Simulation of Volcanic Outgassing and Volatile Chemical Speciation in the C-O-H System
Total Page:16
File Type:pdf, Size:1020Kb
Interior-surface-atmosphere interactions of rocky planets: simulation of volcanic outgassing and volatile chemical speciation in the C-O-H system Dissertation Submission for the academic title ”Doctor rerum naturalium“ (Dr. rer. nat.) Submitted by Gianluigi Ortenzi Submitted to the Department of Earth Sciences Freie Universitat¨ Berlin Berlin, 2021 Supervisor: Prof. Dr. Lena Noack Freie Universitat¨ Berlin Institut fur¨ Geologische Wissenschaften Malteserstraße 74-100, 12249 Berlin, Germany. Second examiner: Prof. Dr. Doris Breuer Institut de Physique du Globe de Paris - Department of Planetary and Space Sciences. Universite´ de Paris. 1 Rue Jussieu, 75005 Paris, France. and German Aerospace Center (DLR), Institute of Planetary Research. Rutherfordstraße 2, 12489 Berlin. Germany. Date of defense: 25 May 2021 Hiermit versichere ich, die vorliegende Arbeit selbststandig¨ angefertigt und keine anderen als die angefuhrten¨ Quellen und Hilfsmittel benutzt zu haben. Berlin, 2021 Gianluigi Ortenzi Contents Abstract iii Zusammenfassung iv 1 Introduction 6 1.1 General description of volatile species and volcanic outgassing process . .8 1.1.1 Hydrogen species (H2 and H2O)........................... 11 1.1.2 Carbon species (CO2, CO and CH4)......................... 11 1.1.3 Sulphur species . 12 1.1.4 Oxygen fugacity control on the gas chemical speciation . 12 1.1.5 Volcanism across the solar system . 14 1.2 Accretion and differentiation of a planet: application to investigate the outgassed atmosphere 14 1.3 Activities and analysis in fieldtrips . 15 2 Methods 17 2.1 Introduction . 17 2.2 Chemical equilibrium . 17 2.3 Gibbs free energy of formation and of reaction . 20 2.4 Redox state and the importance of the oxygen fugacity . 21 2.5 Volatile solubility . 24 2.6 Gas chemical speciation: ideal gas behaviour . 25 2.7 Gas chemical speciation: real gas behaviour . 33 2.8 Gas chemical speciation model C-O-H including CH4 .................... 36 2.9 Gas chemical speciation model C-O-H-S . 38 2.10 Comparison of the speciation model C-O-H with previous literature . 46 2.11 Summary . 50 3 Application of the chemical speciation model 52 3.1 Mantle redox state drives outgassing chemistry and atmospheric composition of rocky planets 54 3.1.1 Abstract . 54 3.1.2 Introduction . 54 3.1.3 Results . 55 3.1.4 Discussion . 63 3.1.5 Methods . 64 3.1.6 Supplementary materials . 73 3.2 The early Earth’s volcanic outgassing rates from mantle convection, melting, and volatile speciation . 77 3.2.1 Abstract . 77 3.2.2 Introduction . 77 3.2.3 Methods . 79 3.2.4 Results . 86 3.2.5 Discussion . 95 3.2.6 Conclusions . 101 3.3 Effect of mantle oxidation state and escape upon the evolution of Earth’s magma ocean atmosphere . 103 3.3.1 Abstract . 103 3.3.2 Introduction . 104 3.3.3 Methods and models . 106 3.3.4 Volatile outgassing scenarios . 117 3.3.5 Results . 119 3.3.6 Discussion . 132 3.3.7 Conclusions . 139 3.3.8 Appendix . 140 3.4 Additional publications . 145 i 3.4.1 Enhancement of eruption explosivity by heterogeneous bubble nucleation triggered by magma mingling . 145 3.4.2 The diversity of planetary ingassing/outgassing paths produced through billions of years of magmatic activities . 145 3.4.3 Field investigation of volcanic deposits on Vulcano, Italy using a handheld laser- induced breakdown instrument . 146 4 Discussion and conclusion 148 5 Appendix 154 5.1 List of figures . 154 5.2 List of tables . 163 References 166 ii Abstract The characterization of the volcanic volatile outgassing is central for investigating the composition and the development of rocky planet atmospheres. I have analysed the volcanic gas release via numerical simula- tions of the volatile pathway from the mantle to the atmosphere of a planet. The thesis has been carried out as a subproject within the Transregional Collaborative Research Center TRR 170 ”Late accretion onto ter- restrial planets” which gave the opportunity to collaborate with other subprojects and research institutions. The aim of the thesis was to develop a numerical model for characterising the volcanic outgassed compo- sition during the early Earth evolution. The core of this research is the volatile chemical speciation model which simulates the volcanic outgassing considering the C-O-H system. I designed the model following the ”Mass balance and equilibrium” method (French, 1966; Holloway, 1981; Holland, 1984; Huizenga, 2005; Fegley, 2013; Gaillard and Scaillet, 2014; Schaefer and Fegley, 2017) taking into consideration the princi- pal factors that define the outgassed composition of a silicate melt namely: pressure, temperature and redox state. The volatile chemical speciation is calculated considering that the volatile species are in chemical equilibrium with the silicate melt and an ideal gas behaviour. The redox state of the system was reproduced by using some of the most common petrological mineral buffers (Holloway et al., 1992), for both reduc- ing or oxidising conditions. The collected results demonstrate how the magma redox state is the driving parameter that affects the final outgassed composition. In reducing conditions (QIF and IW buffers) the principal outgassed species are H2 and CO whereas, in oxidising states (NiNiO and QFM buffers) the dom- inant volatile species are H2O and CO2. In order to investigate the volatile outgassing at a global scale, the volatile chemical speciation model was coupled with different models that reproduce the mantle convection regime (Noack and Breuer, 2013; Noack et al., 2014, 2017) and the corresponding outgassed atmospheres (Dorn et al., 2018). The coupling of the models is employed to investigate the volatile outgassing at differ- ent conditions. In Guimond et al. (2021), we investigated the early Earth evolution outgassing during the magma ocean stage. Still considering a global Earth magma ocean, in Katyal et al. (2020) we simulated the degassed atmospheric composition, H2 escape and the infrared emission/transmission. Ortenzi et al. (2020) analyses the degassing for rocky planets considering a stagnant lid regime and calculating the outgassed at- mospheric compositions and radial extents. The volatile chemical speciation model was extended to include also the sulphur species (H2S, S2 and SO2) and for simulating the real gas behaviour. At the moment the simulations of the C-O-H-S system are only for a limited range of temperature and pressure, and the model needs further improvements for being employed in global outgassing simulations. In conclusion, the thesis includes a detailed description of the developed volatile chemical speciation models showing both their points of weakness and their versatility for investigating the volatile composition of outgassed atmospheres at different planet evolutionary stages. iii Zusammenfassung Um die Entstehung und Entwicklung von Atmospharen¨ terrestrischer Planeten zu verstehen, ist es von zentraler Bedeutung das Verhalten und die Charakteristiken freiwerdender volatiler Stoffe bei vulkanis- chen Ausgasungsprozessen zu untersuchen. In dieser Dissertation wird mittels numerischer Simulierung der Weg vulkanischer Gase von ihrer gebundenen Form im Mantel bis hin zu ihrer freien Form in der At- mosphare¨ zuruckverfolgt¨ und deren Zusammensetzung analysiert. Die Promotionsarbeit ist im Rahmen des Transregio Sonderforschungsbereiches 170 (SFB TRR 170) ”Late accretion onto terrestrial planets” angefertigt worden, wodurch Moglichkeiten¨ zu Kollaborationen mit weiteren Gruppen und Instituten inner- halb des Projektes genutzt werden konnten. Das Ziel dieser Arbeit ist die Entwicklung eines numerischen Modells zur Bestimmung der Gaszusammensetzung, die wahrend¨ der Fruhgeschichte¨ und Evolution der Erde durch vulkanische Prozesse ausgegast wurde. Im Zentrum steht dabei das Modell zur chemischen Speziierung von volatilen Elementen, das die Zusammensetzung des Gases innerhalb des C-O-H Sys- tems simuliert. Es wurde mittels der Massenbilanzierungs- und Gleichgewichtsmethode entworfen (French, 1966; Holloway, 1981; Holland, 1984; Huizenga, 2005; Fegley, 2013; Gaillard and Scaillet, 2014; Schaefer and Fegley, 2017) und berucksichtigt¨ die wichtigsten Faktoren, die die Ausgasungsprozesse silikatischer Schmelzen beeinflussen, namlich¨ Druck, Temperatur und Redox-Zustand. Die volatile chemische Spezi- ierung wird unter Berucksichtigung¨ des chemischen Gleichgewichts mit der silikatischen Schmelze unter der Annahme von idealem Gasverhalten berechnet. Der Redox-Zustands des Systems wird sowohl fur¨ reduzierende als auch oxidierende Bedingungen durch die in der Petrologie ublichen¨ Mineralpuffer repro- duziert (Holloway et al., 1992). Die Ergebnisse dieser Arbeit zeigen, dass die Zusammensetzung der ausge- gasten Verbindungen hauptsachlich¨ durch den Redox-Zustand des Magmas bestimmt wird. In reduzieren- den Bedingungen (QIF und IW Puffer) wird hauptsachlich¨ H2 und CO frei, wahrend¨ in oxidierenden Be- dingungen (NiNiO und QFM Puffer) uberwiegend¨ H2O und CO2 ausgast. Um die Ausgasungsprozesse global zu untersuchen, wurde das volatile Speziierungs-Modell mit weiteren Modellen zur Reproduktion verschiedener Mantelkonvektionsregime (Noack and Breuer, 2013; Noack et al., 2014, 2017) und deren zugehorigen¨ ausgegasten Atmospharen¨ (Dorn et al., 2018) kombiniert. Durch die Verbindung der Modelle lasst¨ sich das Ausgasen unter verschiedenen Umwelteinflussen¨ und Bedingungen untersuchen. In Gui- mond et al. (2021) wurde die Entwicklung der Ausgasung wahrend¨ der Magma Ocean Phase der fruhen¨ Erdgeschichte untersucht. Katyal et al. (2020) haben weiterhin, unter der