Practical Hints: Lysis of Bacterial Cells for Plasmid Purification

Total Page:16

File Type:pdf, Size:1020Kb

Practical Hints: Lysis of Bacterial Cells for Plasmid Purification 1011204_QNews299_JDist.qxd 25.02.1999 15:23 Uhr Seite 23 EXTRAS QIAGEN Lysis of bacterial cells for 001 Practical plasmid purification Hints Effective lysis of bacterial cells is a key step in plasmid isolation as DNA yield and quality depend on the quality of cell lysate used for the purification. This article describes the principle behind bacterial lysis, in particular alkaline lysis, and gives hints on how to ensure that lysis proceeds optimally. Alkaline lysis Alkaline lysis is one of the most commonly used methods for 1. Resuspension lysing bacterial cells prior to plasmid purification (1, 2), and E. coli cell optimized alkaline lysis is part of all QIAGEN® plasmid purification protocols. Production of alkaline lysates involves four basic steps (Figure 1): 2. Lysis NaOH/SDS 1. Resuspension Harvested bacterial cells are resuspended in Tris·Cl–EDTA buffer containing RNase A. 3. Neutralization KAc Ensure that bacteria are resuspended completely Tip leaving no cell clumps in order to maximize the number of cells exposed to the lysis reagents. 4. Clearing of lysates Buffer volumes for alkaline lysis in QIAGEN Tip plasmid purification procedures are optimized for Centrifugation Filtration particular culture volumes in LB medium. Do not use a culture volume larger than recommended in the Supernatant KDS precipitate protocol as this will lead to inefficient lysis and containing containing plasmid DNA genomic DNA reduce the quality of the plasmid preparation. + proteins For large scale purification of low-copy plasmids, Filtrate for which larger cultures volumes are used, it may containing Tip Plasmid DNA plasmid DNA be beneficial to increase the lysis buffer volumes in Chromosomal DNA order to increase the efficiency of alkaline lysis and thereby the DNA yield (Figure 2). Figure 1 Principle of alkaline lysis 23 1011204_QNews299_JDist.qxd 25.02.1999 15:23 Uhr Seite 24 QIAGEN EXTRAS 002 2. Lysis High volumes of lysis buffers Cells are lysed with NaOH/SDS. Sodium dodecyl sulfate (SDS) solubilizes the phospholipid and protein components of the cell membrane, leading to lysis and Low volumes of lysis buffers release of the cell contents. NaOH denatures the chromosomal and plasmid DNAs, as well as proteins. The presence of RNase A ensures that liberated cellular Amount of plasmid DNA in cleared lysate RNA is digested during lysis. Culture volume Figure 2 The effect of lysis buffer volumes on the amount of low-copy plasmid DNA in the cleared lysate for large-scale plasmid preparations. Avoid vigorous stirring or vortexing of the lysate as this can shear the bacterial Tip chromosome, leaving free chromosomal fragments in the supernatant which will copurify with the plasmid DNA. The solution should be mixed gently but thoroughly by inverting the lysis vessel 4–6 times. Do not allow the lysis to proceed for longer than 5 minutes. A 5-minute incubation Tip allows maximum release of plasmid DNA from the cell, while minimizing the release of chromosomal DNA and reducing the exposure of the plasmid to denaturing conditions. 3. Neutralization The lysate is neutralized by the addition of acidic potassium acetate. The high salt concentration causes potassium dodecyl sulfate (KDS) to precipitate, and denatured proteins, chromosomal DNA, and cellular debris are coprecipitated in insoluble salt-detergent complexes. Plasmid DNA, being circular and covalently closed, renatures correctly and remains in solution. Precipitation is enhanced by using chilled neutralization buffer and incubating on ice. Tip (For many plasmid miniprep procedures, use of chilled buffer and incubation on ice are not necessary.) Mix the solution gently but thoroughly to ensure complete precipitation. Tip 24 1011204_QNews299_JDist.qxd 25.02.1999 15:23 Uhr Seite 25 EXTRAS QIAGEN 003 4. Clearing of lysates References 1. Birnboim, H.C., and Precipitated debris is removed by either high-speed centrifugation or filtration, producing Doly, J. (1979) A rapid alkaline lysis procedure cleared lysates. for screening recombinant plasmid DNA. Nucl. Acids. Res. 7, 1513–1522. Lysate filtration technologies developed by QIAGEN ensure removal of all precipitated 2. Birnboim, H.C. (1983) A material without centrifugation, reducing plasmid purification time considerably, rapid alkaline extraction Tip method for the isolation of particularly when large culture volumes or large numbers of samples are involved. plasmid DNA. Methods Enzymol. 100, 243–255. Specialized modules are available for different scales of plasmid preparation, as well 3. Sambrook, J., Fritsch, E.F., as for high-throughput plasmid minipreps. and Maniatis, T. (1989) Molecular cloning: A Lab- oratory manual. Cold Spring Harbor: Cold Other lysis methods Spring Harbor Laboratory. 4. Ausubel, F.M., et al. A number of other methods have been described for lysing bacterial cells (3, 4). Some of these (1987) Current Protocols in Molecular Biology. methods were developed for different applications and may not be suitable for plasmid New York: John Wiley and Sons. DNA isolation. Boiling lysis: Bacterial cells are treated with lysozyme to weaken the cell walls and then lysed by heating in a boiling water bath for ~1 minute. Lysis with detergent: Bacterial cells are lysed by treatment with an ionic detergent (e.g., SDS) or a nonionic detergent (e.g., Triton® X-100). Mechanical lysis: Bacterial cells are lysed by mechanical disruption, for example by sonification. Enzymatic digestion: Some lysis methods include treatment of bacteria with enzymes such as lysozyme which assist in weakening cell walls. Lysis of bacteria other than E. coli Isolation of plasmid DNA from bacteria other than E. coli usually requires modifications to the lysis procedure in order to optimize lysis conditions for the particular species. Detailed protocols for plasmid DNA isolation from a variety of bacteria using QIAGEN plasmid purification procedures are available on request from QIAGEN Technical Services or your local distributor. QIAGEN Practical Hints for daily laboratory practice will continue in future issues of QIAGEN News. If there is any other information you would like to see on these pages of QIAGEN News, please let us know by calling QIAGEN Technical services or your local distributor. Signature: Date: 25 Witness: Date:.
Recommended publications
  • RIPA Buffer Lysis Protocol
    PROVOST & WALLERT RESEARCH Investigating the Biochemistry and Cellular Physiology of NHE1 EST. 1998 Whole Cell Lysate Preparation using RIPA Buffer – for membrane and soluble proteins RIPA Buffer (Radio-Immune Precipitation Assay) is used to lyse cultured cells to prepare protein extraction from cytoplasmic, membrane and nuclear proteins. Samples prepared with RIPA Buffer can easily be used with a BCA protein assay, western blot, immuno assays or other biochemical determintion. To maintain proteins in the state at time of lysis it is critical to keep cells on ice and only use ice cold buffer throughout to reduce protease, kinase, phosphatase or other enzymatic activity of lysates. T-25 flasks: 1) Remove old media and rinse cells with 2-3 ml of ice cold PBS. 2) Tilt flask 1-2 min on ice to drain residual PBS and remove by aspiration. 3) Add 0.5 ml of ice cold PBS and scrape cells. Transfer to labeled chilled microfuge tube. 4) Rinse cells with additional 1 ml of PBS and add to scraped cells. 5) Centrifuge at 2,500 x g for 5 min at 4oC. Decant supernate, keep pelleted cells. 6) Resuspend pellet in 0.25 ml of RIPA Buffer – use a pipet tip to suspend cells. 7) Lyse cells by sonication for 2, 30 second pulses (50% power) while on ice. 8) Shake mixture gently on ice for 15 min. 9) Centrifuge samples at ~14,000 x g for 15 min to pellet cell debris. Keep supernatant soln. 10) Perform BCA (Pierce) NOT Bradford/biorad protein assay. RIPA Buffer 50 mM Tris-HCl, pH 7.4, 150 mM sodium chloride, 1 mM ethylenediaminetetraacetic acid (EDTA), 1% NP-40 1% Sodium Deoxycholic acid, 0.1% sodium dodecylsulfate (SDS), 1 mM phenylmethylsulfonyl fluoride, (add fresh) Protease Inhibitors (add fresh - see manufacturer’s instructions) .
    [Show full text]
  • Improving DNA Plasmid Production in Escherichia Coli
    Improving DNA Plasmid Production in Escherichia Coli by ADAM SINGER (Under the Direction of Mark A. Eiteman) ABSTRACT The ability to produce large quantities of plasmid DNA is imperative for wide scale availability of DNA vaccines. Large scale, high yield production relies on the synergy between host strain, plasmid, medium and production scheme. Screening as many variables as quickly and cost effectively as possible is the goal. In this study, Escherichia coli strains were transformed with two plasmids and screened for plasmid yield in shake flasks in chemically defined medium supplemented with either glucose or glycerol. High yield candidates were grown in feed batch fermentations at two specific growth rates, µ = 0.14 h-1 and µ = 0.24 h-1. As predicted, high production in shake flasks was predictive of high production in fermentations. Using our media and process, we were able to reach volumetric yields of approximately 600 mg/L and specific yields of approximately 17.82 mg/g, regardless of growth rate. We were also able to increase productivity (mg/Lh) over 30%. INDEX WORDS: E. coli, fed-batch, gene therapy, plasmid production Improving DNA Plasmid Production in Escherichia Coli by ADAM SINGER B.S., Biological Engineering, University of Georgia, 1998 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2007 © 2007 Adam Singer All Rights Reserved Improving DNA Plasmid Production in Escherichia Coli by ADAM SINGER Major Professor: Mark A. Eiteman Committee: Elliot Altman Sidney Kushner Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia August 2007 iv DEDICATION To my wife Dana and my daughter Sydney-Rose.
    [Show full text]
  • Electrical Lysis: Dynamics Revisited and Advances in On-Chip Operation
    Critical Reviews™ in Biomedical Engineering, 41(1):37–50 (2013) Electrical Lysis: Dynamics Revisited and Advances in On-chip Operation Bashir I. Morshed,1,* Maitham Shams,2 & Tofy Mussivand3 1Department of Electrical & Computer Engineering, University of Memphis, Memphis, TN 38152; 2Department of Elec- tronics, Carleton University, Ottawa, ON, Canada; 3Medical Devices Innovation Institute, University of Ottawa, Ottawa, ON, Canada * Address all correspondence to: Bashir I. Morshed, Ph.D., Assistant Professor, 204C Engineering Science Building, Department of Electrical & Computer Engineering, University of Memphis, Memphis, TN 38152; Tel.: 901-678-3650; Fax: 901-678-5469: [email protected]. ABSTRACT: Electrical lysis (EL) is the process of breaking the cell membrane to expose the internal contents under an applied high electric field. Lysis is an important phenomenon for cellular analysis, medical treatment, and biofoul- ing control. This paper aims to review, summarize, and analyze recent advancements on EL. Major databases includ- ing PubMed, Ei Engineering Village, IEEE Xplore, and Scholars Portal were searched using relevant keywords. More than 50 articles published in English since 1997 are cited in this article. EL has several key advantages compared to other lysis techniques such as chemical, mechanical, sonication, or laser, including rapid speed of operation, ability to control, miniaturization, low cost, and low power requirement. A variety of cell types have been investigated for including protoplasts, E. coli, yeasts, blood cells, and cancer cells. EL has been developed and applied for decon- tamination, cytology, genetics, single-cell analysis, cancer treatment, and other applications. On-chip EL is a promis- ing technology for multiplexed automated implementation of cell-sample preparation and processing with micro- or nanoliter reagents.
    [Show full text]
  • Synthesis of a Contiguous 32-Kb Polyketide Synthase Gene Cluster
    Total synthesis of long DNA sequences: Synthesis of a contiguous 32-kb polyketide synthase gene cluster Sarah J. Kodumal, Kedar G. Patel, Ralph Reid, Hugo G. Menzella, Mark Welch, and Daniel V. Santi* Kosan Biosciences, Inc., 3832 Bay Center Place, Hayward, CA 94545 Communicated by Robert M. Stroud, University of California, San Francisco, CA, September 17, 2004 (received for review July 19, 2004) To exploit the huge potential of whole-genome sequence infor- Our efforts to this end stemmed from a desire to develop mation, the ability to efficiently synthesize long, accurate DNA heterologous expression of large polyketide synthase (PKS) sequences is becoming increasingly important. An approach pro- genes in Escherichia coli. Type I modular PKS genes encode the posed toward this end involves the synthesis of Ϸ5-kb segments of giant enzymes (among the largest proteins known) that synthe- DNA, followed by their assembly into longer sequences by con- size polyketide natural products such as erythromycin, epothi- ventional cloning methods [Smith, H. O., Hutchinson, C. A., III, lone, and tacrolimus (12). These genes reside within the high Pfannkoch, C. & Venter, J. C. (2003) Proc. Natl. Acad. Sci. USA 100, GϩC genomes of the actinomycete and myxobacterial groups of 15440–15445]. The major current impediment to the success of this prokaryotes and encode proteins with multiple sets, or modules, tactic is the difficulty of building the Ϸ5-kb components accurately, of active sites (domains). Each module catalyzes the assembly of efficiently, and rapidly from short synthetic oligonucleotide build- a specific two-carbon-unit component of the polyketide product. ing blocks.
    [Show full text]
  • The Bacteriophage Mu Lysis System--A New Mechanism of Host
    BIOCELL Tech Science Press 2021 45(5): 1175-1186 The bacteriophage mu lysis system–A new mechanism of host lysis? SAIKAT SAMANTA1,#;ASHISH RANJAN SHARMA2,#;ABINIT SAHA1;MANOJ KUMAR SINGH1;ARPITA DAS1; MANOJIT BHATTACHARYA3;RUDRA PRASAD SAHA1,*;SANG-SOO LEE2,*;CHIRANJIB CHAKRABORTY1,* 1 Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India 2 Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Korea 3 Department of Zoology, Fakir Mohan University, Balasore, 56020, India Key words: Bacteriophage Mu, Host cell lysis, Endolysin, Holin, Spanin Abstract: Bacteriophages are viruses that infect bacteria and can choose any one of the two alternative pathways for infection, i.e., lysis or lysogeny. Phage lysis is one of the conventional biological processes required to spread infection from one bacterium to another. Our analysis suggests that in the paradigm bacteriophage Mu, six proteins might be involved in host cell lysis. Mu has a broad host range, and Mu-like phages were found in both Gram-negative and Gram-positive bacteria. An analysis of the genomes of Mu and Mu-like phages could be useful in elucidating the lysis mechanism in this group of phages. A detailed review of the various mechanisms of phage lysis and different proteins associated with the process will help researchers understand the phage biology and their life cycle in different bacteria. The recent increase in the number of multidrug-resistant (MDR) strains of bacteria and the usual long-term nature of new drug development has encouraged scientists to look for alternative strategies like phage therapy and the discovery of new lysis mechanisms.
    [Show full text]
  • Optimal Control of Innate Immune Response
    OPTIMAL CONTROL APPLICATIONS AND METHODS Optim. Control Appl. Meth., 2002; 23: 91–104 (DOI: 10.1002/oca.704) Optimal control of innate immune response Robert F. Stengel*, Raffaele Ghigliazza, Nilesh Kulkarni and Olivier Laplace School of Engineering and Applied Science, Princeton University, Princeton, NJ 08544, U.S.A SUMMARY Treatment of a pathogenic disease process is interpreted as the optimal control of a dynamic system. Evolution of the disease is characterized by a non-linear, fourth-order ordinary differential equation that describes concentrations of pathogens, plasma cells, and antibodies, as well as a numerical indication of patient health. Without control, the dynamic model evidences sub-clinical or clinical decay, chronic stabilization, or unrestrained lethal growth of the pathogen, depending on the initial conditions for the infection. The dynamic equations are controlled by therapeutic agents that affect the rate of change of system variables. Control histories that minimize a quadratic cost function are generated by numerical optimization over a fixed time interval, given otherwise lethal initial conditions. Tradeoffs between cost function weighting of pathogens, organ health, and use of therapeutics are evaluated. Optimal control solutions that defeat the pathogen and preserve organ health are demonstrated for four different approaches to therapy. It is shown that control theory can point the way toward new protocols for treatment and remediation of human diseases. Copyright # 2002 John Wiley & Sons, Ltd. KEY WORDS: optimal control; biological modelling; bioinformatics; optimization INTRODUCTION Immune-system response to invasion by infectious microbes is a dynamic process in which potentially uncontrolled growth of the invader (or pathogen) is countered by various protective mechanisms.
    [Show full text]
  • RBC Lysis Buffer Product Insert Product # 21201 (90 Ml) Product #21205 (500 Ml)
    3430 Schmon Parkway Thorold, ON, Canada L2V 4Y6 Phone: 866-667-4362 • (905) 227-8848 Fax: (905) 227-1061 Email: [email protected] RBC Lysis Buffer Product Insert Product # 21201 (90 mL) Product #21205 (500 mL) Norgen’s RBC Lysis Buffer is designed for the differential lysis of red blood cells present in whole blood samples. The removal of red blood cells from whole blood is often desirable, particularly during the study of leukocyte DNA, proteins or RNA. Abundant proteins (including albumin) and RNAs (including globin mRNA) that are present in red blood cells and may interfere with downstream applications such as expression analysis are effectively removed during this process. For the procedure, whole blood samples are first collected in the presence of anticoagulants. The red blood cells are then removed through lysis using the RBC Lysis Buffer, and the leukocytes which remain can then be recovered by centrifugation. Genomic DNA, proteins or RNA can then be isolated from the purified leukocytes, as Norgen’s RBC Lysis Buffer is RNAase and DNase free. Product Components Component Product # 21201 Product # 2120 5 RBC Lysis Buffer 90 mL 500 mL Product Insert 1 1 Storage Conditions and Product Stability The RBC Lysis Buffer should be stored at 4°C. This reagent should remain stable for at least 1 year in its unopened container. Precautions and Disclaimers This reagent is designed for research purposes only. It is not intended for human or diagnostic use. Ensure that a suitable lab coat, disposable gloves and protective goggles are worn when working with chemicals. For more information, please consult the appropriate Material Safety Data Sheets (MSDSs).
    [Show full text]
  • Antibody-Complement Cell Lysis LORNE A
    INFECTION AND IMMUNITY, Nov. 1975, p. 958-963 Vol. 12, No. 5 Copyright © 1975 American Society for Microbiology Printed in USA. Defense Mechanisms Against Bovine Herpesvirus: Relationship of Virus-Host Cell Events to Susceptibility to Antibody-Complement Cell Lysis LORNE A. BABIUK, RICHARD C. WARDLEY, AND BARRY T. ROUSE* Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada Received for publication 30 June 1975 The interaction of infectious bovine rhinotracheitis virus and susceptible host cells was examined to determine whether an infected cell could be destroyed by humoral immune mechanisms before or after the transmission of virus to susceptible adjacent cells. Viral antigens were detectable on cell membranes at 6 h postinfection, but cells were not susceptible to antibody-complement lysis until 10 h postinfection. Intracellular infectious virus was also detectable at 10 h postinfection, and transmission to adjacent cells by the intracellular route began at this time. Extracellular virus was not detectable until 12 to 13 h postinfection. By the continual addition of antibody and complement, virus dissemination could be reduced more than 50-fold. These results support the hypothesis that the humoral immune mechanism may be involved in the recovery from herpesvi- rus infections. Most herpesvirus infections are characterized seminated to susceptible adjacent cells. Subse- by recurrent infections, with the virus persist- quent communications will examine this ques- ing in the body almost indefinitely. In infec- tion with respect to other components of the tious bovine rhinotracheitis (IBR) infection of immune response. cattle, usually there is only a single episode of symptomatic infection; nevertheless, the virus MATERIALS AND METHODS does persist and can be reactivated (4, 15, 16).
    [Show full text]
  • A Visual Demonstration of Plasmid DNA Preparation from Bacteria
    HOW-TO-'DO-IT A Visual Demonstration of Plasmid DNA Preparation from Bacteria * RALPH L. KEIL, LAURA K. PALMER Downloaded from http://online.ucpress.edu/abt/article-pdf/71/6/363/55200/20565332.pdf by guest on 02 October 2021 Unprecedented advances in unraveling mysteries of life have disease, or other areas the students or instructor want to develop. occurred as a result of the molecular biology revolution. Some Since many students know someone with diabetes (in many cases major achievements of this revolution include new methods for the they know a classmate who has diabetes or one of them may even production of therapeutic compounds, insights into mechanisms suffer from the disease), this example provides an opportunity to of gene function and regulation, and the complete sequencing of get students to actively participate in discussion, regardless of their the genomes of numerous organisms including humans. A critical academic abilities. foundation of this revolution is the ability to use the bacterium An alternative introduction is to discuss consequences of Escherichia coli (E. coli) as a factory to produce large amounts of sequencing the entire three billion base pairs of DNA of the virtually any DNA of interest by inserting it into a small, extrachro human genome (http://www.ornl.gov/sci/techresources/Human mosomal circle of DNA called a plasmid. The ease and reproducibil Genome/home.shtml). The current and potential uses of this ity of plasmid DNA isolation from bacteria permits numerous labs technology in forensic science, health care, and business decisions to conduct molecular biology experiments and greatly accelerates are all areas that may be discussed depending on what focus the progress in understanding complex biological processes.
    [Show full text]
  • Control of Ph During Plasmid Preparation by Alkaline Lysis of Escherichia Coli
    Analytical Biochemistry 378 (2008) 224–225 Contents lists available at ScienceDirect Analytical Biochemistry journal homepage: www.elsevier.com/locate/yabio Notes & Tips Control of pH during plasmid preparation by alkaline lysis of Escherichia coli Cheri Cloninger, Marilyn Felton 1, Bonnie Paul 1, Yasuko Hirakawa, Stan Metzenberg * Department of Biology, California State University, Northridge, Northridge, CA 91330, USA article info abstract Article history: Alkaline lysis of Escherichia coli is usually the method of choice for plasmid preparation, but ‘‘ghost bands” Received 9 March 2008 of denatured supercoiled DNA can result if the pH is too high or the period of lysis is too long. By replacing Available online 11 April 2008 the usual sodium hydroxide lysis solution with an arginine buffer prepared in the range of pH 11.4 to 12.0, we were able to stabilize the pH during lysis and obtain plasmid that is suitably pure for restriction digestion and DNA sequencing. Ó 2008 Elsevier Inc. All rights reserved. The extraction of plasmids from Escherichia coli is one of the most 2. To each 1 ml of cell suspension, 1 ml of a lysis solution consist- commonly used methods in molecular biology, and detergent lysis of ing of 1% (w/v) sodium dodecyl sulfate (SDS) and 0.5 M L-argi- cells in 0.1 M sodium hydroxide (NaOH,2 final) is the most wide- nine (pH 11.7) is added, and the tube is capped and rocked spread approach [1,2]. The alkalinity denatures the chromosomal briefly to mix. The lysate is allowed to sit undisturbed for 5 min.
    [Show full text]
  • Molecular Biology Services Price List Denmark; Valid from 01.09.2017
    Molecular Biology Services Price List Denmark; valid from 01.09.2017 Gene Synthesis Service Delivery times for Gene Synthesis Service: Standard Genes up to 1000 bp: 6 business days; guaranteed: 12 business days Standard Genes ≤ 3000 bp: 15 - 20 business days Standard Genes > 3000 bp: 4 additional business days/kb; Subcloning: additional 5 - 10 business days Express Genes up to 1000 bp: 4 business days Express Genes up to 1500 bp: 6 business days; up to 2000 bp: 7 days; Express Genes up to 3000 bp: 11 business days; up to 4000 bp: 13 days; Express subcloning: 4 business days Delivery time for complex gene varies. Dependent on the complexity of the gene, usually it takes 5-10 business days longer than estimated for standard genes. Part ID Service Description Price [DKK] 5001-000010 Short Standard Genes (≤ 500 bp) 1,125.00 / gene 5001-000016 Standard Genes (501-1000 bp) 2.40 / base pair 5001-000012 Long Standard Genes (1001-3000bp) 2.40 / base pair 5001-000019 Long Standard Genes (3001-4000bp) 2.70 / base pair 5001-000119 Long Standard Gene (4001-5000bp) 3.00 / base pair 5001-000219 Long Standard Gene (5001-6000bp) 3.15 / base pair 5001-000319 Long Standard Gene (6001-7000bp) 3.53 / base pair 5001-000419 Long Standard Gene (7001-8000bp) 3.53 / base pair 5001-000519 Long Standard Gene (8001-9000bp) 3.53 / base pair 5001-000619 Long Standard Gene (9001-10000bp) 3.53 / base pair 5001-000719 Long Standard Gene > 10 kb on request 5001-000021 Complex Genes on request 5001-000230 Express Fee Short Standard Gene (≤ 500 bp) 3,000.00 / gene 5001-000232
    [Show full text]
  • A Crude Extract Preparation and Optimization from a Genomically Engineered Escherichia Coli for the Cell-Free Protein Synthesis System: Practical Laboratory Guideline
    Protocol A Crude Extract Preparation and Optimization from a Genomically Engineered Escherichia coli for the Cell-Free Protein Synthesis System: Practical Laboratory Guideline 1, 1, 1 1,2, Jeehye Kim y , Caroline E. Copeland y, Sahana R. Padumane and Yong-Chan Kwon * 1 Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA 2 Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA * Correspondence: [email protected]; Tel: +1-225-578-4325 These authors contributed equally to this work. y Received: 2 July 2019; Accepted: 7 August 2019; Published: 9 August 2019 Abstract: With the advancement of synthetic biology, the cell-free protein synthesis (CFPS) system has been receiving the spotlight as a versatile toolkit for engineering natural and unnatural biological systems. The CFPS system reassembles the materials necessary for transcription and translation and recreates the in vitro protein synthesis environment by escaping a physical living boundary. The cell extract plays an essential role in this in vitro format. Here, we propose a practical protocol and method for Escherichia coli-derived cell extract preparation and optimization, which can be easily applied to both commercially available and genomically engineered E. coli strains. The protocol includes: (1) The preparation step for cell growth and harvest, (2) the thorough step-by-step procedures for E. coli cell extract preparation including the cell wash and lysis, centrifugation, runoff reaction, and dialysis, (3) the preparation for the CFPS reaction components and, (4) the quantification of cell extract and cell-free synthesized protein. We anticipate that the protocol in this research will provide a simple preparation and optimization procedure of a highly active E.
    [Show full text]