Mixing of Pseudoscalar-Baryon and Vector-Baryon in Meson-Baryon Interaction and the Generation of Resonances

Total Page:16

File Type:pdf, Size:1020Kb

Mixing of Pseudoscalar-Baryon and Vector-Baryon in Meson-Baryon Interaction and the Generation of Resonances Facultat de F´ısica Departamento de F´ısica Te´orica Ph.D. THESIS: MIXING OF PSEUDOSCALAR-BARYON AND VECTOR-BARYON IN MESON-BARYON INTERACTION AND THE GENERATION OF RESONANCES A Thesis submitted by Eugenio Javier Garz´on Alama for the degree of Doctor of Philosophy in the University of Valencia Supervised by: Eulogio Oset Baguena I “With the lightest meson, with the heaviest baryon, No Hadron shall escape my sight. Let those who worship the Quark Model Beware my power, Chiral Perturbation Theory!” II III D. Eulogio Oset B´aguena, Catedr´atico de F´ısica Te´orica de la Universi- dad de Valencia, CERTIFICA: Que la presente Memoria Mixing of pseudoscalar- baryon and vector-baryon in meson-baryon interaction and the generation of resonances ha sido realizada bajo mi direcci´on en el Departamento de F´ısica Te´orica de la Universidad de Valencia por Eugenio Javier Garz´on Alama como Tesis para obtener el grado de Doctor en F´ısica Y para que as´ıconste presenta la referida Memoria, firmando el presente certificado. Fdo: Eulogio Oset B´aguena IV Contents Agradecimientos IX 1 Introduction 1 1.1 Effective Lagrangians and Chiral Perturbation Theory . .. 2 1.2 Dynamicallygeneratedresonances. 3 2 Formalism 5 2.1 Thehiddengaugeformalism . 7 2.2 FormalismforVVinteraction . 8 2.3 Lagrangians of the meson-baryon interaction . 11 2.4 Convolutionoftheloopfunction. 14 2.5 Polesandcouplings. 15 3 RadiativedecayofS=1/2resonances 19 3.1 Introduction............................ 19 3.2 Framework............................. 21 3.3 Radiativedecay .......................... 24 3.4 Radiative decays into γ andbaryondecuplet . 26 3.4.1 S = 0,I =1/2channel.................. 26 3.4.2 S = 0,I =3/2channel.................. 28 3.4.3 S = 1,I =0channel .................. 28 − 3.4.4 S = 1,I =1channel .................. 28 − 3.4.5 S = 2,I =1/2channel ................. 29 − 3.4.6 S = 3,I =0channel .................. 29 − 3.5 Radiative decays into γ andbaryonoctet. 30 3.5.1 S =0,I =1/2channel .................. 30 3.5.2 S = 1,I =0channel .................. 30 − 3.5.3 S = 1,I =1channel .................. 33 − V VI CONTENTS 3.5.4 S = 2,I =1/2channel ................. 33 − 3.6 Helicityamplitudes . 33 3.7 Conclusions ............................ 39 4 The box diagram 41 4.1 Introduction............................ 41 4.2 Formalism............................. 43 4.3 Theboxdiagram ......................... 47 4.4 ContacttermsVPBBfortheboxdiagrams . 51 4.5 Results............................... 55 4.6 Comparisontodata. 61 4.7 Conclusions ............................ 66 P 5 N ∗ resonances with J =3/2− 69 5.1 Introduction............................ 69 5.2 Formalism............................. 70 5.3 TheoreticalApproach. 71 5.4 Fittingthedata.......................... 73 5.5 Results............................... 75 5.6 Conclusions ............................ 81 P 6 N ∗ resonances with J =1/2− 83 6.1 Introduction............................ 83 6.2 Formalism............................. 84 6.3 Fittingthedata.......................... 87 6.4 Results............................... 88 6.5 Conclusions ............................ 92 7 Limits to the Fixed Center Approximation to Faddeev equa- tions: the case of the φ(2170). 95 7.1 Introduction............................ 95 7.2 Fixed center approximation formalism to the φf0(980) scattering 97 7.3 Fieldtheoreticalcalculation . 101 7.4 Beyond the FCA: excitation of the f0 in intermediate states . 103 7.5 Results...............................105 7.6 Conclusions ............................109 8 Strategies for an accurate determination of the X(3872) en- ergyfromQCDlatticesimulations 111 8.1 Introduction............................111 8.2 TheX(3872)inthecontinuumlimit. 112 CONTENTS VII 8.3 Formalisminfinitevolume . .115 8.4 Twochannelcase .........................119 8.5 Theinverseproblem . .120 8.6 Results...............................121 8.7 Conclusions ............................127 9 Conclusions 129 10 Resumen en espa˜nol 135 10.1 Introducci´on. .135 10.1.1 Lagrangianos efectivos y Teor´ıa de Perturbaciones Quiral136 10.1.2 Resonancias din´amicamente generadas . 137 10.2Formalismo ............................138 10.2.1 Elformalismodehiddengauge . 140 10.2.2 Formalismo para la interacci´on VV . 141 10.2.3 Lagrangianos de la interacci´on mes´on-bari´on . 144 10.2.4 Convoluci´on de la funci´on loop . 147 10.2.5 Polosyacoplamientos . .148 10.3 Conclusiones. .150 A Spin degeneracy of VB considering the VB VB transition157 → B Matrix elements of the ~σ~ǫ operator 163 C ExpressionoftheBoxdiagramintegral 165 D Coefficients of the Baryon octet - pseudoscalar mesons inter- action 167 ECoefficientsoftheboxintegral 171 F Evaluation the vertices 177 Bibliography 183 VIII CONTENTS Agradecimientos La vida est´acompuesta de etapas, etapas que est´an llenas de momentos, de personas y de metas. Hoy una de esas etapas termina, pero eso no es algo por lo que entristecerse ya que significa que se ha llegado al final con los objetivos cumplidos y que una nueva etapa comienza. Sin embargo, el llegar al final no es el verdadero objetivo, si no que es el recorrer ese camino lo que nos da la aut´entica recompensa y lo que nos hace aprender del esfuerzo y del tiempo invertido. Por ello el ver nuestra meta en el horizonte es lo que nos hace avanzar. Lo importante durante todo el camino es estar rodeado de gente que te apoye y que ande contigo. Y por ello quiero agradecer a todas esas personas que han contribuido mucho o poco a que este d´ıa haya llegado. Primero, el que m´as ha contribuido a que esto salga adelante ha sido Eulogio. El me ha orientado, ayudado y ense˜nado todo lo que ha hecho posible esta tesis. Gracias a ´el he podido formarme no solo como cient´ıfico si no tambi´en como persona y de ´el he aprendido mucho que seguro que me ser´amuy ´util en el futuro. Por ´el he podido viajar, descubrir nuevas culturas y conocer gente interesante. Adem´as me ha ense˜nado que el esfuerzo y la constancia tiene su recompensa, que hay que defender con firmeza tus convicciones cuando se est´aseguro de ello, siempre desde el respeto y la humildad. Por todo ello: Gracias Eulogio. Tambi´en a mi familia, a mi madre, a mi padre, a mi hermana y a mi abuela, que siempre est´an ah´ıy desean lo mejor para m´ı. Aunque por m´as que se lo explique, nunca entienden que es eso de “potrones” y quarks que hago, siempre se han interesado y preocupado de como va el trabajo, cuando lees la tesis, te han contestado ya de ese art´ıculo, a donde te manda Eulogio este a˜no, cuando lees la tesis (si, lo he puesto dos veces), vamos lo que es ser una familia que te quiere y se preocupa. Adem´as porque me han dado la oportunidad y los medios de haber podido estudiar, tener una carrera y llegar hasta donde estoy hoy. IX X Agradecimientos A la gente del grupo, en especial a Juan y a Manolo, que han sido como un par de padres extras durante estos a˜nos. A Juan por estar siempre tan pendiente y preocupado por mi, pregunt´andome a todas horas que c´omo estaba. A Manolo por todo lo que me ha ense˜nado de matem´aticas o de programaci´on, y por hacer que a partir de las diez, mirara en reloj cada dos por tres esperando escuchar ese “cafeto”, que indicaba que´ıbamos a almorzar y as´ıpoder descansar despegando los ojos de la pantalla. Agradecer tambi´en a la gente que de alguna forma u otra ha pasado por el grupo, dejando su huella no solo profesionalmente si no tambi´en de forma personal como Kanchan y Alberto, que han sido colegas pero tambi´en les considero amigos. Fueron las primeras personas que conoc´ıdel grupo y me hablaron de lo bien que te trataban, como en una familia. Y ten´ıan raz´on. Tambi´en a Raquel, que se convirti´oen una hermana mayor y en una amiga, y que desde el primer viaje a Jap´on estuvo ah´ıy me ayud´oen lo que necesitaba. Manolo Pav´on fue durante un tiempo el compa˜nero de despacho m´as divertido que se puede pedir, elevando el nivel de “frikismo” en el despacho hasta l´ımites insospechados. Durante este tiempo tambi´en pasaron por el grupo dos chicas que por su sencillez, alegr´ıa y bondad, dieron un gran cambio al grupo. Junko con su humildad, era apreciada por todo el grupo y se convirti´oen una improvisada profesora de mi rudimentario japon´es. Melahat lleg´om´as tarde y su alegr´ıa nos inund´oa todos. Ha sido una excelente compa˜nera y amiga. Muchos otros como Jorge Mart´ın Camalich, Dani Gamermann, Nacho Ruiz, Ju-Jun Xie, Chu-Wen Xiao, En Wang, Luis Alvarez Ruso, Carlos Hidalgo, Tim Ledwig, tambi´en han formado parte de este proyecto. Agradecer tambi´en el apoyo de colegas que me ha ayudado de muchas formas diversas, como Angels Ramos, Michael D¨oring, Laura Tolos, Atsushi Hosaka, Daisuke Jido, Makoto Oka, Tetsuo Hyodo, Bao Xi Sun y Lian Rong Dai. Poco a poco la gente va llegando a este d´ıa y se va marchando, pero otros vienen, y de repente te encuentras con un grupo de gente fant´astica donde menos te lo esperas. Francesca se convirti´oen una estupenda compa˜nera de despacho con la que compartir risas y miradas de complicidad. Tambi´en Uchino ha sido un excelente compa˜nero de cervezas, mientras uno al otro nos ense˜n´abamos japon´es y espa˜nol y coment´abamos las divertidas diferencias culturales entre Jap´on y Espa˜na. Despu´es llegaron Astrid y Jorgivan con los que conect´eenseguida y pasamos muy buenos ratos. Agradecer tambi´en a todos mis compa˜neros de Aikido, que son demasia- dos para ponerlos a todos aqu´ı, por haber sido el lugar donde poder evadirme de mis problemas y ser gente maravillosa con la que poder practicar y tomarse una cervecita para reponerse despu´es de haberse pasado la tarde haciendo “kokyus”.
Recommended publications
  • Selfconsistent Description of Vector-Mesons in Matter 1
    Selfconsistent description of vector-mesons in matter 1 Felix Riek 2 and J¨orn Knoll 3 Gesellschaft f¨ur Schwerionenforschung Planckstr. 1 64291 Darmstadt Abstract We study the influence of the virtual pion cloud in nuclear matter at finite den- sities and temperatures on the structure of the ρ- and ω-mesons. The in-matter spectral function of the pion is obtained within a selfconsistent scheme of coupled Dyson equations where the coupling to the nucleon and the ∆(1232)-isobar reso- nance is taken into account. The selfenergies are determined using a two-particle irreducible (2PI) truncation scheme (Φ-derivable approximation) supplemented by Migdal’s short range correlations for the particle-hole excitations. The so obtained spectral function of the pion is then used to calculate the in-medium changes of the vector-meson spectral functions. With increasing density and temperature a strong interplay of both vector-meson modes is observed. The four-transversality of the polarisation tensors of the vector-mesons is achieved by a projector technique. The resulting spectral functions of both vector-mesons and, through vector domi- nance, the implications of our results on the dilepton spectra are studied in their dependence on density and temperature. Key words: rho–meson, omega–meson, medium modifications, dilepton production, self-consistent approximation schemes. PACS: 14.40.-n 1 Supported in part by the Helmholz Association under Grant No. VH-VI-041 2 e-mail:[email protected] 3 e-mail:[email protected] Preprint submitted to Elsevier Preprint Feb. 2004 1 Introduction It is an interesting question how the behaviour of hadrons changes in a dense hadronic medium.
    [Show full text]
  • The Skyrme Model for Baryons
    SU–4240–707 MIT–CTP–2880 # The Skyrme Model for Baryons ∗ a , b J. Schechter and H. Weigel† a)Department of Physics, Syracuse University Syracuse, NY 13244–1130 b)Center for Theoretical Physics Laboratory of Nuclear Science and Department of Physics Massachusetts Institute of Technology Cambridge, Ma 02139 ABSTRACT We review the Skyrme model approach which treats baryons as solitons of an ef- fective meson theory. We start out with a historical introduction and a concise discussion of the original two flavor Skyrme model and its interpretation. Then we develop the theme, motivated by the large NC approximation of QCD, that the effective Lagrangian of QCD is in fact one which contains just mesons of all spins. When this Lagrangian is (at least approximately) determined from the meson sector arXiv:hep-ph/9907554v1 29 Jul 1999 it should then yield a zero parameter description of the baryons. We next discuss the concept of chiral symmetry and the technology involved in handling the three flavor extension of the model at the collective level. This material is used to discuss properties of the light baryons based on three flavor meson Lagrangians containing just pseudoscalars and also pseudoscalars plus vectors. The improvements obtained by including vectors are exemplified in the treatment of the proton spin puzzle. ————– #Invited review article for INSA–Book–2000. ∗This work is supported in parts by funds provided by the U.S. Department of Energy (D.O.E.) under cooper- ative research agreements #DR–FG–02–92ER420231 & #DF–FC02–94ER40818 and the Deutsche Forschungs- gemeinschaft (DFG) under contracts We 1254/3-1 & 1254/4-1.
    [Show full text]
  • Quark Structure of Pseudoscalar Mesons Light Pseudoscalar Mesons Can Be Identified As (Almost) Goldstone Bosons
    International Journal of Modern Physics A, c❢ World Scientific Publishing Company QUARK STRUCTURE OF PSEUDOSCALAR MESONS THORSTEN FELDMANN∗ Fachbereich Physik, Universit¨at Wuppertal, Gaußstraße 20 D-42097 Wuppertal, Germany I review to which extent the properties of pseudoscalar mesons can be understood in terms of the underlying quark (and eventually gluon) structure. Special emphasis is put on the progress in our understanding of η-η′ mixing. Process-independent mixing parameters are defined, and relations between different bases and conventions are studied. Both, the low-energy description in the framework of chiral perturbation theory and the high-energy application in terms of light-cone wave functions for partonic Fock states, are considered. A thorough discussion of theoretical and phenomenological consequences of the mixing approach will be given. Finally, I will discuss mixing with other states 0 (π , ηc, ...). 1. Introduction The fundamental degrees of freedom in strong interactions of hadronic matter are quarks and gluons, and their behavior is controlled by Quantum Chromodynamics (QCD). However, due to the confinement mechanism in QCD, in experiments the only observables are hadrons which appear as complex bound systems of quarks and gluons. A rigorous analytical solution of how to relate quarks and gluons in QCD to the hadronic world is still missing. We have therefore developed effective descriptions that allow us to derive non-trivial statements about hadronic processes from QCD and vice versa. It should be obvious that the notion of quark or gluon structure may depend on the physical context. Therefore one aim is to find process- independent concepts which allow a comparison of different approaches.
    [Show full text]
  • Charm Meson Molecules and the X(3872)
    Charm Meson Molecules and the X(3872) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Masaoki Kusunoki, B.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Professor Eric Braaten, Adviser Professor Richard J. Furnstahl Adviser Professor Junko Shigemitsu Graduate Program in Professor Brian L. Winer Physics Abstract The recently discovered resonance X(3872) is interpreted as a loosely-bound S- wave charm meson molecule whose constituents are a superposition of the charm mesons D0D¯ ¤0 and D¤0D¯ 0. The unnaturally small binding energy of the molecule implies that it has some universal properties that depend only on its binding energy and its width. The existence of such a small energy scale motivates the separation of scales that leads to factorization formulas for production rates and decay rates of the X(3872). Factorization formulas are applied to predict that the line shape of the X(3872) differs significantly from that of a Breit-Wigner resonance and that there should be a peak in the invariant mass distribution for B ! D0D¯ ¤0K near the D0D¯ ¤0 threshold. An analysis of data by the Babar collaboration on B ! D(¤)D¯ (¤)K is used to predict that the decay B0 ! XK0 should be suppressed compared to B+ ! XK+. The differential decay rates of the X(3872) into J=Ã and light hadrons are also calculated up to multiplicative constants. If the X(3872) is indeed an S-wave charm meson molecule, it will provide a beautiful example of the predictive power of universality.
    [Show full text]
  • Arxiv:1702.08417V3 [Hep-Ph] 31 Aug 2017
    Strong couplings and form factors of charmed mesons in holographic QCD Alfonso Ballon-Bayona,∗ Gast~aoKrein,y and Carlisson Millerz Instituto de F´ısica Te´orica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271 - Bloco II, 01140-070 S~aoPaulo, SP, Brazil We extend the two-flavor hard-wall holographic model of Erlich, Katz, Son and Stephanov [Phys. Rev. Lett. 95, 261602 (2005)] to four flavors to incorporate strange and charm quarks. The model incorporates chiral and flavor symmetry breaking and provides a reasonable description of masses and weak decay constants of a variety of scalar, pseudoscalar, vector and axial-vector strange and charmed mesons. In particular, we examine flavor symmetry breaking in the strong couplings of the ρ meson to the charmed D and D∗ mesons. We also compute electromagnetic form factors of the π, ρ, K, K∗, D and D∗ mesons. We compare our results for the D and D∗ mesons with lattice QCD data and other nonperturbative approaches. I. INTRODUCTION are taken from SU(4) flavor and heavy-quark symmetry relations. For instance, SU(4) symmetry relates the cou- There is considerable current theoretical and exper- plings of the ρ to the pseudoscalar mesons π, K and D, imental interest in the study of the interactions of namely gρDD = gKKρ = gρππ=2. If in addition to SU(4) charmed hadrons with light hadrons and atomic nu- flavor symmetry, heavy-quark spin symmetry is invoked, clei [1{3]. There is special interest in the properties one has gρDD = gρD∗D = gρD∗D∗ = gπD∗D to leading or- of D mesons in nuclear matter [4], mainly in connec- der in the charm quark mass [27, 28].
    [Show full text]
  • Analysis of Pseudoscalar and Scalar $D$ Mesons and Charmonium
    PHYSICAL REVIEW C 101, 015202 (2020) Analysis of pseudoscalar and scalar D mesons and charmonium decay width in hot magnetized asymmetric nuclear matter Rajesh Kumar* and Arvind Kumar† Department of Physics, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar 144011 Punjab, India (Received 27 August 2019; revised manuscript received 19 November 2019; published 8 January 2020) In this paper, we calculate the mass shift and decay constant of isospin-averaged pseudoscalar (D+, D0 ) +, 0 and scalar (D0 D0 ) mesons by the magnetic-field-induced quark and gluon condensates at finite density and temperature of asymmetric nuclear matter. We have calculated the in-medium chiral condensates from the chiral SU(3) mean-field model and subsequently used these condensates in QCD sum rules to calculate the effective mass and decay constant of D mesons. Consideration of external magnetic-field effects in hot and dense nuclear matter lead to appreciable modification in the masses and decay constants of D mesons. Furthermore, we also ψ ,ψ ,χ ,χ studied the effective decay width of higher charmonium states [ (3686) (3770) c0(3414) c2(3556)] as a 3 by-product by using the P0 model, which can have an important impact on the yield of J/ψ mesons. The results of the present work will be helpful to understand the experimental observables of heavy-ion colliders which aim to produce matter at finite density and moderate temperature. DOI: 10.1103/PhysRevC.101.015202 I. INTRODUCTION debateable topic. Many theories suggest that the magnetic field produced in HICs does not die immediately due to the Future heavy-ion colliders (HIC), such as the Japan Proton interaction of itself with the medium.
    [Show full text]
  • Quark Diagram Analysis of Bottom Meson Decays Emitting Pseudoscalar and Vector Mesons
    Quark Diagram Analysis of Bottom Meson Decays Emitting Pseudoscalar and Vector Mesons Maninder Kaur†, Supreet Pal Singh and R. C. Verma Department of Physics, Punjabi University, Patiala – 147002, India. e-mail: [email protected], [email protected] and [email protected] Abstract This paper presents the two body weak nonleptonic decays of B mesons emitting pseudoscalar (P) and vector (V) mesons within the framework of the diagrammatic approach at flavor SU(3) symmetry level. Using the decay amplitudes, we are able to relate the branching fractions of B PV decays induced by both b c and b u transitions, which are found to be well consistent with the measured data. We also make predictions for some decays, which can be tested in future experiments. PACS No.:13.25.Hw, 11.30.Hv, 14.40.Nd †Corresponding author: [email protected] 1. Introduction At present, several groups at Fermi lab, Cornell, CERN, DESY, KEK and Beijing Electron Collider etc. are working to ensure wide knowledge of the heavy flavor physics. In future, a large quantity of new and accurate data on decays of the heavy flavor hadrons is expected which calls for their theoretical analysis. Being heavy, bottom hadrons have several channels for their decays, categorized as leptonic, semi-leptonic and hadronic decays [1-2]. The b quark is especially interesting in this respect as it has W-mediated transitions to both first generation (u) and second generation (c) quarks. Standard model provides satisfactory explanation of the leptonic and semileptonic decays but weak hadronic decays confronts serious problem as these decays experience strong interactions interferences [3-6].
    [Show full text]
  • Non-Perturbative Gluons and Pseudoscalar Mesons in Baryon Spectroscopy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Non-perturbative Gluons and Pseudoscalar Mesons in Baryonprovided by CERN Document Server Spectroscopy Z. Dziembowskia, M. Fabre de la Ripelleb, and Gerald A. Millerc a Department of Physics Temple University Philadelphia, PA 19122 b Institut de Physique Nucleaire, Universite de Paris-Sud, 94106 Orsay, France c Department of Physics University of Washington, Box 351560 Seattle, WA 98195-1560 Abstract We study baryon spectroscopy including the effects of pseudoscalar meson exchange and one gluon exchange potentials between quarks, governed by αs. The non-perturbative, hyperspherical method calculations show that one can obtain a good description of the data by using a quark-meson coupling con- stant that is compatible with the measured pion-nucleon coupling constant, and a reasonably small value of αs. Typeset using REVTEX 1 Interest in studying baryon spectroscopy has been re-vitalized by the recent work of Glozman and Riska [1–5]. These authors point out the persistent difficulty in obtaining a simultaneous description of the masses of the P-wave baryon resonances and the Roper- nucleon mass difference. In particular they argue [2] that “the spectra of the nucleons, ∆ resonances and the strange hyperons are well described by the constituent quark model, if in addition to the harmonic confinement potential the quarks are assumed to interact by exchange of the SU(3)F octet of pseudoscalar mesons”. Furthermore, Ref. [5] states that gluon exchange has no relation with the spectrum of baryons ! The ideas of Glozman and Riska are especially interesting because of the good descrip- tions of the spectra obtained in Refs.
    [Show full text]
  • Vector Meson Production and Nucleon Resonance Analysis in a Coupled-Channel Approach
    Vector Meson Production and Nucleon Resonance Analysis in a Coupled-Channel Approach Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaftlichen Fakult¨at der Justus-Liebig-Universit¨atGießen Fachbereich 07 – Mathematik, Physik, Geographie vorgelegt von Gregor Penner aus Gießen Gießen, 2002 D 26 Dekan: Prof. Dr. Albrecht Beutelspacher I. Berichterstatter: Prof. Dr. Ulrich Mosel II. Berichterstatter: Prof. Dr. Volker Metag Tag der m¨undlichen Pr¨ufung: Contents 1 Introduction 1 2 The Bethe-Salpeter Equation and the K-Matrix Approximation 7 2.1 Bethe-Salpeter Equation ........................................ 7 2.2 Unitarity and the K-Matrix Approximation ......................... 11 3 The Model 13 3.1 Other Models Analyzing Pion- and Photon-Induced Reactions on the Nucleon 15 3.1.1 Resonance Models: ...................................... 15 3.1.2 Separable Potential Models ................................ 17 3.1.3 Effective Lagrangian Models ............................... 17 3.2 The Giessen Model ............................................ 20 3.3 Asymptotic Particle (Born) Contributions .......................... 23 3.3.1 Electromagnetic Interactions ............................... 23 3.3.2 Hadronic Interactions .................................... 25 3.4 Baryon Resonances ............................................ 28 3.4.1 (Pseudo-)Scalar Meson Decay .............................. 28 3.4.2 Electromagnetic Decays .................................. 32 3.4.3 Vector Meson Decays ...................................
    [Show full text]
  • Pseudoscalar and Vector Mesons As Q¯Q Bound States
    Institute of Physics Publishing Journal of Physics: Conference Series 9 (2005) 153–160 doi:10.1088/1742-6596/9/1/029 First Meeting of the APS Topical Group on Hadronic Physics Pseudoscalar and vector mesons as qq¯ bound states A. Krassnigg1 and P. Maris2 1 Physics Division, Argonne National Laboratory, Argonne, IL 60439 2 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 E-mail: [email protected], [email protected] Abstract. Two-body bound states such as mesons are described by solutions of the Bethe– Salpeter equation. We discuss recent results for the pseudoscalar and vector meson masses and leptonic decay constants, ranging from pions up to cc¯ bound states. Our results are in good agreement with data. Essential in these calculation is a momentum-dependent quark mass function, which evolves from a constituent-quark mass in the infrared region to a current- quark mass in the perturbative region. In addition to the mass spectrum, we review the electromagnetic form factors of the light mesons. Electromagnetic current conservation is manifest and the influence of intermediate vector mesons is incorporated self-consistently. The results for the pion form factor are in excellent agreement with experiment. 1. Dyson–Schwinger equations The set of Dyson–Schwinger equations form a Poincar´e covariant framework within which to study hadrons [1, 2]. In rainbow-ladder truncation, they have been successfully applied to calculate a range of properties of the light pseudoscalar and vector mesons, see Ref. [2] and references therein. The DSE for the renormalized quark propagator S(p) in Euclidean space is [1] 4 d q i S(p)−1 = iZ (ζ) /p + Z (ζ) m(ζ)+Z (ζ) g2D (p − q) λ γ S(q)Γi (q, p) , (1) 2 4 1 (2π)4 µν 2 µ ν − i where Dµν(p q)andΓν(q; p) are the renormalized dressed gluon propagator and quark-gluon vertex, respectively.
    [Show full text]
  • Decay Constants of Pseudoscalar and Vector Mesons with Improved Holographic Wavefunction Arxiv:1805.00718V2 [Hep-Ph] 14 May 20
    Decay constants of pseudoscalar and vector mesons with improved holographic wavefunction Qin Chang (8¦)1;2, Xiao-Nan Li (NS`)1, Xin-Qiang Li (N新:)2, and Fang Su (Ϲ)2 ∗ 1Institute of Particle and Nuclear Physics, Henan Normal University, Henan 453007, China 2Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, Hubei 430079, China Abstract We calculate the decay constants of light and heavy-light pseudoscalar and vector mesons with improved soft-wall holographic wavefuntions, which take into account the effects of both quark masses and dynamical spins. We find that the predicted decay constants, especially for the ratio fV =fP , based on light-front holographic QCD, can be significantly improved, once the dynamical spin effects are taken into account by introducing the helicity-dependent wavefunctions. We also perform detailed χ2 analyses for the holographic parameters (i.e. the mass-scale parameter κ and the quark masses), by confronting our predictions with the data for the charged-meson decay constants and the meson spectra. The fitted values for these parameters are generally in agreement with those obtained by fitting to the Regge trajectories. At the same time, most of our results for the decay constants and their ratios agree with the data as well as the predictions based on lattice QCD and QCD sum rule approaches, with arXiv:1805.00718v2 [hep-ph] 14 May 2018 only a few exceptions observed. Key words: light-front holographic QCD; holographic wavefuntions; decay constant; dynamical spin effect ∗Corresponding author: [email protected] 1 1 Introduction Inspired by the correspondence between string theory in anti-de Sitter (AdS) space and conformal field theory (CFT) in physical space-time [1{3], a class of AdS/QCD approaches with two alter- native AdS/QCD backgrounds has been successfully developed for describing the phenomenology of hadronic properties [4,5].
    [Show full text]
  • ELEMENTARY PARTICLES in PHYSICS 1 Elementary Particles in Physics S
    ELEMENTARY PARTICLES IN PHYSICS 1 Elementary Particles in Physics S. Gasiorowicz and P. Langacker Elementary-particle physics deals with the fundamental constituents of mat- ter and their interactions. In the past several decades an enormous amount of experimental information has been accumulated, and many patterns and sys- tematic features have been observed. Highly successful mathematical theories of the electromagnetic, weak, and strong interactions have been devised and tested. These theories, which are collectively known as the standard model, are almost certainly the correct description of Nature, to first approximation, down to a distance scale 1/1000th the size of the atomic nucleus. There are also spec- ulative but encouraging developments in the attempt to unify these interactions into a simple underlying framework, and even to incorporate quantum gravity in a parameter-free “theory of everything.” In this article we shall attempt to highlight the ways in which information has been organized, and to sketch the outlines of the standard model and its possible extensions. Classification of Particles The particles that have been identified in high-energy experiments fall into dis- tinct classes. There are the leptons (see Electron, Leptons, Neutrino, Muonium), 1 all of which have spin 2 . They may be charged or neutral. The charged lep- tons have electromagnetic as well as weak interactions; the neutral ones only interact weakly. There are three well-defined lepton pairs, the electron (e−) and − the electron neutrino (νe), the muon (µ ) and the muon neutrino (νµ), and the (much heavier) charged lepton, the tau (τ), and its tau neutrino (ντ ). These particles all have antiparticles, in accordance with the predictions of relativistic quantum mechanics (see CPT Theorem).
    [Show full text]