Cycle 23 Abstract Catalog (Based on Phase I Submissions)

Total Page:16

File Type:pdf, Size:1020Kb

Cycle 23 Abstract Catalog (Based on Phase I Submissions) Cycle 23 Abstract Catalog (Based on Phase I Submissions) 14066 Proposal Category: GO Scientific Category: Unresolved Stellar Populations and Galaxy ID: 14066 Program Title: Hi-PEEC, Hubble imaging Probe of Extreme Environments and Clusters Principal Investigator: Angela Adamo PI Institution: Stockholm University Starburst events play a major role in shaping the stellar content of galaxies at high redshift, due to the strongly enhanced gas fractions and merger rates in comparison to present-day galaxies. The fossils of those starburst episodes, the globular clusters (GCs), are outstanding witnesses to the dramatic changes that occurred in their host galaxies. To understand and interpret the rapid evolution occurring in starbursts at any redshift, we need to probe how the intensified duty cycle of gas consumption changes the nature of young massive cluster (YMC) populations. We therefore propose Hi-PEEC, an UV-optical study of YMCs in a uniquely accessible sample of 6 starbursts located in the nearby (D<80 Mpc) universe. Our targets have star formation rates higher than or comparable to the Antennae, and rich cluster populations. Monte Carlo simulations, including realistic assumptions of recent burst events and extinction gradients, prove our abilities to recover YMC properties (age, masses, extinction) inside the requested detection limits. We will be able to study the efficiency by which clusters form, the formation modes of the most massive clusters, their age and spatial distributions in mergers, as well as obtain insights into the recent star formation histories of the host galaxies. This proposal is aimed at unveiling the role of starburst environments in shaping the process of star and cluster formation. These studies will have important implications for our understanding of GC formation and will constitute a reference sample for future infrared-limited studies of the highly star-forming and heavily extinguished counterpart galaxies with the JWST. 1 6/30/2015 Cycle 23 Abstract Catalog (Based on Phase I Submissions) 14067 Proposal Category: GO Scientific Category: Unresolved Stellar Populations and Galaxy ID: 14067 Program Title: Searching for a Supermassive Black Hole in the Brightest Ultracompact Dwarf Galaxy Principal Investigator: Chris Ahn PI Institution: University of Utah We request a single orbit of HST time to image the most luminous ultracompact dwarf galaxy (UCD), M59-UCD3, suspected to be the tidally stripped nucleus of a massive galaxy. We will combine these data with adaptive optics kinematic data from Gemini/NIFS to test for the presence of a supermassive black hole (SMBH) in this object. HST imaging will resolve the inner surface brightness profile of this very compact object, which is necessary creating dynamical models and in determining the PSF of the kinematic observations. Due to M59-UCD3's brightness, we expect to be able to detect the signature of any black hole above a few million solar masses; significantly smaller than the 21 million solar mass black hole recently found by our team in the slightly less luminous UCD, M60-UCD1. There is indirect evidence that supermassive black holes in UCDs, like the one in M60-UCD1, may represent a significant new population of supermassive black holes. M59-UCD3 provides an important test of this hypothesis. 2 6/30/2015 Cycle 23 Abstract Catalog (Based on Phase I Submissions) 14068 Proposal Category: GO Scientific Category: AGN/Quasars ID: 14068 Program Title: Resolving the Nuclear Regions of Confirmed Offset AGN Principal Investigator: Robert Barrows PI Institution: University of Colorado at Boulder We propose HST observations of 10 SDSS galaxies that host X-ray detected active galactic nuclei (AGN) that are significantly spatially offset from the SDSS galaxy nucleus. Since the off-nuclear nature of an AGN can only result from a galaxy merger, these systems are confirmed mergers hosting AGN and give us the unique opportunity to study the connection between galaxy mergers and supermassive black hole (SMBH) growth. However, the resolution of the SDSS is insufficient to resolve the nuclear regions of these mergers, and the combined resolution, sensitivity and multi-band capabilities of HST are now necessary to utilize this sample for studies of galaxy and SMBH co-evolution. By also developing a carefully defined control sample from archival data, our proposed multi-band HST/WFC3 observations will permit us to measure the star-formation rates in the nuclear regions, facilitating a comparison between the triggering of AGN and star-formation in galaxy mergers and an investigation into the role mergers play in the co-evolution of galaxies and SMBHs. By resolving the stellar cores associated with the merging galaxies, we can determine the preference of major versus minor mergers in the triggering of AGN. This study can only be accomplished with HST because 1) the resolution of HST is necessary to resolve the nuclear regions of these merging systems; 2) the sensitivity of HST is necessary to detect the stellar cores if the merger is of a minor classification; and 3) the multi-band imaging is necessary to estimate star-formation rates. 3 6/30/2015 Cycle 23 Abstract Catalog (Based on Phase I Submissions) 14069 Proposal Category: GO Scientific Category: Resolved Stellar Populations ID: 14069 Program Title: Searching For Multiple Populations in Massive Young and Intermediate Age Clusters Principal Investigator: Nate Bastian PI Institution: Liverpool John Moores Univeristy We propose to obtain imaging of 12 massive clusters within the LMC/SMC, spanning a wide range of ages (100 Myr - 10 Gyr), in order to search for abundance spreads (i.e. multiple populations) within them. While all ancient globular clusters (GCs) studied to date, in the necessary detail, possess multiple populations, no massive (>10^5 Msun) young (< 1 Gyr) or intermediate (1-8 Gyr) age clusters have been found with abundance spreads. This raises the fundamental question: what controls whether a cluster will host multiple populations? The standard suggestion is that cluster mass is the crucial parameter, although recent results on the initial masses of GCs have called this into question. An alternative view is that GC formation was fundamentally different than the formation of other (< 10 Gyr) massive clusters. The proposed observations will definitively address whether age or mass is the crucial parameter controlling the appearance of multiple populations. The proposed sample occupies a critical region of parameter space (age/mass) where there are no Milky Way counterparts. 4 6/30/2015 Cycle 23 Abstract Catalog (Based on Phase I Submissions) 14070 Proposal Category: GO Scientific Category: Cool Stars ID: 14070 Program Title: A Red Supergiant Mass Accurate to 1% Principal Investigator: Philip Bennett PI Institution: Eureka Scientific Inc. Red supergiants (RSGs) are massive, evolved stars that are among the brightest stars in the near infrared, and often serve as useful ``standard candles'' for extragalactic and cosmological studies. But this use of RSGs is hampered by the lack of fundamental mass and luminosity calibrations tying these objects to the theoretical H-R diagram. Theoretical evolutionary models are not very useful because of mass loss due to stellar winds in the RSG stage. Mass loss in RSG stars is not well understood, and is incorporated using various parameterizations. No accurate observationally-determined RSG masses are available. More than anywhere else in the H-R diagram, there is a pressing need for accurate stellar masses of red supergiants. The determination of an accurate RSG mass is a priority. We propose to determine the mass of the K supergiant in the bright, well-studied, eclipsing binary system 31 Cygni (K4 Ib + B3 V). The orbital solution of the optically-dominant K supergiant has been accurately determined. Given this, a complete solution for both stellar masses can be found from a small number of radial velocity observations of the companion star. For 31 Cyg, archival STIS/E140H observations from 2001-02 (program GO-9109) are well-suited for this purpose. The orbital configuration of 31 Cyg in Cycle 23 is ideally separated by ~0.5 in phase from the archival observations (thereby maximizing the RV difference). We propose to obtain additional STIS/E140H observations in Cycle 23, and use these two sets of FUV observations to determine the mass of the 31 Cyg K supergiant to ~1%. These observations must be done soon, or the optimal phase window for doing so will be lost. 5 6/30/2015 Cycle 23 Abstract Catalog (Based on Phase I Submissions) 14071 Proposal Category: GO Scientific Category: ISM in External Galaxies ID: 14071 Program Title: How are HI Disks Fed? Probing Condensation at the Disk-Halo Interface Principal Investigator: Sanchayeeta Borthakur PI Institution: The Johns Hopkins University Galaxy disks need a continuous supply of cold gas to fuel star formation. While accretion from the intergalactic medium brings in gas, this gas needs to condense down to a temperature <100K to form stars. Here, we propose to investigate the process of accretion and condensation of inflowing warm ionized gas into neutral atomic gas (HI) in the disks of galaxies and how this is affected by feedback from massive stars. To do so, we mount the first controlled absorption- line experiment to probe the interface between the disk and the circumgalactic medium (CGM). This study will complement the parameter space (in terms of impact parameter versus HI disk size) probed by the large HST program COS-GASS (PI:Heckman). Together these two programs will give us a continuous coverage of gas properties in galaxies from disks out to the virial radii. Our sample provides QSO-sightlines through 35 gas-rich galaxies (z= 0.003-0.05) probing them at the disk-CGM interface. The proposed observations will probe a wide range of absorption-line transitions that will help us in identifying the underlying physics behind the process of condensation. We will also use state-of-the art numerical simulations to interpret the observations in a physically motivated context, and provide constraints that test (and then improve) the simulations.
Recommended publications
  • R" ^ the Astrophysical Journal, 369:79-105,1991
    O'! r" ^ The Astrophysical Journal, 369:79-105,1991 March 1 © 1991. The American Astronomical Society. All rights reserved. Printed in U.S.A. O'! \O'! 1 A DEEP IMAGING AND SPECTROSCOPIC SURVEY OF FAINT GALAXIES S. J. Lilly,1 L. L. Cowie,1 and J. P. Gardner1 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 Received 1990 May 9 ; accepted 1990 August 22 ABSTRACT The results of a deep imaging and spectroscopic optical survey are presented. Three small areas of sky at 13 h, 17 h, and 22 h have been imaged to faint levels in four passbands (U', B, V, and I) in the optical window. These reach approximately 27th magnitude for galaxy images, at which point the surface density of galaxies is 5 -2 roughly 2.5 x 10 deg . A complete catalog of objects to JAB ~ 24.5 is provided as the basis for future studies of the faint extragalactic population. Spectroscopic observations of a small but essentially complete sample of galaxies in and around the 22 h field have yielded redshifts for a high fraction of galaxies with Bab <24.1. Detailed comparison of our deep images with similar data from other observers shows some broad similarities but also some significant differences. In particular, our faintest galaxies are in general con- siderably redder, and the fraction of galaxies with colors that are unrepresentable by normal galaxies is corre- spondingly much smaller. We also see evidence for a decline in the steep slope of the B-band number counts for magnitudes fainter than B ~ 24.
    [Show full text]
  • An Atlas of Far-Ultraviolet Spectra of the Zeta Aurigae Binary 31 Cygni with Line Identifications
    The Astrophysical Journal Supplement Series, 211:27 (14pp), 2014 April doi:10.1088/0067-0049/211/2/27 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. AN ATLAS OF FAR-ULTRAVIOLET SPECTRA OF THE ZETA AURIGAE BINARY 31 CYGNI WITH LINE IDENTIFICATIONS Wendy Hagen Bauer1 and Philip D. Bennett2,3 1 Whitin Observatory, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA; [email protected] 2 Department of Astronomy & Physics, Saint Mary’s University, Halifax, NS B3H 3C3, Canada 3 Eureka Scientific, Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017, USA Received 2013 March 29; accepted 2013 October 26; published 2014 April 2 ABSTRACT The ζ Aurigae system 31 Cygni (K4 Ib + B4 V) was observed by the FUSE satellite during total eclipse and at three phases during chromospheric eclipse. We present the coadded, calibrated spectra and atlases with line identifications. During total eclipse, emission from high ionization states (e.g., Fe iii and Cr iii) shows asymmetric profiles redshifted from the systemic velocity, while emission from lower ionization states (e.g., Fe ii and O i) appears more symmetric and is centered closer to the systemic velocity. Absorption from neutral and singly ionized elements is detected during chromospheric eclipse. Late in chromospheric eclipse, absorption from the K star wind is detected at a terminal velocity of ∼80 km s−1. These atlases will be useful for interpreting the far-UV spectra of other ζ Aur systems, as the observed FUSE spectra of 32 Cyg, KQ Pup, and VV Cep during chromospheric eclipse resemble that of 31 Cyg.
    [Show full text]
  • KAREN J. MEECH February 7, 2019 Astronomer
    BIOGRAPHICAL SKETCH – KAREN J. MEECH February 7, 2019 Astronomer Institute for Astronomy Tel: 1-808-956-6828 2680 Woodlawn Drive Fax: 1-808-956-4532 Honolulu, HI 96822-1839 [email protected] PROFESSIONAL PREPARATION Rice University Space Physics B.A. 1981 Massachusetts Institute of Tech. Planetary Astronomy Ph.D. 1987 APPOINTMENTS 2018 – present Graduate Chair 2000 – present Astronomer, Institute for Astronomy, University of Hawaii 1992-2000 Associate Astronomer, Institute for Astronomy, University of Hawaii 1987-1992 Assistant Astronomer, Institute for Astronomy, University of Hawaii 1982-1987 Graduate Research & Teaching Assistant, Massachusetts Inst. Tech. 1981-1982 Research Specialist, AAVSO and Massachusetts Institute of Technology AWARDS 2018 ARCs Scientist of the Year 2015 University of Hawai’i Regent’s Medal for Research Excellence 2013 Director’s Research Excellence Award 2011 NASA Group Achievement Award for the EPOXI Project Team 2011 NASA Group Achievement Award for EPOXI & Stardust-NExT Missions 2009 William Tylor Olcott Distinguished Service Award of the American Association of Variable Star Observers 2006-8 National Academy of Science/Kavli Foundation Fellow 2005 NASA Group Achievement Award for the Stardust Flight Team 1996 Asteroid 4367 named Meech 1994 American Astronomical Society / DPS Harold C. Urey Prize 1988 Annie Jump Cannon Award 1981 Heaps Physics Prize RESEARCH FIELD AND ACTIVITIES • Developed a Discovery mission concept to explore the origin of Earth’s water. • Co-Investigator on the Deep Impact, Stardust-NeXT and EPOXI missions, leading the Earth-based observing campaigns for all three. • Leads the UH Astrobiology Research interdisciplinary program, overseeing ~30 postdocs and coordinating the research with ~20 local faculty and international partners.
    [Show full text]
  • A Dusty, Normal Galaxy in the Epoch of Reionization
    A dusty, normal galaxy in the epoch of reionization Darach Watson1, Lise Christensen1, Kirsten Kraiberg Knudsen2, Johan Richard3, Anna Gallazzi4,1, and Michał Jerzy Michałowski5 Candidates for the modest galaxies that formed most of the stars in the early universe, at redshifts z > 7, have been found in large numbers with extremely deep restframe-UV imaging1. But it has proved difficult for existing spectrographs to characterise them in the UV2,3,4. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant UV-selected galaxy detected in dust emission is only at z = 3.25, and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at this early epoch6,7,8. Here we report thermal dust emission from an archetypal early universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be z = 7.5±0.2 from a spectroscopic detection of the Lyα break. A1689-zD1 is representative of the star-forming population during reionisation9, with a total star- –1 formation rate of about 12 M yr . The galaxy is highly evolved: it has a large stellar mass, and is heavily enriched in dust, with a dust-to-gas ratio close to that of the Milky Way. Dusty, evolved galaxies are thus present among the fainter star-forming population at z > 7, in spite of the very short time since they first appeared.
    [Show full text]
  • 1 Characterization of Cometary Activity of 67P/Churyumov-Gerasimenko
    Characterization of cometary activity of 67P/Churyumov-Gerasimenko comet Abstract After 2.5 years from the end of the mission, the data provided by the ESA/Rosetta mission still leads to important results about 67P/Churyumov-Gerasimenko (hereafter 67P), belonging to the Jupiter Family Comets. Since comets are among the most primitive bodies of the Solar System, the understanding of their formation and evolution gives important clues about the early stages of our planetary system, including the scenarios of water delivery to Earth. At the present state of knowledge, 67P’s activity has been characterized by measuring the physical properties of the gas and dust coma, by detecting water ice patches on the nucleus surface and by analyzing some peculiar events, such as outbursts. We propose an ISSI International Team to build a more complete scenario of the 67P activity during different stages of its orbit. The retrieved results in terms of dust emission, morphology and composition will be linked together in order to offer new insights about 67P formation and evolution. In particular the main goals of the project are: 1. Retrieval of the activity degree of different 67P geomorphological nucleus regions in different time periods, by reconstructing the motion of the dust particles revealed in the coma; 2. Identification of the main drivers of cometary activity, by studying the link between cometary activity and illumination/local time, dust morphology, surface geomorphology, dust composition. The project will shed light on how (and if) cometary activity is related to surface geology and/or composition or is just driven by local illumination.
    [Show full text]
  • Stardust Comet Flyby
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Stardust Comet Flyby Press Kit January 2004 Contacts Don Savage Policy/Program Management 202/358-1727 NASA Headquarters, Washington DC Agle Stardust Mission 818/393-9011 Jet Propulsion Laboratory, Pasadena, Calif. Vince Stricherz Science Investigation 206/543-2580 University of Washington, Seattle, WA Contents General Release ……………………………………......………….......................…...…… 3 Media Services Information ……………………….................…………….................……. 5 Quick Facts …………………………………………..................………....…........…....….. 6 Why Stardust?..................…………………………..................………….....………......... 7 Other Comet Missions ....................................................................................... 10 NASA's Discovery Program ............................................................................... 12 Mission Overview …………………………………….................……….....……........…… 15 Spacecraft ………………………………………………..................…..……........……… 25 Science Objectives …………………………………..................……………...…........….. 34 Program/Project Management …………………………...................…..…..………...... 37 1 2 GENERAL RELEASE: NASA COMET HUNTER CLOSING ON QUARRY Having trekked 3.2 billion kilometers (2 billion miles) across cold, radiation-charged and interstellar-dust-swept space in just under five years, NASA's Stardust spacecraft is closing in on the main target of its mission -- a comet flyby. "As the saying goes, 'We are good to go,'" said project manager Tom Duxbury at NASA's Jet
    [Show full text]
  • This Work Is Protected by Copyright and Other Intellectual Property Rights
    This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. Fundamental properties of M-dwarfs in eclipsing binary star systems Samuel Gill Doctor of Philosophy Department of Physics, Keele University March 2019 i Abstract The absolute parameters of M-dwarfs in eclipsing binary systems provide important tests for evolutionary models. Those that have been measured reveal significant discrepancies with evolutionary models. There are two problems with M-dwarfs: 1. M-dwarfs generally appear bigger and cooler than models predict (such that their luminosity agrees with models) and 2. some M-dwarfs in eclipsing binaries are measured to be hotter than expected for their mass. The exact cause of this is unclear and a variety of conjectures have been put forward including enhanced magnetic activity and spotted surfaces. There is a lack of M-dwarfs with absolute parameters and so the exact causes of these disparities are unclear. As the interest in low-mass stars rises from the ever increasing number of exoplanets found around them, it is important that a considerable effort is made to understand why this is so. A solution to the problem lies with low-mass eclipsing binary systems discovered by the WASP (Wide Angle Search for Planets) project.
    [Show full text]
  • Disintegration of Active Asteroid P/2016 G1 (PANSTARRS) Olivier R
    A&A 628, A48 (2019) https://doi.org/10.1051/0004-6361/201935868 Astronomy & © ESO 2019 Astrophysics Disintegration of active asteroid P/2016 G1 (PANSTARRS) Olivier R. Hainaut1, Jan T. Kleyna2, Karen J. Meech2, Mark Boslough3, Marco Micheli4,5, Richard Wainscoat2, Marielle Dela Cruz2, Jacqueline V. Keane2, Devendra K. Sahu6, and Bhuwan C. Bhatt6 1 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany e-mail: [email protected] 2 Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 3 University of NM – 1700 Lomas Blvd, NE. Suite 2200, Albuquerque, NM 87131-0001 USA 4 ESA SSA-NEO Coordination Centre, Largo Galileo Galilei, 1 00044 Frascati (RM), Italy 5 INAF – Osservatorio Astronomico di Roma, Via Frascati, 33, 00040 Monte Porzio Catone (RM), Italy 6 Indian Institute of Astrophysics, II Block, Koramangala, Bengaluru 560 034, India Received 10 May 2019 / Accepted 26 June 2019 ABSTRACT We report on the catastrophic disintegration of P/2016 G1 (PANSTARRS), an active asteroid, in April 2016. Deep images over three months show that the object is made up of a central concentration of fragments surrounded by an elongated coma, and presents previously unreported sharp arc-like and narrow linear features. The morphology and evolution of these characteristics independently point toward a brief event on 2016 March 6. The arc and the linear feature can be reproduced by large particles on a ring, moving at ∼2:5 m s−1. The expansion of the ring defines a cone with a ∼40◦ half-opening. We propose that the P/2016 G1 was hit by a small object which caused its (partial or total) disruption, and that the ring corresponds to large fragments ejected during the final stages of the crater formation.
    [Show full text]
  • Axions and Other Similar Particles
    1 91. Axions and Other Similar Particles 91. Axions and Other Similar Particles Revised October 2019 by A. Ringwald (DESY, Hamburg), L.J. Rosenberg (U. Washington) and G. Rybka (U. Washington). 91.1 Introduction In this section, we list coupling-strength and mass limits for light neutral scalar or pseudoscalar bosons that couple weakly to normal matter and radiation. Such bosons may arise from the spon- taneous breaking of a global U(1) symmetry, resulting in a massless Nambu-Goldstone (NG) boson. If there is a small explicit symmetry breaking, either already in the Lagrangian or due to quantum effects such as anomalies, the boson acquires a mass and is called a pseudo-NG boson. Typical examples are axions (A0)[1–4] and majorons [5], associated, respectively, with a spontaneously broken Peccei-Quinn and lepton-number symmetry. A common feature of these light bosons φ is that their coupling to Standard-Model particles is suppressed by the energy scale that characterizes the symmetry breaking, i.e., the decay constant f. The interaction Lagrangian is −1 µ L = f J ∂µ φ , (91.1) where J µ is the Noether current of the spontaneously broken global symmetry. If f is very large, these new particles interact very weakly. Detecting them would provide a window to physics far beyond what can be probed at accelerators. Axions are of particular interest because the Peccei-Quinn (PQ) mechanism remains perhaps the most credible scheme to preserve CP-symmetry in QCD. Moreover, the cold dark matter (CDM) of the universe may well consist of axions and they are searched for in dedicated experiments with a realistic chance of discovery.
    [Show full text]
  • Memoria De Publicaciones 2017 Facultad De Ciencias Uam Memoria De Publicaciones De La Facultad De Ciencias 2017
    MEMORIA DE PUBLICACIONES 2017 FACULTAD DE CIENCIAS UAM MEMORIA DE PUBLICACIONES DE LA FACULTAD DE CIENCIAS 2017 La Memoria de Publicaciones de la Facultad de Ciencias, como parte de la Memoria de Investigación, aspira a dar cuenta de los resultados de la investigación realizada a lo largo de 2017 por los profesores e investigadores de la Facultad. Ha sido realizada por la Biblioteca de Ciencias contando con las aportaciones facilitadas por los Departamentos y por el Decanato de la Facultad, en la persona de la Vicedecana de Investigación, a quienes agradecemos enormemente su aportación. Publicaciones en La Facultad ha generado un volumen de producción científica 2017 de 1.267 publicaciones 1.104 En 2017 se han publicado un total de 1.104 trabajos citables Trabajos Citables (entre artículos y revisiones) de los que 1.056 tienen Factor de Impacto calculado (96%) 73% La Facultad de Ciencias tiene un total de 807 trabajos Trabajos indexados en Q1, que supone el 73,10% del total de los Primer Cuartil – Q1 trabajos publicados, prácticamente igual que el año anterior. Algunos departamentos superan este porcentaje situándose entre el 85% y 96% 1 La Facultad de Ciencias tiene al único investigador de la UAM Highly Cited considerado como investigador altamente citado para el año Researchers 2017 en el área de Física, según los listados de Clarivate Analytics, elaborados a partir de la Web of Science. https://clarivate.com/hcr/researchers-list/archived-lists/ : es el profesor Francisco José García Vidal, del Departamento de Física Teórica de la Materia Condensada. Memoria de Publicaciones de la Facultad de Ciencias 2017 Página 2 de 146 ÍNDICE .
    [Show full text]
  • Modeling and Interpretation of the Ultraviolet Spectral Energy Distributions of Primeval Galaxies
    Ecole´ Doctorale d'Astronomie et Astrophysique d'^Ile-de-France UNIVERSITE´ PARIS VI - PIERRE & MARIE CURIE DOCTORATE THESIS to obtain the title of Doctor of the University of Pierre & Marie Curie in Astrophysics Presented by Alba Vidal Garc´ıa Modeling and interpretation of the ultraviolet spectral energy distributions of primeval galaxies Thesis Advisor: St´ephane Charlot prepared at Institut d'Astrophysique de Paris, CNRS (UMR 7095), Universit´ePierre & Marie Curie (Paris VI) with financial support from the European Research Council grant `ERC NEOGAL' Composition of the jury Reviewers: Alessandro Bressan - SISSA, Trieste, Italy Rosa Gonzalez´ Delgado - IAA (CSIC), Granada, Spain Advisor: St´ephane Charlot - IAP, Paris, France President: Patrick Boisse´ - IAP, Paris, France Examinators: Jeremy Blaizot - CRAL, Observatoire de Lyon, France Vianney Lebouteiller - CEA, Saclay, France Dedicatoria v Contents Abstract vii R´esum´e ix 1 Introduction 3 1.1 Historical context . .4 1.2 Early epochs of the Universe . .5 1.3 Galaxytypes ......................................6 1.4 Components of a Galaxy . .8 1.4.1 Classification of stars . .9 1.4.2 The ISM: components and phases . .9 1.4.3 Physical processes in the ISM . 12 1.5 Chemical content of a galaxy . 17 1.6 Galaxy spectral energy distributions . 17 1.7 Future observing facilities . 19 1.8 Outline ......................................... 20 2 Modeling spectral energy distributions of galaxies 23 2.1 Stellar emission . 24 2.1.1 Stellar population synthesis codes . 24 2.1.2 Evolutionary tracks . 25 2.1.3 IMF . 29 2.1.4 Stellar spectral libraries . 30 2.2 Absorption and emission in the ISM . 31 2.2.1 Photoionization code: CLOUDY .......................
    [Show full text]
  • Small-Scale Structure Is It a Valid Motivation?
    Small-scale Structure Is it a valid motivation? Jakub Scholtz IPPP (Durham) Small Scale Structure Problems <—> All the reasons why “CDM is not it” How did we get here? We are gravitationally sensitive to something sourcing T • <latexit sha1_base64="055AcnSYYRkGsBe2aYAe7vH1peg=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jFCXphdwuxkNhkyM7vMQwhL/sKLB0W8+jfe/BsnyR40saChqOqmuyvOONPG97+9tfWNza3t0k55d2//4LBydNzWqVWEtkjKU9WNsaacSdoyzHDazRTFIua0E4/vZn7niSrNUtk0k4xGAg8lSxjBxkmPzX4eChtKO+1Xqn7NnwOtkqAgVSjQ6Fe+wkFKrKDSEI617gV+ZqIcK8MIp9NyaDXNMBnjIe05KrGgOsrnF0/RuVMGKEmVK2nQXP09kWOh9UTErlNgM9LL3kz8z+tZk9xEOZOZNVSSxaLEcmRSNHsfDZiixPCJI5go5m5FZIQVJsaFVHYhBMsvr5L2ZS3wa8HDVbV+W8RRglM4gwsI4BrqcA8NaAEBCc/wCm+e9l68d+9j0brmFTMn8Afe5w/beZEG</latexit> µ⌫ —> we are fairly certain that DM exists. • An exception is MOND, which has issues of its own. However, the MOND community has been instrumental in pointing out some of the discrepancies with CDM. • But how do we verify the picture? —> NBODY simulations (disclaimer: I have never run a serious body simulation) 2WalterDehnen,JustinI.Read:N-body SimulationsN-body simulations of gravitational dynamics have reached over 106 particles [6], while collisionless calculations can now reach more than 109 particles [7–10]. This disparity reflects the difference in complexity of these rather dissimilar N-body problems. The significant increase in N in the last decade was driven by the usage of parallel computers. In this review, we discuss the state-of-the art software algo- Takerithms N and dark hardware matter improvements
    [Show full text]