Radiogenic Pb Enrichment of Mississippi Valley-Type Metallic Ore Deposits, Southern Ozarks

Total Page:16

File Type:pdf, Size:1020Kb

Radiogenic Pb Enrichment of Mississippi Valley-Type Metallic Ore Deposits, Southern Ozarks geosciences Article Radiogenic Pb Enrichment of Mississippi Valley-Type Metallic Ore Deposits, Southern Ozarks: Constraints Based on Geochemical Studies of Source Rocks and Their Diagenetic History Jonathan Chick 1, Sydney E. McKim 2, Adriana Potra 1,* , Walter L. Manger 1 and John R. Samuelsen 3 1 Department of Geosciences, University of Arkansas, Fayetteville, AR 72701, USA; [email protected] (J.C.); [email protected] (W.L.M.) 2 Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA; [email protected] 3 Arkansas Archeological Survey, University of Arkansas, Fayetteville, AR 72704, USA; [email protected] * Correspondence: [email protected] Abstract: Southern Ozark Mississippi Valley-type ores are enriched in radiogenic Pb, with isotopic signatures suggesting that metals were supplied by two end-member components. While the less radiogenic component appears to be derived from various shale and sandstone units, the source of the more radiogenic component has not yet been identified. Analyses of cherts from the Early Ordovician Cotter Dolomite and tripolitic chert from the Early Mississippian Boone Formation contain highly radiogenic Pb, with isotopic ratios comparable to those of ores. However, most 208 204 207 204 206 204 Citation: Chick, J.; McKim, S.E.; samples have lower Pb/ Pb and Pb/ Pb for a given Pb/ Pb compared to ores. These Potra, A.; Manger, W.L.; Samuelsen, relationships demonstrate that the enriched Pb isotopic values of the ore array cannot be related to the J.R. Radiogenic Pb Enrichment of host and regional lithologies sampled, suggesting that the source of high ratios may lay further afield. Mississippi Valley-Type Metallic Ore The slope of the linear trend defined by the Pb isotope ratios of ores corresponds to an age of about Deposits, Southern Ozarks: 1.19 Ga. Therefore, an alternative for the linear array is the involvement of Precambrian basement in Constraints Based on Geochemical supplying ore Pb. Rare earth element patterns show that diagenetic processes involving the action Studies of Source Rocks and Their of groundwater and hydrothermal fluids affected the sampled lithologies to various degrees, with Diagenetic History. Geosciences 2021, Cotter Dolomite having experienced the highest degree of alteration. 11, 172. https://doi.org/10.3390/ geosciences11040172 Keywords: Mississippi Valley-type ores; Ozark region; tripolitic chert; Pb isotopes; rare earth elements Academic Editors: Suzanne Golding and Jesus Martinez-Frias Received: 29 December 2020 1. Introduction Accepted: 7 April 2021 It has been hypothesized that Ordovician, Mississippian, and younger carbonate Published: 10 April 2021 and clastic formations found within the Ouachita Uplift of west-central Arkansas, and northward onto the Ozark Dome, experienced interaction with hydrothermal fluids due Publisher’s Note: MDPI stays neutral to tectonic forces that caused the Ouachita Orogeny [1–3]. Geochemical studies indicate with regard to jurisdictional claims in that the Mississippi Valley-type (MVT) ores were produced from a mixing and cooling of published maps and institutional affil- these sedimentary, basinal brines by associated meteoric or connate waters [4]. Previous iations. investigations of the mid-continent MVT Pb and Zn mineralization (Figure1) have been conducted, resulting in a large amount of geological and geochemical data, as well as numerous theories as to the source of the MVT ore metals and mineralizing fluids [5–10]. In the Ozark region, the linear trend defined by the Pb isotope compositions of the MVT Copyright: © 2021 by the authors. ores suggest their formation involved a mixing of metals from two end-member compo- Licensee MDPI, Basel, Switzerland. nents [7–10]. One end-member must have been highly radiogenic with Pb isotope ratios This article is an open access article equal or higher than the highest measured value in the ores. The other end-member distributed under the terms and must have been less radiogenic, with Pb isotope ratios equal or lower than the lowest conditions of the Creative Commons measured value. Extensive geochemical studies of rocks from the southern Ozark region Attribution (CC BY) license (https:// and the Ouachita Mountains (Figure1) have been carried out in order to constrain the creativecommons.org/licenses/by/ two end-member components in the ores from the Northern Arkansas and the Tri-State 4.0/). Geosciences 2021, 11, 172. https://doi.org/10.3390/geosciences11040172 https://www.mdpi.com/journal/geosciences Geosciences 2021, 11, x FOR PEER REVIEW 2 of 23 been less radiogenic, with Pb isotope ratios equal or lower than the lowest measured value. Extensive geochemical studies of rocks from the southern Ozark region and the Ouachita Mountains (Figure 1) have been carried out in order to constrain the two end- member components in the ores from the Northern Arkansas and the Tri-State districts: the Devonian and Mississippian shales of the Ozark Plateaus [9], the Ordovician and Car- boniferous shales and sandstones of the Ouachita Mountains [10], the various cherts from the Devonian-Lower Mississippian Arkansas Novaculite [11,12], and from the Lower Mis- sissippian Boone Formation (the lower Boone penecontemporaneous chert and the upper Boone tripolitic and diagenetic chert) [13,14]. While the less radiogenic component has been generally attributed to various shale and sandstone units [9,10], the more radiogenic Geosciences 2021, 11, 172 2 of 22 component has not yet been identified. Whole-rock Pb isotope analyses conducted for this study may help better constrain the more radiogenic component that contributed Pb to the ores. Rare earth element (REE) analyses have also been carried out on these whole- districts:rock samples the Devonian to shed light and on Mississippian the depositional shales environment of the Ozark and Plateaus the diagenetic [9], the Ordovician processes andthat Carboniferousmight have affected shales them. and sandstones of the Ouachita Mountains [10], the various chertsLead from isotopes the Devonian-Lower are an excellent Mississippian tracer of metal Arkansas sources in Novaculite hydrothermal [11,12 systems.], and from Un- theder Lowermedium Mississippian (mesothermal, Boone around Formation 200– (the400 lower°C) to Boone high penecontemporaneoustemperature (hypothermal, chert andaround the 400 upper–600 Boone °C) conditions, tripolitic like and those diagenetic encountered chert) [in13 hydrothermal,14]. While the environments, less radiogenic Pb componentis soluble [15]. has beenUnder generally relatively attributed low temperature to various environments, shale and sandstone Pb may units be complexed [9,10], the morewith organic radiogenic matter component [15]. Although has not yetmetal been-bisulfide identified. and Whole-rockorganometallic Pb isotopecomplexes analyses have conductedbeen suggested, for this only study metal may-chloride help better complexes constrain are the considered more radiogenic likely base component metal trans- that contributedporting species Pb to for the MVT ores. ore Rare fluids earth [16]. element A threshold (REE) analyses of approximately have also been10 wt. carried % chlorinity out on thesein sedimentary whole-rock brines samples has to been shed inferred light on thefor depositionalthe presence environmentof Pb (and Zn) and in the sedimentary diagenetic processesfluids at MVT that mightore-forming have affected conditions them. [17]. FigureFigure 1.1. MapMap ofof thethe UnitedUnited StatesStates midcontinentmidcontinent regionregion showing showing the the location location of of sedimentary sedimentary basins, ba- shalesins, shale plays, plays, and majorand major MVT MVT mining mining districts districts and and deposits deposits (1 through (1 through 12): 12 (1)): Northern(1) Northern Arkansas, Ar- (2)kansas, Tri-State (2) ,Tri (3)-State, Burkesville (3) Burkesville deposit, deposit, (4) Old ( Lead4) Old Belt, Lead (5) Belt, Southeast (5) Southeast Missouri Missouri Barite, Barite, (6) Central (6) Central Missouri Barite, (7) Viburnum Trend, (8) Upper Mississippi Valley, (9) Illinois–Kentucky Missouri Barite, (7) Viburnum Trend, (8) Upper Mississippi Valley, (9) Illinois–Kentucky Fluorspar, Fluorspar, (10) Central Tennessee, (11) Central Kentucky, and (12) Eastern Tennessee. Modified (10) Central Tennessee, (11) Central Kentucky, and (12) Eastern Tennessee. Modified from [4,9]. For from [4,9]. For drawing this basemap: https://www.eia.gov/maps/maps.htm (accessed on 29 De- drawingcember 2020 this) basemap:. https://www.eia.gov/maps/maps.htm (accessed on 29 December 2020). Lead isotopes are an excellent tracer of metal sources in hydrothermal systems. Under medium (mesothermal, around 200–400 ◦C) to high temperature (hypothermal, around 400–600 ◦C) conditions, like those encountered in hydrothermal environments, Pb is soluble [15]. Under relatively low temperature environments, Pb may be complexed with organic matter [15]. Although metal-bisulfide and organometallic complexes have been suggested, only metal-chloride complexes are considered likely base metal transporting species for MVT ore fluids [16]. A threshold of approximately 10 wt. % chlorinity in sedimentary brines has been inferred for the presence of Pb (and Zn) in sedimentary fluids at MVT ore-forming conditions [17]. Lead has a similar geochemical behavior to Cu and Zn in hydrothermal fluids [18] and it occurs in the same paragenetic stages as Zn, Cu, Ag, and Cd [19,20]. Therefore, Pb isotopes can be used to constrain the source of associated metals such
Recommended publications
  • Chapter 2 Paleozoic Stratigraphy of the Grand Canyon
    CHAPTER 2 PALEOZOIC STRATIGRAPHY OF THE GRAND CANYON PAIGE KERCHER INTRODUCTION The Paleozoic Era of the Phanerozoic Eon is defined as the time between 542 and 251 million years before the present (ICS 2010). The Paleozoic Era began with the evolution of most major animal phyla present today, sparked by the novel adaptation of skeletal hard parts. Organisms continued to diversify throughout the Paleozoic into increasingly adaptive and complex life forms, including the first vertebrates, terrestrial plants and animals, forests and seed plants, reptiles, and flying insects. Vast coal swamps covered much of mid- to low-latitude continental environments in the late Paleozoic as the supercontinent Pangaea began to amalgamate. The hardiest taxa survived the multiple global glaciations and mass extinctions that have come to define major time boundaries of this era. Paleozoic North America existed primarily at mid to low latitudes and experienced multiple major orogenies and continental collisions. For much of the Paleozoic, North America’s southwestern margin ran through Nevada and Arizona – California did not yet exist (Appendix B). The flat-lying Paleozoic rocks of the Grand Canyon, though incomplete, form a record of a continental margin repeatedly inundated and vacated by shallow seas (Appendix A). IMPORTANT STRATIGRAPHIC PRINCIPLES AND CONCEPTS • Principle of Original Horizontality – In most cases, depositional processes produce flat-lying sedimentary layers. Notable exceptions include blanketing ash sheets, and cross-stratification developed on sloped surfaces. • Principle of Superposition – In an undisturbed sequence, older strata lie below younger strata; a package of sedimentary layers youngs upward. • Principle of Lateral Continuity – A layer of sediment extends laterally in all directions until it naturally pinches out or abuts the walls of its confining basin.
    [Show full text]
  • (Meridian Sand) in Grenada County, Mississippi
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2019 Petrology, Provenance, and Depositional Setting of the Lower Tallahatta Formation (Meridian Sand) in Grenada County, Mississippi Husamaldeen Zubi University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Geology Commons Recommended Citation Zubi, Husamaldeen, "Petrology, Provenance, and Depositional Setting of the Lower Tallahatta Formation (Meridian Sand) in Grenada County, Mississippi" (2019). Electronic Theses and Dissertations. 1581. https://egrove.olemiss.edu/etd/1581 This Thesis is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. PETROLOGY, PROVENANCE, AND DEPOSITIONAL SETTING OF THE LOWER TALLAHATTA FORMATION (MERIDIAN SAND) IN GRENADA COUNTY, MISSISSIPPI A Thesis presented in partial fulfillment of requirements for the degree of Master of Science in the Department of Geology and Geological Engineering The University of Mississippi By Husamaldeen Zubi December 2018 Copyright Husamaldeen Zubi 2018 ALL RIGHTS RESER ABSTRACT The Meridian Sand represents the lowermost member of the Middle Eocene Tallahatta Formation, which is found in the Gulf Coast region of the United States. Five stratigraphic sections in Grenada County were measured and described. Twenty-one sand and sandstone samples, and 2 mud samples were collected from all sections. Textural analyses were performed on all 23 samples to determine their lithologic properties. Petrographic descriptions and modal analyses were performed on thin sections made from the 21 sand and sandstone samples, and 400 grains were point counted in each sample.
    [Show full text]
  • Pennsylvanian Boundary Unconformity in Marine Carbonate Successions
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences Summer 6-2014 ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING. Lucien Nana Yobo University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geoscidiss Part of the Geochemistry Commons, Geology Commons, Sedimentology Commons, and the Stratigraphy Commons Nana Yobo, Lucien, "ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING." (2014). Dissertations & Theses in Earth and Atmospheric Sciences. 59. http://digitalcommons.unl.edu/geoscidiss/59 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING. By Luscalors Lucien Nana Yobo A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Tracy D.
    [Show full text]
  • Geologic Timeline
    SCIENCE IN THE PARK: GEOLOGY GEOLOGIC TIME SCALE ANALOGY PURPOSE: To show students the order of events and time periods in geologic time and the order of events and ages of the physiographic provinces in Virginia. BACKGROUND: Exact dates for events change as scientists explore geologic time. Dates vary from resource to resource and may not be the same as the dates that appear in your text book. Analogies for geologic time: a 24 hour clock or a yearly calendar. Have students or groups of students come up with their own original analogy. Before you assign this activity, you may want to try it, depending on the age of the student, level of the class, or time constraints, you may want to leave out the events that have a date of less than 1 million years. ! Review conversions in the metric system before you begin this activity ! References L.S. Fichter, 1991 (1997) http://csmres.jmu.edu/geollab/vageol/vahist/images/Vahistry.PDF http://pubs.usgs.gov/gip/geotime/age.html Wicander, Reed. Historical Geology. Fourth Edition. Toronto, Ontario: Brooks/Cole, 2004. Print. VIRGINIA STANDARDS OF LEARNING ES.10 The student will investigate and understand that many aspects of the history and evolution of the Earth can be inferred by studying rocks and fossils. Key concepts include: relative and absolute dating; rocks and fossils from many different geologic periods and epochs are found in Virginia. Developed by C.P. Anderson Page 1 SCIENCE IN THE PARK: GEOLOGY Building a Geologic Time Scale Time: Materials Meter stick, 5 cm adding machine tape, pencil, colored pencils Procedure 1.
    [Show full text]
  • Carboniferous Formations and Faunas of Central Montana
    Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa­ tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________
    [Show full text]
  • The Mississippian Barnett Formation: a Source-Rock, Seal, and Reservoir Produced by Early Carboniferous Flooding of the Texas C
    THE MISSISSIPPIAN BARNETT FORMATION: A SOURCE-ROCK, SEAL, AND RESERVOIR PRODUCED BY EARLY CARBONIFEROUS FLOODING OF THE TEXAS CRATON Stephen C. Ruppel and Jeffery Kane Bureau of Economic Geology Jackson School of Geosciences The University of Texas at Austin Austin,. TX ABSTRACT The Early Carboniferous (Mississippian) was a time of crustal downwarping and flooding of southern Texas region. Mississippian facies documenting this flooding include a basal, updip, shallow to deep water carbonate succession and an overlying, downdip, deep water, fine grained siliciclastic mudrock succession. The basal carbonate succession, termed the Mississippian Limestone in the Permian Basin, includes the Chappel of the Llano Uplift and the Caballero-Lake Valley of southern New Mexico outcrops. These rocks document the margins of an extensive carbonate platform that occupied much of the western U.S. during the middle developed Mississippian. The overlying siliciclastic mudrock succession includes the Barnett formation of the Permian and Ft. Worth Basins and the Rancheria Formation of southern New Mexico outcrops. These rocks accumulated by autochthonous hemipelagic sedimentation and allochthonous mass gravity transport in low energy, below wave base, dysaerobic conditions in a platform marginal deep water basin formed on the southern margin of the Laurussian platform. The carbonate section is poorly known and only of minor importance as a hydrocarbon reservoir in the Permian Basin. Key insights into the detailed character and architecture of these rocks are provided by analogous outcrops of the Lake Valley outcrop succession in New Mexico. The overlying Barnett mudrock succession, long recognized as a hydrocarbon source rock, is similarly poorly known but has recently attracted great attention as a target for gas exploration and development.
    [Show full text]
  • A New Early Visean Coral Assemblage from Azrou-Khenifra Basin, Central Morocco and Palaeobiogeographic Implications Sergio Rodríguez1,2* , Ian D
    Rodríguez et al. Journal of Palaeogeography (2020) 9:5 https://doi.org/10.1186/s42501-019-0051-5 Journal of Palaeogeography ORIGINAL ARTICLE Open Access A new early Visean coral assemblage from Azrou-Khenifra Basin, central Morocco and palaeobiogeographic implications Sergio Rodríguez1,2* , Ian D. Somerville3, Pedro Cózar2, Javier Sanz-López4, Ismael Coronado5, Felipe González6, Ismail Said1 and Mohamed El Houicha7 Abstract A new early Visean coral assemblage has been recorded from turbidite facies in the southern part of the Azrou- Khenifra Basin, northwest of Khenifra, central Morocco. The newly discovered Ba Moussa West (BMW) coral fauna includes Siphonophyllia khenifrense sp. nov., Sychnoelasma urbanowitschi, Cravenia lamellata, Cravenia tela, Cravenia rhytoides, Turnacipora megastoma and Pleurosiphonella crustosa. The early Visean age of the coral assemblage is supported by foraminiferal and conodont data, with the recognition of the basal Visean MFZ9 Zone. This confirms that the first transgression in the Azrou-Khenifra Basin was during the earliest Visean. The allochthonous coral assemblage was recovered from coarse-grained proximal limestone debris flow and turbidite beds within a fault- bounded unit, lying to the west of a thrust syncline containing upper Visean limestones. No evidence exists of the former early Visean shallow-water platform from which the corals were derived. All other in situ platform carbonate rocks around the southern margin of the Azrou-Khenifra Basin are probably of late Visean (Asbian–Brigantian) age. The early Visean Ba Moussa West coral fauna can be compared with that at Tafilalt in eastern Morocco, as well as in other Saharian basins of Algeria. Many of the genera and species in the Ba Moussa West assemblage are identical to those in NW Europe, with which it must have had marine connections.
    [Show full text]
  • Mississippian-Pennsylvanian Boundary Problems in the Rocky Mountain Region
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 7-1948 Mississippian-Pennsylvanian Boundary Problems In The Rocky Mountain Region James Steele Williams United States Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Earth Sciences Commons Williams, James Steele, "Mississippian-Pennsylvanian Boundary Problems In The Rocky Mountain Region" (1948). USGS Staff -- Published Research. 502. https://digitalcommons.unl.edu/usgsstaffpub/502 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The Journal of Geology, Vol. 56, No. 4, Jul., 1948 MISSISSIPPIAN-PENNSYLVANIAN BOUNDARY PROBLEMS IN THE ROCKY MOUNTAIN REGION' JAMES STEELE WILLIAMS United States Geological Survey ABSTRACT A variety of paleontologic and stratigraphic problems are presented by rocks near the Mississippian- Pennsylvanian boundary in the central and northern Rocky Mountains. Stratigraphic sections of these rocks show diverse interpretations of fundamental concepts of stratigraphy and paleontology. In many places where Upper Mississippian rocks directly underlie Pennsylvanian rocks it is difficult to determine the precise location of the boundary between these units. Formations that straddle the boundary are very useful and satisfactory over large areas. Most geologists use various types of lithologic criteria to distinguish forma- tions, but some appear to rely mainly on faunal data, unconformities, or attempts to trace prominent beds. More uniformity in criteria than now exists for the delimitation of formations is desirable.
    [Show full text]
  • A Reappraisal of Mississippian (Tournaisian and Visean) Adpression Floras from Central and Northwestern Europe
    Zitteliana A 54 (2014) 39 A reappraisal of Mississippian (Tournaisian and Visean) adpression floras from central and northwestern Europe Maren Hübers1, Benjamin Bomfleur2*, Michael Krings3, Christian Pott2 & Hans Kerp1 1Forschungsstelle für Paläobotanik am Geologisch-Paläontologischen Institut, Westfälische Zitteliana A 54, 39 – 52 Wilhelms-Universität Münster, Heisenbergstraße 2, 48149 Münster, Germany München, 31.12.2014 2Swedish Museum of Natural History, Department of Paleobiology, Box 50007, SE-104 05, Stockholm, Sweden Manuscript received 3Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig- 01.02.2014; revision Maximilians-Universität, and Bayerische Staatssammlung für Paläontologie und Geologie, Richard- accepted 07.04.2014 Wagner-Straße 10, 80333 Munich, Germany ISSN 1612 - 412X *Author for correspondence and reprint requests: E-mail: [email protected] Abstract Mississippian plant fossils are generally rare, and in central and northwestern Europe especially Tournaisian to middle Visean fossil floras are restricted to isolated occurrences. While sphenophytes and lycophytes generally are represented by only a few widespread and long-ranging taxa such as Archaeocalamites radiatus, Sphenophyllum tenerrimum and several species of Lepidodendropsis and Lepido- dendron, Visean floras in particular show a remarkably high diversity of fern-like foliage, including filiform types (Rhodea, Diplotmema), forms with bipartite fronds (Sphenopteridium, Diplopteridium, Spathulopteris, Archaeopteridium), others with monopodial, pinnate fronds (Anisopteris, Fryopsis) and still others characterized by several-times pinnate fronds (e.g., Adiantites, Triphyllopteris, Sphenopteris, Neu- ropteris). Most of these leaf types have been interpreted as belonging to early seed ferns, whereas true ferns seem to have been rare or lacking in impression/compression floras. In the upper Visean, two types of plant assemblages can be distinguished, i.e., the northern Kohlenkalk-type and the south-eastern Kulm-type assemblage.
    [Show full text]
  • 1 Correlation of the Base of the Serpukhovian Stage
    Correlation of the base of the Serpukhovian Stage (Carboniferous; Mississippian) in northwest Europe GEORGE D. SEVASTOPULO* & MILO BARHAM✝ *Department of Geology, Trinity College Dublin, Dublin 2, Ireland ✝Milo Barham, Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia Author for correspondence: [email protected] Running head: Correlation base Serpukhovian northwest Europe Abstract - The Task Group charged with proposing the GSSP for the base of the Serpukhovian Stage (Mississippian: Lower Carboniferous) is likely to use the global First Appearance Datum (FAD: evolutionary first appearance) of the conodont Lochriea ziegleri in the lineage Lochriea nodosa-L. ziegleri for the definition and correlation of the base of the stage. It is important to establish that the FOD (First Occurrence Datum) of L. ziegleri in different basins is essentially penecontemporaneous. Ammonoids provide high-resolution biostratigraphy in the late Mississippian but their use for international correlation is limited by provincialism. However, it is possible to assess the levels of diachronism of the FOD of L. ziegleri in sections in northwest Europe using ammonoid zones. Published compilations of conodont distribution in the Rhenish Slate Mountains of Germany show the FOD of L. ziegleri in the Emstites novalis Biozone (upper part of the P2c zone of the British/Irish ammonoid biozonation) but L. ziegleri has also been reported as occurring in the Neoglyphioceras spirale Biozone (P1d zone). In the Yoredale Group of northern England, the FOD of L. ziegleri is in either the P1c or P1d zone. In NW Ireland, the oldest records of both L. nodosa and L. ziegleri are from the Lusitanoceras granosum Biozone (P2a).
    [Show full text]
  • Forest Soils of Mississippi
    Forest Soils of Mississippi People often take for granted the importance of soil foothills, while the youngest soils are constantly being in their lives. Soils provide the foundation for our homes, formed by annual flooding in river bottomlands across cities, and roads. Soils are the medium for bountiful crops the state. and forests. Soils store and filter the groundwater that More recent soils of the Mississippi River floodplain nourishes our lives. Indeed, soils provide for the diversity formed during the Ice Age up to 1 million years ago. The of plants and wildlife upon which Mississippians depend Mississippi River drained immense glacial lakes that for commerce and recreation. formed as the great ice sheets melted. Eolian (wind-blown) Landowners interested in making the most of their for- deposits of this glacial outwash formed the Loess Hills bor- est need a basic understanding of soils. Forest productiv- dering the Delta region to the east. Altogether, sedimen- ity and wildlife habitat begin with the quality of the soil. tary deposits are relatively easier to weather than rock. The Knowing proper soil management techniques is crucial to most recent alluvial sediments in the Delta are very fertile conserving the land and protecting watersheds from and are the basis for the success of Mississippi’s agricul- soil erosion. tural industry. Soil Formation Climate Soils form through the interactions of physical, chemi- Mississippi has a warm, humid climate. Weather pat- cal, and biological mechanisms on the geological materials terns are dominated by the continent to the north and the exposed to the earth’s surface.
    [Show full text]
  • Records of Ante-Bellum Southern Plantations from the Revolution Through the Civil War General Editor: Kenneth M
    A Guide to the Microfilm Edition of Records of Ante-Bellum Southern Plantations from the Revolution through the Civil War General Editor: Kenneth M. Stampp Series J Selections from the Southern Historical Collection, Manuscripts Department, Library of the University of North Carolina at Chapel Hill Part 6: Mississippi and Arkansas Associate Editor and Guide Compiled by Martin Schipper A microfilm project of UNIVERSITY PUBLICATIONS OF AMERICA An Imprint of CIS 4520 East-West Highway • Bethesda, MD 20814-3389 Library of Congress Cataloging-in-Publication Data Records of ante-bellum southern plantations from the Revolution through the Civil War [microform] Accompanied by printed reel guides, compiled by Martin Schipper. Contents: ser. A. Selections from the South Caroliniana Library, University of South Carolina (2 pts.) -- [etc.] --ser. E. Selection from the University of Virginia Library (2 pts.) -- -- ser. J. Selections from the Southern Historical Collection Manuscripts Department, Library of the University of North Carolina at Chapel Hill (pt. 6). 1. Southern States--History--1775–1865--Sources. 2. Slave records--Southern States. 3. Plantation owners--Southern States--Archives. 4. Southern States-- Genealogy. 5. Plantation life--Southern States-- History--19th century--Sources. I. Stampp, Kenneth M. (Kenneth Milton) II. Boehm, Randolph. III. Schipper, Martin Paul. IV. South Caroliniana Library. V. South Carolina Historical Society. VI. Library of Congress. Manuscript Division. VII. Maryland Historical Society. [F213] 975 86-892341 ISBN
    [Show full text]