Formal Specification of a Web Services Protocol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Formal Specification Methods What Are Formal Methods? Objectives Of
ICS 221 Winter 2001 Formal Specification Methods What Are Formal Methods? ! Use of formal notations … Formal Specification Methods ! first-order logic, state machines, etc. ! … in software system descriptions … ! system models, constraints, specifications, designs, etc. David S. Rosenblum ! … for a broad range of effects … ICS 221 ! correctness, reliability, safety, security, etc. Winter 2001 ! … and varying levels of use ! guidance, documentation, rigor, mechanisms Formal method = specification language + formal reasoning Objectives of Formal Methods Why Use Formal Methods? ! Verification ! Formal methods have the potential to ! “Are we building the system right?” improve both software quality and development productivity ! Formal consistency between specificand (the thing being specified) and specification ! Circumvent problems in traditional practices ! Promote insight and understanding ! Validation ! Enhance early error detection ! “Are we building the right system?” ! Develop safe, reliable, secure software-intensive ! Testing for satisfaction of ultimate customer intent systems ! Documentation ! Facilitate verifiability of implementation ! Enable powerful analyses ! Communication among stakeholders ! simulation, animation, proof, execution, transformation ! Gain competitive advantage Why Choose Not to Use Desirable Properties of Formal Formal Methods? Specifications ! Emerging technology with unclear payoff ! Unambiguous ! Lack of experience and evidence of success ! Exactly one specificand (set) satisfies it ! Lack of automated -
Certification of a Tool Chain for Deductive Program Verification Paolo Herms
Certification of a Tool Chain for Deductive Program Verification Paolo Herms To cite this version: Paolo Herms. Certification of a Tool Chain for Deductive Program Verification. Other [cs.OH]. Université Paris Sud - Paris XI, 2013. English. NNT : 2013PA112006. tel-00789543 HAL Id: tel-00789543 https://tel.archives-ouvertes.fr/tel-00789543 Submitted on 18 Feb 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE PARIS-SUD École doctorale d’Informatique THÈSE présentée pour obtenir le Grade de Docteur en Sciences de l’Université Paris-Sud Discipline : Informatique PAR Paolo HERMS −! − SUJET : Certification of a Tool Chain for Deductive Program Verification soutenue le 14 janvier 2013 devant la commission d’examen MM. Roberto Di Cosmo Président du Jury Xavier Leroy Rapporteur Gilles Barthe Rapporteur Emmanuel Ledinot Examinateur Burkhart Wolff Examinateur Claude Marché Directeur de Thèse Benjamin Monate Co-directeur de Thèse Jean-François Monin Invité Résumé Cette thèse s’inscrit dans le domaine de la vérification du logiciel. Le but de la vérification du logiciel est d’assurer qu’une implémentation, un programme, répond aux exigences, satis- fait sa spécification. Cela est particulièrement important pour le logiciel critique, tel que des systèmes de contrôle d’avions, trains ou centrales électriques, où un mauvais fonctionnement pendant l’opération aurait des conséquences catastrophiques. -
Implementing a Transformation from BPMN to CSP+T with ATL: Lessons Learnt
Implementing a Transformation from BPMN to CSP+T with ATL: Lessons Learnt Aleksander González1, Luis E. Mendoza1, Manuel I. Capel2 and María A. Pérez1 1 Processes and Systems Department, Simón Bolivar University PO Box 89000, Caracas, 1080-A, Venezuela 2 Software Engineering Department, University of Granada Aynadamar Campus, 18071, Granada, Spain Abstract. Among the challenges to face in order to promote the use of tech- niques of formal verification in organizational environments, there is the possi- bility of offering the integration of features provided by a Model Transforma- tion Language (MTL) as part of a tool very used by business analysts, and from which formal specifications of a model can be generated. This article presents the use of MTL ATLAS Transformation Language (ATL) as a transformation artefact within the domains of Business Process Modelling Notation (BPMN) and Communicating Sequential Processes + Time (CSP+T). It discusses the main difficulties encountered and the lessons learnt when building BTRANSFORMER; a tool developed for the Eclipse platform, which allows us to generate a formal specification in the CSP+T notation from a business process model designed with BPMN. This learning is valid for those who are interested in formalizing a Business Process Modelling Language (BPML) by means of a process calculus or another formal notation. 1 Introduction Business Processes (BP) must be properly and formally specified in order to be able to verify properties, such as scope, structure, performance, capacity, structural consis- tency and concurrency, i.e., those properties of BP which can provide support to the critical success factors of any organization. Formal specification languages and proc- ess algebras, which allow for the exhaustive verification of BP behaviour [17], are used to carry out the formalization of models obtained from Business Process Model- ling (BPM). -
A Classification and Comparison Framework for Software Architecture Description Languages
A Classification and Comparison Framework for Software Architecture Description Languages Neno Medvidovic Technical Report UCI-ICS-97-02 Department of Information and Computer Science University of California, Irvine Irvine, California 92697-3425 [email protected] February 1996 Abstract Software architectures shift the focus of developers from lines-of-code to coarser- grained architectural elements and their overall interconnection structure. Architecture description languages (ADLs) have been proposed as modeling notations to support architecture-based development. There is, however, little consensus in the research community on what is an ADL, what aspects of an architecture should be modeled in an ADL, and which of several possible ADLs is best suited for a particular problem. Furthermore, the distinction is rarely made between ADLs on one hand and formal specification, module interconnection, simulation, and programming languages on the other. This paper attempts to provide an answer to these questions. It motivates and presents a definition and a classification framework for ADLs. The utility of the definition is demonstrated by using it to differentiate ADLs from other modeling notations. The framework is also used to classify and compare several existing ADLs. One conclusion is that, although much research has been done in this area, no single ADL fulfills all of the identified needs. I. Introduction Software architecture research is directed at reducing costs of developing applications and increasing the potential for commonality between different members of a closely related product family [GS93, PW92]. Software development based on common architectural idioms has its focus shifted from lines-of-code to coarser-grained architectural elements (software components and connectors) and their overall interconnection structure. -
Behavioral Verification of Distributed Concurrent Systems with BOBJ
Behavioral Verification of Distributed Concurrent Systems with BOBJ Joseph Goguen Kai Lin Dept. Computer Science & Engineering San Diego Supercomputer Center University of California at San Diego [email protected] [email protected] Abstract grams [4]), whereas design level verification is easier and more likely to uncover subtle bugs, because it does not re- Following condensed introductions to classical and behav- quire dealing with the arbitrary complexities of program- ioral algebraic specification, this paper discusses the veri- ming language semantics. fication of behavioral properties using BOBJ, especially its These points are illustrated by our proof of the alternat- implementation of conditional circular coinductive rewrit- ing bit protocol in Section 4. There are actually many dif- ing with case analysis. This formal method is then applied ferent ways to specify the alternating bit protocol, some of to proving correctness of the alternating bit protocol, in one which are rather trivial to verify, but our specification with of its less trivial versions. We have tried to minimize mathe- fair lossy channels is not one of them. The proof shows that matics in the exposition, in part by giving concrete illustra- this specification is a behavioral refinement of another be- tions using the BOBJ system. havioral specification having perfect channels, and that the latter is behaviorally equivalent to perfect transmission (we thank Prof. Dorel Lucanu for this interpretation). 1. Introduction Many important contemporary computer systems are distributed and concurrent, and are designed within the ob- Faced with increasingly complex software and hardware ject paradigm. It is a difficult challenge for formal meth- systems, including distributed concurrent systems, where ods to handle all the features involved within a uniform the interactions among components can be very subtle, de- framework. -
An Architectural Description Language for Secure Multi-Agent Systems
An Architectural Description Language for Secure Multi-Agent Systems Haralambos Mouratidis1,a, Manuel Kolpb, Paolo Giorginic, Stephane Faulknerd aInnovative Informatics Group, School of Computing, IT and Engineering, University of East London, England b Information Systems Research Unit, Catholic University of Louvain (UCL), Belgium c Department. of Information and Communication Technology, University of Trento, Italy d Information Management Research Unit, University of Namur, Belgium Abstract. Multi-Agent Systems (MAS) architectures are gaining popularity for building open, distributed, and evolving information systems. Unfortunately, despite considerable work in the fields of software architecture and MAS during the last decade, few research efforts have aimed at defining languages for designing and formalising secure agent architectures. This paper proposes a novel Architectural Description Language (ADL) for describing Belief-Desire-Intention (BDI) secure MAS. We specify each element of our ADL using the Z specification language and we employ two example case studies: one to assist us in the description of the proposed language and help readers of the article to better understand the fundamentals of the language; and one to demonstrate its applicability. Keyword: Architectural Description Language, Multi-Agent Systems, Security, BDI Agent Model, Software Architecture 1 Corresponding Author: [email protected] 1 1. Introduction However, as the expectations of business stakeholders are changing day after day; and The characteristics and expectations of as the complexity of systems, information new application areas for the enterprise, and communication technologies and such as e-business, knowledge management, organisations is continually increasing in peer-to-peer computing, and web services, today’s dynamic environments; developers are deeply modifying information systems are expected to produce architectures that engineering. -
Should Your Specification Language Be Typed?
Should Your Specification Language Be Typed? LESLIE LAMPORT Compaq and LAWRENCE C. PAULSON University of Cambridge Most specification languages have a type system. Type systems are hard to get right, and getting them wrong can lead to inconsistencies. Set theory can serve as the basis for a specification lan- guage without types. This possibility, which has been widely overlooked, offers many advantages. Untyped set theory is simple and is more flexible than any simple typed formalism. Polymorphism, overloading, and subtyping can make a type system more powerful, but at the cost of increased complexity, and such refinements can never attain the flexibility of having no types at all. Typed formalisms have advantages too, stemming from the power of mechanical type checking. While types serve little purpose in hand proofs, they do help with mechanized proofs. In the absence of verification, type checking can catch errors in specifications. It may be possible to have the best of both worlds by adding typing annotations to an untyped specification language. We consider only specification languages, not programming languages. Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifica- tions; D.2.4 [Software Engineering]: Software/Program Verification—formal methods; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Pro- grams—specification techniques General Terms: Verification Additional Key Words and Phrases: Set theory, specification, types Editors’ introduction. We have invited the following -
Architecture Description Language) COMS W4115 Alan Khara Ask2206 February 11, 2014
1 of 13 General Purpose ADL (Architecture Description Language) COMS W4115 Alan Khara Ask2206 February 11, 2014 1.0 Introduction In the design of system architecture1, a blueprint of the system typically comes second, after requirements are gathered in the process of architecture development. This is followed by design verification and, later, implementation. Initially, the domain of Architecture Description Languages (ADLs) was confined to the design phase and was highly motivated by Object Oriented paradigm [1] [2] [3]. ADLs were mainly graphical in nature, with numerous Line and Box representations that were later standardized by Object Management Group (OMG) in Unified Model Language2 (UML) [4][5]. Being quickly adopted by industry, UML was infested with ambiguous features: a given relationship between components of a system could be ambiguous and yield two different interpretations of the same drawing [2]. Research during the last decade has worked to solve this problem on two different fronts. One line of research seeks to extend UML in order to make it less ambiguous [6] [7] [8] [9]. Another kind of research is finding new ADLs (graphical and text based) that have more rigorous and well defined semantics [10] [11] [12][13]. Both of these trends are important with respect to defining the problem scope of the proposed project. Because they are mainly driven by industry, efforts to extend UML are inherently domain- specific [14]. The primary motivation behind the development of UML is to overcome ambiguity and reduced the communication gap that exists among various stakeholders. This is tackled by either introducing constraints or adding new vocabulary. -
Comparative Studies of 10 Programming Languages Within 10 Diverse Criteria Revision 1.0
Comparative Studies of 10 Programming Languages within 10 Diverse Criteria Revision 1.0 Rana Naim∗ Mohammad Fahim Nizam† Concordia University Montreal, Concordia University Montreal, Quebec, Canada Quebec, Canada [email protected] [email protected] Sheetal Hanamasagar‡ Jalal Noureddine§ Concordia University Montreal, Concordia University Montreal, Quebec, Canada Quebec, Canada [email protected] [email protected] Marinela Miladinova¶ Concordia University Montreal, Quebec, Canada [email protected] Abstract This is a survey on the programming languages: C++, JavaScript, AspectJ, C#, Haskell, Java, PHP, Scala, Scheme, and BPEL. Our survey work involves a comparative study of these ten programming languages with respect to the following criteria: secure programming practices, web application development, web service composition, OOP-based abstractions, reflection, aspect orientation, functional programming, declarative programming, batch scripting, and UI prototyping. We study these languages in the context of the above mentioned criteria and the level of support they provide for each one of them. Keywords: programming languages, programming paradigms, language features, language design and implementation 1 Introduction Choosing the best language that would satisfy all requirements for the given problem domain can be a difficult task. Some languages are better suited for specific applications than others. In order to select the proper one for the specific problem domain, one has to know what features it provides to support the requirements. Different languages support different paradigms, provide different abstractions, and have different levels of expressive power. Some are better suited to express algorithms and others are targeting the non-technical users. The question is then what is the best tool for a particular problem. -
1 an Introduction to Formal Modeling in Requirements Engineering
University of Toronto Department of Computer Science University of Toronto Department of Computer Science Outline An Introduction to ‹ Why do we need Formal Methods in RE? you are here! Formal Modeling ‹ What do formal methods have to offer? ‹ A survey of existing techniques in Requirements Engineering ‹ Example modeling language: SCR ƒ The language ƒ Case study Prof Steve Easterbrook ƒ Advantages and disadvantages Dept of Computer Science, ‹ Example analysis technique: Model Checking University of Toronto, Canada ƒ How it works ƒ Case Study [email protected] ƒ Advantages and disadvantages http://www.cs.toronto.edu/~sme ‹ Where next? © 2001, Steve Easterbrook 1 © 2000-2002, Steve Easterbrook 2 University of Toronto Department of Computer Science University of Toronto Department of Computer Science What are Formal Methods? Example formal system: Propositional Logic ‹ First Order Propositional Logic provides: ‹ Broad View (Leveson) ƒ a set of primitives for building expressions: ƒ application of discrete mathematics to software engineering variables, numeric constants, brackets ƒ involves modeling and analysis ƒ a set of logical connectives: ƒ with an underlying mathematically-precise notation and (Ÿ), or (⁄), not (ÿ), implies (Æ), logical equality (≡) ƒ the quantifiers: ‹ Narrow View (Wing) " - “for all” $ - “there exists” ƒ Use of a formal language ƒ a set of deduction rules ÿ a set of strings over some well-defined alphabet, with rules for distinguishing which strings belong to the language ‹ ƒ Formal reasoning about formulae in the language Expressions in FOPL ÿ E.g. formal proofs: use axioms and proof rules to demonstrate that some formula ƒ expressions can be true or false is in the language (x>y Ÿ y>z) Æ x>z x+1 < x-1 x=y y=x ≡ "x ($y (y=x+z)) x,y,z ((x>y y>z)) x>z) ‹ For requirements modeling… " Ÿ Æ x>3 ⁄ x<-6 ƒ A notation is formal if: ‹ Open vs. -
Modeling, Specification Languages, Array Programs
Chapter 4 Modeling, Specification Languages, Array Programs This chapter presents some techniques for verifying programs with complex data structures. Typical examples of such data structures are arrays and lists. The main ingredient is to provide extensions to the language of expressions and formulas, under the form of an expressive specification language. Section 4.1 presents generalities about specification languages, while other sections present an overview of the constructs for modeling and specifying as they are available in the Why3 tool [7]. Finally, Section 4.6 is dedicated to the modeling and the proof of programs on the array data structure. 4.1 Generalities on Specification Languages There have been a lot of variants of specification languages proposed in the past. Various classes of such languages are characterized by the kind of logic that they are based on. Algebraic Specifications This class of languages is characterized by the use of multi-sorted first-order logic with equality, and usually the use of rewriting techniques [13], which permits to mix executable- style and declarative-style specifications. Famous languages and tools of this class are Larch [17], KIV [26], CASL (Common Algebraic Specification Language) [2], OBJ [16], Maude [10]. Set-theory based approaches Another class of languages is based on classical Set theory. These languages are not typed, the typing properties being instead encoded by formulas on sets. Reasoning on such languages is also typically done by rewriting techniques. A precursor of this class is the Z notation [27]. It is used in tools like VDM [18], Atelier B [1], etc. Higher-Order Logic Higher-Order Logic is characterized by the use of mathematical functions as objects of the language. -
A Formal Methodology for Deriving Purely Functional Programs from Z Specifications Via the Intermediate Specification Language Funz
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1995 A Formal Methodology for Deriving Purely Functional Programs From Z Specifications via the Intermediate Specification Language FunZ. Linda Bostwick Sherrell Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Sherrell, Linda Bostwick, "A Formal Methodology for Deriving Purely Functional Programs From Z Specifications via the Intermediate Specification Language FunZ." (1995). LSU Historical Dissertations and Theses. 5981. https://digitalcommons.lsu.edu/gradschool_disstheses/5981 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. H ie quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandardm argins, and improper alignment can adversely affect reproduction. In the unlikely, event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.