Newsletter Submillimeter Array Newsletter Number 16 | July 2013
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
November 2013 One of the SKA's Founding Scientists Moves Closer To
November 2013 Quarterly newsletter for South Africa’s Square Kilometre Array project One of the SKA’s founding The Karoo’s finest runway is ready to welcome you to scientists moves closer to Just getting started: the SKA SA. his vision. MeerKAT challenges. 4 7 12 news news INTEL GETS THE CARNARVON, WILLISTON AND VAN WYKSVLEI COMMUNITIES CONNECTED Intel, a major technology partner of SKA South Africa, will participate in the launch of several community projects in Carnarvon during November 2013. “We are proud to be associated with the SKA and R2,5 million project is known as the SKA there are many benefits that will arise from this e-Schools project. partnership,” says Hannes Steyn, Intel’s Director Classrooms will be equipped with ClassMate Intel will place of High Performance Computing for Sub-Saharan computers in mobile charging trolleys, teacher Africa. “Our company is a leading manufacturer laptops and printers. Every school will also receive a small high- of computing technologies, and we will be server for content hosting and internet access, and performance providing SKA SA with early access to these new Carnarvon High School will get a mobile science lab technologies. from SmartLabs. computing “Our partnership with SKA SA will help to solve Steyn explains that this is not an exclusive SKA research platforms SKA IS A TOP PRIORITY the unique technological challenges presented by a SA/Intel project. The aim is to get industry involved massive radio telescope, and offers the opportunity to on a grand scale and to support activities in those at key institutions. -
Annual Report 2013 E.Indd
2013 ANNUAL REPORT NATIONAL RADIO ASTRONOMY OBSERVATORY 1 NRAO SCIENCE NRAO SCIENCE NRAO SCIENCE NRAO SCIENCE NRAO SCIENCE NRAO SCIENCE NRAO SCIENCE 493 EMPLOYEES 40 PRESS RELEASES 462 REFEREED SCIENCE PUBLICATIONS NRAO OPERATIONS $56.5 M 2,100+ ALMA OPERATIONS SCIENTIFIC USERS $31.7 M ALMA CONSTRUCTION $11.9 M EVLA CONSTRUCTION A SUITE OF FOUR WORLDCLASS $0.7 M ASTRONOMICAL OBSERVATORIES EXTERNAL GRANTS $3.8 M NRAO FACTS & FIGURES $ 2 Contents DIRECTOR’S REPORT. 5 NRAO IN BRIEF . 6 SCIENCE HIGHLIGHTS . 8 ALMA CONSTRUCTION. 26 OPERATIONS & DEVELOPMENT . 30 SCIENCE SUPPORT & RESEARCH . 58 TECHNOLOGY . 74 EDUCATION & PUBLIC OUTREACH. 80 MANAGEMENT TEAM & ORGANIZATION. 84 PERFORMANCE METRICS . 90 APPENDICES A. PUBLICATIONS . 94 B. EVENTS & MILESTONES . 118 C. ADVISORY COMMITTEES . .120 D. FINANCIAL SUMMARY . .124 E. MEDIA RELEASES . .126 F. ACRONYMS . .136 COVER: The National Radio Astronomy Observatory Karl G. Jansky Very Large Array, located near Socorro, New Mexico, is a radio telescope of unprecedented sensitivity, frequency coverage, and imaging capability that was created by extensively modernizing the original Very Large Array that was dedicated in 1980. This major upgrade was completed on schedule and within budget in December 2012, and the Jansky Very Large Array entered full science operations in January 2013. The upgrade project was funded by the US National Science Foundation, with additional contributions from the National Research Council in Canada, and the Consejo Nacional de Ciencia y Tecnologia in Mexico. Credit: NRAO/AUI/NSF. LEFT: An international partnership between North America, Europe, East Asia, and the Republic of Chile, the Atacama Large Millimeter/submillimeter Array (ALMA) is the largest and highest priority project for the National Radio Astronomy Observatory, its parent organization, Associated Universities, Inc., and the National Science Foundation – Division of Astronomical Sciences. -
Arxiv:1402.1456V1 [Astro-Ph.CO] 6 Feb 2014 2.4.1 Intrinsic Variation in Seds
Dusty Star-Forming Galaxies at High Redshift Caitlin M. Casey1;2, Desika Narayanan3, Asantha Cooray1 1Department of Physics and Astronomy, University of California, Irvine, CA 92697 2Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Dr, Honolulu, HI 96822 3Department of Physics and Astronomy, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041 Abstract Far-infrared and submillimeter wavelength surveys have now established the important role of dusty, star-forming galaxies (DSFGs) in the assembly of stellar mass and the evolution of massive galaxies in the Universe. The brightest 13 of these galaxies have infrared luminosities in excess of 10 L with implied star-formation rates of thousands of solar masses per year. They represent the most intense starbursts in the Universe, yet many are completely optically obscured. Their easy detection at submm wavelengths is due to dust heated by ultraviolet radiation of newly forming stars. When summed up, all of the dusty, star-forming galaxies in the Universe produce an infrared radiation field that has an equal energy density as the direct starlight emission from all galaxies visible at ultraviolet and optical wave- lengths. The bulk of this infrared extragalactic background light emanates from galaxies as diverse as gas-rich disks to mergers of intense starbursting galaxies. Major advances in far-infrared instrumentation in recent years, both space- based and ground-based, has led to the detection of nearly a million DSFGs, yet our understanding of the underlying astrophysics that govern the start and end of the dusty starburst phase is still in nascent stage. This review is aimed at summarizing the current status of DSFG studies, focusing especially on the detailed characterization of the best- understood subset (submillimeter galaxies, who were summarized in the last review of this field over a decade ago, Blain et al. -
Dusty Star Forming Galaxies at High Redshift
Dusty Star Forming Galaxies at High Redshift Caitlin M. Casey1;2, Desika Narayanan3, Asantha Cooray1 1Department of Physics and Astronomy, University of California, Irvine, CA 92697 2Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Dr, Honolulu, HI 96822 3Department of Physics and Astronomy, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041 Abstract Far-infrared and submillimeter wavelength surveys have now established the important role of dusty, star-forming galaxies (DSFGs) in the assembly of stellar mass and the evolution of massive galaxies in the Universe. The brightest 13 of these galaxies have infrared luminosities in excess of 10 L with implied star-formation rates of thousands of solar masses per year. They represent the most intense starbursts in the Universe, yet many are completely optically obscured. Their easy detection at submm wavelengths is due to dust heated by ultraviolet radiation of newly forming stars. When summed up, all of the dusty, star-forming galaxies in the universe produce an infrared radiation field that has an equal energy density as the direct starlight emission from all galaxies visible at ultraviolet and optical wavelengths. The bulk of this infrared extragalactic background light emanates from galaxies as diverse as gas-rich disks to mergers of intense starbursting galaxies. Major advances in far-infrared instrumentation in recent years, both space-based and ground-based, has led to the detection of nearly a million DSFGs, yet our understanding of the underlying astrophysics that govern the start and end of the dusty starburst phase is still in nascent stage. This review is aimed at summarizing the current status of DSFG studies, focusing especially on the detailed characterization of the best-understood subset (submillimeter galaxies, who were summarized in the last review of this field over a decade ago, Blain et al.