 2005 Fukuoka earthquake moment tensor solutions (magnitude 4) in April 2016, using (Nishimura et al. 2006). Finally, we obtain the observed ≥ the F-net broadband seismograph network, provided by National velocities per year (annual velocities) by linear regression Research Institute for Earth Science and Disaster Resilience. The of the processed time-series data with standard errors. red lines show geological fault traces from active fault database by National Institute of Advanced Industrial Science and Technology. The Table 1 compiles the observed annual velocities and pink triangles represent active volcanoes. The purple oval approxi- their uncertainties (95% confidence intervals), and Fig. 2 mately shows the area called “Beppu Shimabara graben” (e.g., Tada shows the annual velocities during 2000–2010. Since − 1985) the uncertainties of the linear regression are sufficiently small, at most 0.48 mm/year, we do not illustrate the uncertainties in Fig. 2. The horizontal velocities repre- block-fault model for Japan, and their result showed that sent the effects of westward subduction of the oceanic inland faults across the central Kyushu region in the E–W Philippine plate on the east side and the north–south direction opened around 2–9 mm/year in the N–S direc- divergence along the Beppu−Shimabara graben. From tion and slipped right-laterally about 6–9 mm/year as the vertical velocities, we find subsidence in the graben boundaries of crustal blocks. Similar block-fault models area of the central Kyushu region, particularly near the have been developed (Nishimura and Takada 2015; Taka- volcanoes. hashi and Hashimoto 2015). Using the velocity field and the distribution of the The above previous GNSS studies mainly focused on geological fault traces (red lines in Figs. 1, 2), we define the current tectonics for the whole of or southwest Japan. five blocks ([1]–[5]) and block boundaries (N1–N2, C1– However, in order to investigate strain accumulation for C5, U1, H1) on Kyushu island, as shown in Fig. 3. Each each fault, a more detailed model reflecting surface fault block rotates about its Euler pole, with relative rota- traces is preferable. tion between adjacent blocks giving the slip rate on the Here, we focus on the strain accumulation states boundary. Shallow part of several block boundaries (N1, C1–C5) works as sources of elastic strain accumulation around the Beppu−Shimabara graben area prior to the 2016 Kumamoto earthquakes. We employ verti- (dislocation sources) as “slip deficits” (e.g., Matsu’ura cal deformation as well as the horizontal deformation et al. 1986) leading to earthquakes. We set their geom- in the graben area. The vertical deformation may reflect etries on the basis of recent seismicities and the infor- characteristics of the graben area, especially around the mation about the fault traces by National Institute of volcanoes. We present a detailed model for the crus- Advanced Industrial Science and Technology (available tal deformation around the central Kyushu region con- online at https://gbank.gsj.jp/activefault/index_e_gmap. sidering the three-dimensional surface motion within html). The dip angles of the dislocation sources are a framework of spherical block rotation, elastic strain also based on the same information. We assume that accumulation on faults, and volcanic deformation, using the upper and lower edges of the dislocation sources Mochizuki and Mitsui Earth, Planets and Space (2016) 68:177 Page 3 of 9 Table 1 Observed annual velocities and their uncertainties by linear regression at 65 GNSS stations Lat. (°) Lon. (°) Vel. (NS) Vel. (EW) Vel. (UD) Unc. (NS) Unc. (EW) Unc. (UD) (mm/year) (mm/year) (mm/year) (mm/year) (mm/year) (mm/year) 33.73 130.48 0 0 0 33.46 131.69 1.1 2.4 2.3 0.12 0.25 0.33 − − 33.33 130.97 5.3 14.0 2.4 0.20 0.12 0.31 − 32.92 131.88 2.2 6.0 0.6 0.12 0.14 0.29 − − 33.48 129.85 4.5 18.9 3.9 0.29 0.25 0.29 − 32.55 130.65 0.9 1.2 1.0 0.14 0.07 0.24 − 32.45 131.63 4.3 5.5 0.6 0.14 0.12 0.25 − − − 32.01 130.19 3.3 14.9 1.7 0.17 0.14 0.25 − 33.54 130.25 4.8 1.7 0.6 0.33 0.42 0.37 − − 33.47 130.83 2.4 4.9 0.3 0.14 0.13 0.20 − − 33.21 130.56 0.5 3.5 1.7 0.12 0.13 0.18 − − − 33.27 130.27 0.2 1.5 2.9 0.06 0.12 0.33 − 33.10 130.09 0.5 0.8 1.0 0.10 0.12 0.22 − − 32.87 130.27 3.9 2.4 0.2 0.24 0.13 0.20 − − − 32.64 130.15 3.6 2.5 0.0 0.10 0.12 0.19 − − 32.93 130.55 1.1 2.8 1.6 0.17 0.16 0.24 − − − 32.84 130.76 2.2 5.3 0.3 0.16 0.16 0.20 − − − 32.74 131.10 1.9 10.4 0.0 0.15 0.17 0.24 − − 32.33 129.99 4.8 1.3 0.3 0.10 0.14 0.20 − − 32.30 130.51 5.1 4.3 0.3 0.14 0.16 0.24 − − 32.24 130.80 5.2 5.6 0.8 0.14 0.15 0.25 − − 33.67 131.56 5.1 8.4
Recommended publications
  • Recipe for Predicting Strong Ground Motion from Crustal Earthquake Scenarios
    Pure Appl. Geophys. 168 (2011), 85–104 Ó 2010 The Author(s) This article is published with open access at Springerlink.com DOI 10.1007/s00024-010-0150-9 Pure and Applied Geophysics Recipe for Predicting Strong Ground Motion from Crustal Earthquake Scenarios 1 2 KOJIRO IRIKURA and HIROE MIYAKE Abstract—We developed a recipe for predicting strong ground processes of earthquakes, propagation-path and site- motions based on a characterization of the source model for future amplification effects, and the relation between ground crustal earthquakes. From recent developments of waveform inver- sion of strong motion data used to estimate the rupture process, we motion and damage. Predicting strong ground motion have inferred that strong ground motion is primarily related to the slip is one of the critical factors for mitigating disasters heterogeneity inside the source rather than average slip in the entire caused by future earthquakes. rupture area. Asperities are characterized as regions that have large slip relative to the average slip on the rupture area. The asperity areas, So far, most strong motion predictions in earthquake as well as the total rupture area, scale with seismic moment. We hazard analyses have been made using empirical determined that the areas of strong motion generation approximately attenuation-distance curves for peak ground accelera- coincide with the asperity areas. Based on the scaling relationships, the deductive source model for the prediction of strong ground tion (PGA), peak ground velocity (PGV), and response motions is characterized by three kinds of parameters: outer, inner, spectra, in which the source information is defined and extra fault parameters.
    [Show full text]
  • International Workshop on Earthquake Preparation Process 2017
    International Workshop on Earthquake Preparation Process 2017 - Observation, Validation, Modeling, Forecasting - Program & Abstracts IWEP2017 May 26-27, 2017 Chiba University, Chiba, Japan International Workshop on Earthquake Preparation Process 2017 - Observation, Validation, Modeling, Forecasting - (IWEP4) Sponsor Chiba University, Japan Co-sponsor The Earthquake Prediction Society of Japan integrated Study and Test for Earthquake Precursors (iSTEP-4), Taiwan Supported by National Central University, Taiwan Chapman University, US Tokai University, Japan Date: May 26-27, 2017 Venue:Conference Hall, the 1st floor of Sciences and Technology Building No.1, Nishi-Chiba Campus, Chiba University, Chiba, Japan Contacts: Dr. Katsumi Hattori (Chiba University, Japan) +81-43-290-280 Contents Program……………………………………………….…...……1-8 Oral presentations…………………………………..….…….1-4 Poster presentations…………………………………..………5 Abstracts…………………………..……………….…….….9-57 Oral presentations…………………….………………...……9-40 Poster presentations………………….…………..………….41-57 Program May 26, 2017 Morning 0820-0850 Registration 0850-0900 Opening: Dr. Katsumi Hattori Chair: Dr. Katsumi Hattori 0900-0930 Dimitar Ouzounov et al., Radon activity - the hidden driver behind the atmospheric pre-earthquake anomalies 0930-1000 Ching-Chou Fu et al., Exploring the relationship between soil degassing and seismic activity by continuous radon monitoring in the Longitudinal Valley of eastern Taiwan (Invited) 1000-1030 Ramesh P. Singh et al., Changes in Ground water level and Linkage with the Meteorological/Atmospheric
    [Show full text]
  • Ings Damaged During the Recent Large Earthquakes in Japan
    16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 Paper N° 4747 (Abstract ID) Registration Code: S-L1472725668 STUDY ON DAMAGE AND SEISMIC PERFORMANCE OF TIMBER BUILD- INGS DAMAGED DURING THE RECENT LARGE EARTHQUAKES IN JAPAN T. Tsuchimoto(1), N. Kawai(2), T. Nakagawa(3) (1) Chief Research Engineer, Building Research Institute, [email protected] (2) Professor, Kogakuin University, [email protected] (3) Senior Research Officer, National Institute for Land and Infrastructure Management, MLIT, [email protected] Abstract It is said that Japan has come to the term of seismic activity. Once, the damage of 1948 Fukui Earthquake triggered the establishment of Building Standard Law of Japan including the seismic regulation. The regulation for timber building adopted the way to set up enough shear wall by using the brace. After that, the regulations were reformed and revised several times at every damage due to earthquake. The required shear wall length increased at every revision of regulation. Timber buildings in Japan were damaged due to large earthquake since 2000, for example, 2000 West of Tottori Pref., 2004 Chuetsu, 2005 Fukuoka west off the coast, 2007 Noto Peninsula, 2007 offshore of Chuetsu, 2011 off the Pacific coast of Tohoku earthquake and 2014 Nagano Kamishiro Fault. The damage to timber buildings due to every earthquake was surveyed on site. Several wood houses were picked up and investigated in detail, for example, floor plans, shear wall length, damage states and structural specification. The reason and the characteristic of damage were discussed. The results of these surveys and studies were summarized as follows; - The 14 major earthquake suffering heavy damage to wood houses has occurred after the year of 2000.
    [Show full text]
  • Strong Ground Motion Simulation for the 2005 Fukuoka Earthquake (Mw6.6) by Stochastic Finite-Fault Simulations
    th The 14 World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China Strong Ground Motion Simulation for the 2005 Fukuoka Earthquake (Mw6.6) by Stochastic Finite-Fault Simulations 1 1 2 MITSUTAKA OSHIMA , HIROSHI TAKENAKA , and HIROSHI KAWASE 1 Dept. of Earth and Planetary Sciences, Kyushu University,6-10-1 Hakozaki, Fukuoka, Japan 2Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto, Japan Email: [email protected], [email protected], [email protected] ABSTRACT : The theoretical basis of the stochastic finite-fault modeling was proposed by Boore (1983) and this technique has been developed by many researchers (g.e., Beresnev and Atkinson, 1997) and many papers were published applying it to real simulations. Recently, Motazedian and Atkinson (2005) have introduced the concept of “dynamic corner frequency" and “pulsing area" into the stochastic finite-fault modeling. It is possible to simulate strong ground motions from earthquakes in a more realistic way with these new concepts. We made a further modification that enables us to treat stress parameter variable on the fault plane, while the stress parameter is constant on the whole fault plane in the conventional stochastic finite-fault modeling. With this modification, we can introduce stress-variable source models such as asperity model. We apply our modified stochastic finite-fault modeling to the 2005 West Off Fukuoka earthquake (Mw6.6) that occurred in northwest Kyushu, Japan, and check whether we could satisfactorily reproduce the observed strong ground motion data. We adopt an asperity model and assign higher stress parameter to the asperity than that of the background region.
    [Show full text]
  • Aftershock Statistics of the 1999 Chi–Chi, Taiwan Earthquake and the Concept of Omori Times
    Pure Appl. Geophys. 170 (2013), 221–228 Ó 2012 Springer Basel AG DOI 10.1007/s00024-011-0445-5 Pure and Applied Geophysics Aftershock Statistics of the 1999 Chi–Chi, Taiwan Earthquake and the Concept of Omori Times 1,2 1 1,3 2 YA-TING LEE, DONALD L. TURCOTTE, JOHN B. RUNDLE, and CHIEN-CHIH CHEN Abstract—In this paper we consider the statistics of the after- the magnitude of the main shock and the largest shock sequence of the m = 7.65 20 September 1999 Chi–Chi, aftershock. This law states that the difference in Taiwan earthquake. We first consider the frequency-magnitude statistics. We find good agreement with Gutenberg–Richter scaling magnitude, Dm, between the main shock and its but find that the aftershock level is anomalously high. This level is largest aftershock is approximately constant inde- quantified using the difference in magnitude between the main pendent of the magnitude of the main shock shock and the largest inferred aftershock DmÃ: Typically, Dmà is in the range 0.8–1.5, but for the Chi–Chi earthquake the value is Dm ¼ mms À mmax as ð2Þ Dmà = 0.03. We suggest that this may be due to an aseismic slow- earthquake component of rupture. We next consider the decay rate where mms is the magnitude of the main shock and of aftershock activity following the earthquake. The rates are well m is the magnitude of the largest aftershock, approximated by the modified Omori’s law. We show that the max as distribution of interoccurrence times between aftershocks follow a typically Dm & 1.2 (BA˚ TH 1965).
    [Show full text]
  • Postseismic Displacements Following the 2007 Noto Peninsula Earthquake Detected by Dense GPS Observation
    LETTER Earth Planets Space, 60, 139–144, 2008 Postseismic displacements following the 2007 Noto peninsula earthquake detected by dense GPS observation Manabu Hashimoto1, Hiroaki Takahashi2, Ryosuke Doke3, Minoru Kasahara2, Akira Takeuchi3, Kenusuke Onoue1, Yoshinobu Hoso1, Yo Fukushima1, Kajuro Nakamura1, Fumio Ohya1, Ryo Honda2, Masayoshi Ichiyanagi2, Teruhiro Yamaguchi2, Takahiro Maeda2, and Yoshihiro Hiramatsu4 1Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan 2Institute of Seismology and Volcanology, Graduate School, Hokkaido University, Sapporo 060-0810, Japan 3Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, Toyama 930-8555, Japan 4Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan (Received June 29, 2007; Revised November 3, 2007; Accepted November 13, 2007; Online published February 19, 2008) We have been conducting dense GPS observation in and around the epicentral region of the 2007 Noto peninsula earthquake since March 25, 2007, in order to detect postseismic displacements. Continuous observation has been underway at 12 sites to fill the gap of GEONET. Preliminary analysis of data up to early May shows that initial postseismic displacement rapidly decayed within 20 days after the occurrence of the mainshock. Horizontal displacements do not exceed 20 mm even at sites above the aftershock zone for this period. We also found a maximum uplift of about 20 mm there. Inversion of postseismic displacements with the variable slip model suggests a nearly right-lateral afterslip of less than 5 cm on the shallow portion of the source fault. Fitting a theoretical function to a time series of coordinate changes also suggests that the observed postseismic displacements might have been generated by afterslip.
    [Show full text]
  • Try Making a “My Map” Specialists Mrs. Power Fill in Map (My Map
    Try Making a “My Map” Lively dialog and chit chat is welcome! Share your wisdom and knowledge energetically! Information on the Information provided by earthquake local community survivors Gathering Specialists information Mrs. Power Predicting the damage and identifying the causes of the damage (Fieldwork) Survey the field Rediscover your local community Fill in map (My Map) Simulation Applied Science Technical Group, Tohoku Regional Office, The (How to use it) Institution of Professional Engineers, Japan Earthquake Preparedness Working Group Disaster Prevention Committee, Miyagi Professional Engineers Association 1 Brochure created by Applied Science Technical Group It could happen anywhere and at any time. But… Since the beginning of the century, starting with the Great Hanshin earthquake of 1995, earthquakes have caused damage in various regions across Japan one after another- 2000 Western Tottori earthquake, 2001 Geiyo earthquake, 2003 Northern Miyagi earthquake, 2003 Hokkaido earthquake, 2004 Chuetsu earthquake, 2005 Fukuoka earthquake, 2007 Chuetsu-oki Sanriku-oki earthquake, and 2008 Iwate-Miyagi Nairiku earthquake. earthquake It is predicted that, in the next 30 years, a Sanriku-oki earthquake and a Miyagi-oki earthquake will undoubtedly occur (along the Pacific Ocean side of northeastern Japan) and a Tokai earthquake, Tonankai earthquake, and Nankai earthquake (along the Pacific Ocean side of western Japan). There may also be earthquakes in unexpected areas, as was the case with the 2008 Iwate-Miyagi Nairiku earthquake. Miyagi-oki earthquake Even if we are able to predict these earthquakes, and even if we know their mechanism, we cannot prevent the earthquake from occurring. Tokai earthquake Active Tonankai earthquake fault zone Nankai earthquake Therefore, we need to prepare ourselves for calamities caused by these earthquakes.
    [Show full text]
  • Rupture Process of the 2005 West Off Fukuoka Prefecture, Japan, Earthquake
    LETTER Earth Planets Space, 58, 87–92, 2006 Rupture process of the 2005 West Off Fukuoka Prefecture, Japan, earthquake Haruo Horikawa Active Fault Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8567 Japan (Received August 10, 2005; Revised December 3, 2005; Accepted December 7, 2005; Online published January 27, 2006) The 2005 West off Fukuoka Prefecture, Japan, earthquake (MS 6.7) is a moderate-size crustal event. The rupture process of this earthquake was inferred from strong motion data. It is observed regardless of epicentral distance and azimuth that the initial P-wave with a small amplitude continued for 2.5–4 s, suggesting prominent initial rupture. The duration of the initial rupture was estimated to be 3.3 s from travel time analysis. Inversion analysis shows that the initial rupture continued for 3.5 s and the overall rupture finished within 10 s. An area of large slip with two peaks of slip amount appeared to the southeast of the hypocenter, and the location of the large-slip area is consistent with the origin of the main rupture inferred from travel time analysis. Small amount of slip was found at and around the hypocenter, and the rupture velocity was slow there. The seismic moment 18 of this earthquake was estimated to be 5.7 × 10 Nm (Mw 6.4). The maximum stress drop calculated from the derived slip distribution exceeded 10 MPa. An area of negative stress drop expanded, corresponding to the distribution of small slip. Forward modeling of the observed waveforms suggests that the negative stress drop is not fully attributable to poor resolution of inversion analysis for small amount of slip.
    [Show full text]
  • List of Scientific Papers and Meeting Presentations
    List of scientific papers and meeting presentations • Peer-reviewed papers (ISI Journals) 1. Shimojo, K., Enescu, B., Yagi, Y. et al. Nucleation process of the 2011 northern Nagano earthquake from nearby seismic observations, Scientific Reports, 11, 8143, https://doi.org/10.1038/s41598-021-86837-4, 2021. 2. Borleanu, F., Petrescu, L., Enescu, B., Popa, M., and M. Radulian, The missing craton edge: Crustal structure of the East European Craton beneath the Carpathian Orogen revealed by double-difference tomography, Global and Planetary Change, 197, 103390, doi:10.1016/j.gloplacha.2020.103390, 2021. 3. Li, Y., Wang, D., Xu, S., Fang, L., Cheng, Y., Luo, G., Yan, B., Enescu, B., and J. Mori, Thrust and Conjugate Strike-Slip Faults in the 17 June 2018 MJMA 6.1 (⁠Mw 5.5) Osaka, Japan, Earthquake Sequence, Seismol. Res. Lett., 90(6), 2132–2141. doi:10.1785/0220190122, 2019. 4. Omi, T., Ogata, Y., Shiomi, K., Enescu, B., Sawazaki, K., and K. Aihara, Implementation of a Real-Time System for Automatic Aftershock Forecasting in Japan, Seismol. Res. Lett., 90 (1): 242–250. doi:10.1785/0220180213, 2018. 5. Gulia, L., Rinaldi, A. P., Tormann, T., Vannucci, G., Enescu, B., and S. Wiemer, The effect of a mainshock on the size distribution of the aftershocks, Geophys. Res. Lett., 45, 13,277– 13,287, doi:10.1029/2018GL080619, 2018 (AGU Highlighted paper – Cook, T., How do main shocks affect subsequent earthquakes?, Eos, 100, doi:10.1029/2019EO119129, 2019.) 6. Tamaribuchi, K., Y. Yagi, B. Enescu, and S. Hirano, Characteristics of foreshock activity inferred from the JMA earthquake catalog, Earth, Planets and Space, 70:90, doi:10.1186/s40623-018-0866-92018, 2018.
    [Show full text]