Abelian Varieties: Geometry, Parameter Spaces, and Arithmetic

Total Page:16

File Type:pdf, Size:1020Kb

Abelian Varieties: Geometry, Parameter Spaces, and Arithmetic ABELIAN VARIETIES: GEOMETRY, PARAMETER SPACES, AND ARITHMETIC BRIAN CONRAD In this article I wish to convey to beginners how analytic, algebro-geometric, and arithmetic techniques come together in the study of abelian varieties and their variation in families. For many modern arithmetic applications it is crucial that the entire theory admits an algebraic foundation (requiring the full force of the theory of schemes and beyond), but much of our geometric intuition and expectation is guided by the complex-analytic theory. It is for this reason that the first three sections §1-§3 are devoted to an overview of the analytic aspects of the theory, with an emphasis on those structures and examples that will be seen to admit natural analogues in the algebraic theory. With this experience behind us, §4-5 explain how to make the appropriate definitions in the algebraic setting and what sorts of results and interesting examples one obtains. The final two sections (§6 and §7) are devoted to the study of analytic and algebraic families of abelian varieties parameterized by some “modular” varieties, with the aim of explaining (via the Main Theorem of Complex Multiplication) how these varieties fit within the framework of Shimura varieties. It is assumed that the reader has some prior exposure to the basics of algebraic geometry over an alge- braically closed field, and notions such as complex manifold and vector bundle over a manifold (as well as bundle operations, such as dual, tensor product, and pullback). We will certainly have to allow ourselves to work with algebro-geometric objects over a field that is not algebraically closed (so the reader unfamiliar with such things will have to take a lot on faith), and the proofs of many of the algebraic theorems that we state without proof require a solid command of the theory of schemes. Hence, these notes should be understood to be merely a survey of important notions, examples, and results for a reader who is taking their first steps into this vast and beautiful subject. Notation. Throughout, C denotes an algebraic closure of R that is fixed for all time. We write Z(1) to × denote√ the kernel of the exponential map exp : C √ C , so this is a free Z-module of rank 1 generated by ±2π −1; of course, there is no canonical choice of −1 in C. For any Z-module M we write M(1) to denote M ⊗Z Z(1). For example, R(1) is the “imaginary axis” in C (i.e., the −1-eigenspace for complex conjugation on the R-vector space C), C(1) is canonically isomorphic to C via the multiplication map C ⊗Z Z(1) → C, and for any positive integer N the function e(·)/N identifies (Z/NZ)(1) = Z(1)/N · Z(1) with the group µ (C) of Nth roots of unity in C. (Thus, for any prime ` we have that Z (1) ' lim Z(1)/`n · Z(1) is N ` ←− ` isomorphic to lim µ n (C) via the transition maps µ n+1 (C) µ n (C) defined by z 7→ z .) ←− ` ` ` √ By working systematically with Z(1) we can avoid using a choice of −1 throughout the analytic theory (as we must be able to do if we are to give definitions that admit algebraic analogues, since the algebraic theory√ does not know the concept of orientation for the complex plane that is equivalent to making a choice of −1). In this spirit, for any z ∈ C we write Re(z) to denote the “real part” (z + z)/2 = (1/2)TrC/R(z) and zim to denote the “imaginary component” (z − z)/2 = z − Re(z); these are canonical, whereas the classical “imaginary part” Im(z) is not. If M is a finite and free module over a commutative ring R (especially Z or a field) then we write M ∨ to ∨ denote the dual module HomR(M, R). For example, if M is a finite free Z-module then M (1) is naturally identified with the module Hom(M, Z(1)) of Z(1)-valued Z-linear forms on M. Date: July 8, 2005. 1991 Mathematics Subject Classification. Primary 14G22; Secondary 14H52. This work was partially supported by grants from the NSF and the Alfred P. Sloan Foundation. I would like to thank the organizers of the summer school for the invitation to present an introductory overview of this subject. 1 2 BRIAN CONRAD Contents 1. Basic analytic definitions and examples 2 1.1. Uniformizations 2 1.2. Endomorphisms and isogenies 7 1.3. CM tori 9 2. Analytic aspects of line bundles, duality, and pairings 13 2.1. The dual torus 14 2.2. Classification of line bundles 15 2.3. Correspondences and universal properties 19 2.4. Pairings and torsion 21 3. Analytic aspects of polarizations and CM tori 23 3.1. Polarizations 23 3.2. Siegel’s construction 27 3.3. Endomorphisms and polarizations 28 3.4. Tate modules 30 4. Basic algebraic definitions and examples 32 4.1. Maps and torsion 33 4.2. Tate modules and applications 35 4.3. Duality and Weil pairing 38 5. Algebraic theory of polarizations and endomorphisms 40 5.1. The Mumford construction 40 5.2. `-adic Riemann forms and the Rosati involution 44 6. Analytic models and algebraic descent 46 6.1. Analytic and algebraic modular curves 46 6.2. Characterization of algebraic models via Galois action 51 6.3. Heegner points and classical CM theory 60 6.4. Applications of CM theory to algebraicity 62 7. Siegel moduli spaces as Shimura varieties 65 7.1. Analytic Siegel families and moduli spaces 65 7.2. Siegel half-spaces as coset spaces 69 7.3. Algebraic Siegel modular varieties 72 7.4. Galois action at CM points 76 References 78 1. Basic analytic definitions and examples 1.1. Uniformizations. The beginning of the theory is: Definition 1.1.1. A complex torus is a compact connected complex Lie group. In the 1-dimensional case it is called an elliptic curve. Example 1.1.2. Let V be a finite-dimensional C-vector space with dimension g ≥ 1 and let Λ be a lattice in V (i.e., a co-compact discrete subgroup of V ). Equivalently, Λ is a discrete subgroup of V that is finite and free of rank 2g as a Z-module, or in yet another formulation it is a finite free Z-submodule of V such that the induced R-linear map R ⊗Z Λ → V is an isomorphism. The quotient V/Λ has a natural structure of compact Hausdorff commutative topological group and it admits a unique structure of complex manifold with respect to which the projection map V → V/Λ is a local analytic isomorphism. As such, V/Λ is a complex torus. Remark 1.1.3. Beware that although the natural R-linear map R ⊗Z Λ → V in Example 1.1.2 is an iso- morphism, so a Z-basis of Λ provides an R-basis of V giving an R-linear identification V ' R2g carrying ABELIAN VARIETIES: GEOMETRY, PARAMETER SPACES, AND ARITHMETIC 3 Λ over to Z2g, there is generally no C-basis of V with respect to which the description of Λ in V is equally straightforward. In other words, the C-structure put on the R-vector space R ⊗Z Λ via its identification with V is a subtle structure. However, it can be described in somewhat concrete terms if we choose suitable bases. For example, in the classical case g = 1 we may pick a basis {λ, λ0} of Λ and use λ0 as a basis of V , so the resulting identification of V with C carries Λ to the lattice Zτ ⊕ Z where τ ∈ C − R satisfies λ = τλ0 in V . Conversely, for any τ ∈ C − R certainly Zτ ⊕ Z is a lattice in C. Hence, in the case g = 1 we may describe all lattice embeddings Λ ,→ V in the concrete form Zτ ⊕ Z ⊆ C; the choice of τ is not intrinsic to the lattice (and, following Deligne, it determines an orientation of the R-vector space C via the nonzero 2 2 element τ ∧ 1 ∈ ∧R(R ⊗Z Λ) = ∧R(C); this is opposite to the “classical” orientation). Example 1.1.4. Let Λ ⊆ C be a lattice. In the classical theory of elliptic functions it is proved that the Weierstrass ℘-function 1 X 1 1 ℘ (z) = + − Λ z2 (z − λ)2 λ2 λ∈Λ−{0} is uniformly convergent on compacts in C − Λ and is meromorphic in C with Λ-periodicity and double poles along Λ. For the constants X 1 X 1 g (Λ) = 60 , g (Λ) = 140 2 λ4 3 λ6 λ∈Λ−{0} λ∈Λ−{0} 0 2 3 one has the non-linear differential equation ℘Λ = 4℘Λ −g2(Λ)℘Λ −g3(Λ) for which the cubic has discriminant 3 2 2 2 ∆(Λ) = g2(Λ) − 27g3(Λ) that is non-zero. Hence, the projective curve E in CP with affine model y = 3 0 4x −g2(Λ)x−g3(Λ) is smooth with [0, 1, 0] as its unique point on the line at infinity and z 7→ (℘Λ(z), ℘Λ(z)) uniquely extends to an analytic isomorphism C/Λ ' E carrying 0 to [0, 1, 0]. Moreover, the ratio 1728g (Λ)3 j(Λ) = 2 ∆(Λ) is called the j-invariant of C/Λ and it determines the isomorphism class of the elliptic curve C/Λ. Conversely, every smooth plane cubic y3 = 4x3 − ax2 − b with a3 − 27b2 6= 0 arises from some Λ as above.
Recommended publications
  • Canonical Heights on Varieties with Morphisms Compositio Mathematica, Tome 89, No 2 (1993), P
    COMPOSITIO MATHEMATICA GREGORY S. CALL JOSEPH H. SILVERMAN Canonical heights on varieties with morphisms Compositio Mathematica, tome 89, no 2 (1993), p. 163-205 <http://www.numdam.org/item?id=CM_1993__89_2_163_0> © Foundation Compositio Mathematica, 1993, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Compositio Mathematica 89: 163-205,163 1993. © 1993 Kluwer Academic Publishers. Printed in the Netherlands. Canonical heights on varieties with morphisms GREGORY S. CALL* Mathematics Department, Amherst College, Amherst, MA 01002, USA and JOSEPH H. SILVERMAN** Mathematics Department, Brown University, Providence, RI 02912, USA Received 13 May 1992; accepted in final form 16 October 1992 Let A be an abelian variety defined over a number field K and let D be a symmetric divisor on A. Néron and Tate have proven the existence of a canonical height hA,D on A(k) characterized by the properties that hA,D is a Weil height for the divisor D and satisfies A,D([m]P) = m2hA,D(P) for all P ~ A(K). Similarly, Silverman [19] proved that on certain K3 surfaces S with a non-trivial automorphism ~: S ~ S there are two canonical height functions hs characterized by the properties that they are Weil heights for certain divisors E ± and satisfy ±S(~P) = (7 + 43)±1±S(P) for all P E S(K) .
    [Show full text]
  • Arxiv:1906.01274V1 [Math.NT] 4 Jun 2019 Rpsto .] Aqe Ishmefas Rvdsoepofi I Yale 1.4.1]
    CHOW’S THEOREM FOR SEMI-ABELIAN VARIETIES AND BOUNDS FOR SPLITTING FIELDS OF ALGEBRAIC TORI CHIA-FU YU Abstract. A theorem of Chow concerns homomorphisms of two abelian vari- eties under a primary field extension base change. In this paper we generalize Chow’s theorem to semi-abelian varieties. This contributes to different proofs of a well-known result that every algebraic torus splits over a finite separable field extension. We also obtain the best bound for the degrees of splitting fields of tori. 1. Introduction Let k be a field, k¯ an algebraic closure of k, and ks the separable closure of k in k¯. A connected algebraic k-group T is an algebraic torus if there is a k¯-isomorphism d T ⊗k k¯ ≃ (Gm) ⊗k k of algebraic groups for some integer d ≥ 0. We say T splits d over a field extension K of k if there is a K-isomorphism T ⊗k K ≃ (Gm) ⊗k K. This paper is motivated from the following fundamental result. Theorem 1.1. Any algebraic k-torus T splits over ks. In other words, T splits over a finite separable field extension of k. This theorem is well known and it is stated and proved in the literature several times. Surprisingly, different authors choose their favorite proofs which are all quite different. As far as we know, the first proof is given by Takashi Ono [40, Proposition 1.2.1]. Armand Borel gives a different proof in his book Linear Algebraic Groups; see [3, Proposition 8.11]. In the second edition of his book Linear Algebraic Groups [49], T.A.
    [Show full text]
  • Material on Algebraic and Lie Groups
    2 Lie groups and algebraic groups. 2.1 Basic Definitions. In this subsection we will introduce the class of groups to be studied. We first recall that a Lie group is a group that is also a differentiable manifold 1 and multiplication (x, y xy) and inverse (x x ) are C1 maps. An algebraic group is a group7! that is also an algebraic7! variety such that multi- plication and inverse are morphisms. Before we can introduce our main characters we first consider GL(n, C) as an affi ne algebraic group. Here Mn(C) denotes the space of n n matrices and GL(n, C) = g Mn(C) det(g) =) . Now Mn(C) is given the structure nf2 2 j 6 g of affi ne space C with the coordinates xij for X = [xij] . This implies that GL(n, C) is Z-open and as a variety is isomorphic with the affi ne variety 1 Mn(C) det . This implies that (GL(n, C)) = C[xij, det ]. f g O Lemma 1 If G is an algebraic group over an algebraically closed field, F , then every point in G is smooth. Proof. Let Lg : G G be given by Lgx = gx. Then Lg is an isomorphism ! 1 1 of G as an algebraic variety (Lg = Lg ). Since isomorphisms preserve the set of smooth points we see that if x G is smooth so is every element of Gx = G. 2 Proposition 2 If G is an algebraic group over an algebraically closed field F then the Z-connected components Proof.
    [Show full text]
  • Algebraic Tori As Degenerations of Abelian Varieties
    Mathematika 64 (2018) 303–329 c 2018 University College London doi:10.1112/S0025579317000420 ALGEBRAIC TORI AS DEGENERATIONS OF ABELIAN VARIETIES KAI-WEN LAN AND JUNECUE SUH Abstract. We first show that every algebraic torus over any field, not necessarily split, can be realized as the special fiber of a semi-abelian scheme whose generic fiber is an absolutely simple abelian variety. Then we investigate which algebraic tori can be thus obtained, when we require the generic fiber of the semi-abelian scheme to carry non-trivial endomorphism structures. Contents 1 Introduction 303 2 One-dimensional case 305 3 Descent data for tori 307 4 Theory of degeneration 308 5 Conditions for degenerations 310 6 Proof of main theorem 316 7 Non-trivial endomorphisms 319 Acknowledgements 329 References 329 §1. Introduction. We start with a well-known example, the Dwork family of elliptic curves X 3 C Y 3 C Z 3 − 3t XY Z D 0 1 t over the projective line PQ over Q, where is the affine coordinate, with the identity section given by the point at infinity TX V Y V ZUDT1 V −1 V 0U. It also doubles as the modular curve of level 3. It has bad, semistable reduction at t D 1 and the third roots of unity. The corresponding Neron´ model has the split torus as the identity component of the fiber at t D 1 (because the equation becomes XYZ D 0), but at t D 1 we get a non-split torus T that sits in the short exact sequence / / p Norm / / ; 1 T ResQ.
    [Show full text]
  • Abelian Varieties and Theta Functions Associated to Compact Riemannian Manifolds; Constructions Inspired by Superstring Theory
    ABELIAN VARIETIES AND THETA FUNCTIONS ASSOCIATED TO COMPACT RIEMANNIAN MANIFOLDS; CONSTRUCTIONS INSPIRED BY SUPERSTRING THEORY. S. MULLER-STACH,¨ C. PETERS AND V. SRINIVAS MATH. INST., JOHANNES GUTENBERG UNIVERSITAT¨ MAINZ, INSTITUT FOURIER, UNIVERSITE´ GRENOBLE I ST.-MARTIN D'HERES,` FRANCE AND TIFR, MUMBAI, INDIA Resum´ e.´ On d´etailleune construction d^ue Witten et Moore-Witten (qui date d'environ 2000) d'une vari´et´eab´elienneprincipalement pola- ris´eeassoci´ee`aune vari´et´ede spin. Le th´eor`emed'indice pour l'op´erateur de Dirac (associ´e`ala structure de spin) implique qu'un accouplement naturel sur le K-groupe topologique prend des valeurs enti`eres.Cet ac- couplement sert commme polarization principale sur le t^oreassoci´e. On place la construction dans un c^adreg´en´eralce qui la relie `ala ja- cobienne de Weil mais qui sugg`ereaussi la construction d'une jacobienne associ´ee`an'importe quelle structure de Hodge polaris´eeet de poids pair. Cette derni`ereconstruction est ensuite expliqu´eeen termes de groupes alg´ebriques,utile pour le point de vue des cat´egoriesTannakiennes. Notre construction depend de param`etres,beaucoup comme dans la th´eoriede Teichm¨uller,mais en g´en´erall'application de p´eriodes n'est que de nature analytique r´eelle. Abstract. We first investigate a construction of principally polarized abelian varieties attached to certain spin manifolds, due to Witten and Moore-Witten around 2000. The index theorem for the Dirac operator associated to the spin structure implies integrality of a natural skew pairing on the topological K-group. The latter serves as a principal polarization.
    [Show full text]
  • Algebraic Tori: a Computational Approach
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-8-2017 12:00 AM Algebraic Tori: A Computational Approach Armin Jamshidpey The University of Western Ontario Supervisor Prof. Nicole Lemire The University of Western Ontario Joint Supervisor Prof. Eric Schost The University of Western Ontario Graduate Program in Mathematics A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Armin Jamshidpey 2017 Follow this and additional works at: https://ir.lib.uwo.ca/etd Recommended Citation Jamshidpey, Armin, "Algebraic Tori: A Computational Approach" (2017). Electronic Thesis and Dissertation Repository. 4692. https://ir.lib.uwo.ca/etd/4692 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The rationality problem for algebraic tori is well known. It is known that any algebraic torus is unirational over its field of definition. The first purpose of this work is to solve rational- ity problem for 5 dimensional stably rational algebraic tori with an indecomposable character lattice. In order to do so, we have studied the associated character lattices of the mentioned algebraic tori. For each character lattice L, either we see the lattice as an associated lattice to a root system (of which rationality of its corresponding algebraic torus is known) or we find a reduced component of L so that we can relate rationality of the associated algebraic torus to lower dimensions.
    [Show full text]
  • Mirror Symmetry of Abelian Variety and Multi Theta Functions
    1 Mirror symmetry of Abelian variety and Multi Theta functions by Kenji FUKAYA (深谷賢治) Department of Mathematics, Faculty of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto Japan Table of contents § 0 Introduction. § 1 Moduli spaces of Lagrangian submanifolds and construction of a mirror torus. § 2 Construction of a sheaf from an affine Lagrangian submanifold. § 3 Sheaf cohomology and Floer cohomology 1 (Construction of a homomorphism). § 4 Isogeny. § 5 Sheaf cohomology and Floer cohomology 2 (Proof of isomorphism). § 6 Extension and Floer cohomology 1 (0 th cohomology). § 7 Moduli space of holomorphic vector bundles on a mirror torus. § 8 Nontransversal or disconnected Lagrangian submanifolds. ∞ § 9 Multi Theta series 1 (Definition and A formulae.) § 10 Multi Theta series 2 (Calculation of the coefficients.) § 11 Extension and Floer cohomology 2 (Higher cohomology). § 12 Resolution and Lagrangian surgery. 2 § 0 Introduction In this paper, we study mirror symmetry of complex and symplectic tori as an example of homological mirror symmetry conjecture of Kontsevich [24], [25] between symplectic and complex manifolds. We discussed mirror symmetry of tori in [12] emphasizing its “noncom- mutative” generalization. In this paper, we concentrate on the case of a commutative (usual) torus. Our result is a generalization of one by Polishchuk and Zaslow [42], [41], who studied the case of elliptic curve. The main results of this paper establish a dictionary of mirror symmetry between symplectic geometry and complex geometry in the case of tori of arbitrary dimension. We wrote this dictionary in the introduction of [12]. We present the argument in a way so that it suggests a possibility of its generalization.
    [Show full text]
  • Abelian Varieties
    Abelian Varieties J.S. Milne Version 2.0 March 16, 2008 These notes are an introduction to the theory of abelian varieties, including the arithmetic of abelian varieties and Faltings’s proof of certain finiteness theorems. The orginal version of the notes was distributed during the teaching of an advanced graduate course. Alas, the notes are still in very rough form. BibTeX information @misc{milneAV, author={Milne, James S.}, title={Abelian Varieties (v2.00)}, year={2008}, note={Available at www.jmilne.org/math/}, pages={166+vi} } v1.10 (July 27, 1998). First version on the web, 110 pages. v2.00 (March 17, 2008). Corrected, revised, and expanded; 172 pages. Available at www.jmilne.org/math/ Please send comments and corrections to me at the address on my web page. The photograph shows the Tasman Glacier, New Zealand. Copyright c 1998, 2008 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permis- sion from the copyright holder. Contents Introduction 1 I Abelian Varieties: Geometry 7 1 Definitions; Basic Properties. 7 2 Abelian Varieties over the Complex Numbers. 10 3 Rational Maps Into Abelian Varieties . 15 4 Review of cohomology . 20 5 The Theorem of the Cube. 21 6 Abelian Varieties are Projective . 27 7 Isogenies . 32 8 The Dual Abelian Variety. 34 9 The Dual Exact Sequence. 41 10 Endomorphisms . 42 11 Polarizations and Invertible Sheaves . 53 12 The Etale Cohomology of an Abelian Variety . 54 13 Weil Pairings . 57 14 The Rosati Involution . 61 15 Geometric Finiteness Theorems . 63 16 Families of Abelian Varieties .
    [Show full text]
  • Underlying Varieties and Group Structures 3
    UNDERLYING VARIETIES AND GROUP STRUCTURES VLADIMIR L. POPOV Abstract. Starting with exploration of the possibility to present the underlying variety of an affine algebraic group in the form of a product of some algebraic varieties, we then explore the naturally arising problem as to what extent the group variety of an algebraic group determines its group structure. 1. Introduction. This paper arose from a short preprint [16] and is its extensive extension. As starting point of [14] served the question of B. Kunyavsky [10] about the validity of the statement, which is for- mulated below as Corollary of Theorem 1. This statement concerns the possibility to present the underlying variety of a connected reductive algebraic group in the form of a product of some special algebraic va- rieties. Sections 2, 3 make up the content of [16], where the possibility of such presentations is explored. For some of them, in Theorem 1 is proved their existence, and in Theorems 2–5, on the contrary, their non-existence. Theorem 1 shows that there are non-isomorphic reductive groups whose underlying varieties are isomorphic. In Sections 4–10, we explore the problem, naturally arising in connection with this, as to what ex- tent the underlying variety of an algebraic group determines its group structure. In Theorems 6–8, it is shown that some group properties (dimension of unipotent radical, reductivity, solvability, unipotency, arXiv:2105.12861v1 [math.AG] 26 May 2021 toroidality in the sense of Rosenlicht) are equivalent to certain geomet- ric properties of the underlying group variety. Theorem 8 generalizes to solvable groups M.
    [Show full text]
  • Torsion Subgroups of Abelian Varieties
    Torsion Subgroups of Abelian Varieties Raoul Wols April 19, 2016 In this talk I will explain what abelian varieties are and introduce torsion subgroups on abelian varieties. k is always a field, and Vark always denotes the category of varieties over k. That is to say, geometrically integral sepa- rated schemes of finite type with a morphism to k. Recall that the product of two A; B 2 Vark is just the fibre product over k: A ×k B. Definition 1. Let C be a category with finite products and a terminal object 1 2 C. An object G 2 C is called a group object if G comes equipped with three morphism; namely a \unit" map e : 1 ! G; a \multiplication" map m : G × G ! G and an \inverse" map i : G ! G such that id ×m G × G × G G G × G m×idG m G × G m G commutes, which tells us that m is associative, and such that (e;id ) G G G × G idG (idG;e) m G × G m G commutes, which tells us that e is indeed the neutral \element", and such that (id ;i)◦∆ G G G × G (i;idG)◦∆ m e0 G × G m G 1 commutes, which tells us that i is indeed the map that sends \elements" to inverses. Here we use ∆ : G ! G × G to denote the diagonal map coming from the universal property of the product G × G. The map e0 is the composition G ! 1 −!e G. id Now specialize to C = Vark. The terminal object is then 1 = (Spec(k) −! Spec(k)), and giving a unit map e : 1 ! G for some scheme G over k is equivalent to giving an element e 2 G(k).
    [Show full text]
  • 1:34 Pm April 11, 2013 Red.Tex
    1:34 p.m. April 11, 2013 Red.tex The structure of reductive groups Bill Casselman University of British Columbia, Vancouver [email protected] An algebraic group defined over F is an algebraic variety G with group operations specified in algebraic terms. For example, the group GLn is the subvariety of (n + 1) × (n + 1) matrices A 0 0 a with determinant det(A) a = 1. The matrix entries are well behaved functions on the group, here for 1 example a = det− (A). The formulas for matrix multiplication are certainly algebraic, and the inverse of a matrix A is its transpose adjoint times the inverse of its determinant, which are both algebraic. Formally, this means that we are given (a) an F •rational multiplication map G × G −→ G; (b) an F •rational inverse map G −→ G; (c) an identity element—i.e. an F •rational point of G. I’ll look only at affine algebraic groups (as opposed, say, to elliptic curves, which are projective varieties). In this case, the variety G is completely characterized by its affine ring AF [G], and the data above are respectively equivalent to the specification of (a’) an F •homomorphism AF [G] −→ AF [G] ⊗F AF [G]; (b’) an F •involution AF [G] −→ AF [G]; (c’) a distinguished homomorphism AF [G] −→ F . The first map expresses a coordinate in the product in terms of the coordinates of its terms. For example, in the case of GLn it takes xik −→ xij ⊗ xjk . j In addition, these data are subject to the group axioms. I’ll not say anything about the general theory of such groups, but I should say that in practice the specification of an algebraic group is often indirect—as a subgroup or quotient, say, of another simpler one.
    [Show full text]
  • GVF NOTES/ ITAฯ BEN YAACOV, E.H. Contents 1. Continuous Logic 2 1.1
    GVF NOTES/ ITAÏ BEN YAACOV, E.H. Contents 1. Continuous logic 2 1.1. Ultraproducts 2 1.2. Formulas 2 2. Measure theory 3 2.7. Positive linear functionals 5 3. Valued fields 6 3.1. Generically stable types 6 3.2. Comparison of V“ with V an 6 3.4. The linear part of a generically stable type 6 3.6. valuative volumes and mixed volumes 7 3.9. Minkowski’s mixed volumes 9 4. Multiply valued fields 10 4.6. Topology on V ALF 12 4.7. Admissible measures 12 4.11. Induced structure on a subfield 13 4.12. Renormalization 13 4.19. Proper subvarieties 15 4.21. Extending valuations on subrings 15 4.26. Symmetric extensions 17 4.29. Heights 18 4.34. A criterion for globalization 18 4.35. GVF’s as continuous logic structures 18 4.38. Archimedean valuations 19 5. Classical GVF structures. 21 6. Conjectures 22 a 7. Gm-fullness and the GVF structure on K . 23 7.1. Axiomatizability of Gm-fullness. 24 8. Adelic canonical amalgamation 25 9. One variable 32 10. 1-types of height zero 33 10.1. Local case 34 10.2. The purely non-archimedean case 34 References 39 Date: January 26, 2016. 1 2 GVF NOTES/ ITAÏ BEN YAACOV, E.H. 1. Continuous logic A language consists of function and relation symbols as usual. A structure is a set (or a family of sets in the many-sorted situation) with function symbols and terms treated as usual. But the interpretation of a relation symbol R(x1; : : : ; xn) n is a function A ! R.
    [Show full text]