Apollo's Moon Rocks

Total Page:16

File Type:pdf, Size:1020Kb

Apollo's Moon Rocks Apollo’s Moon Rocks By Andy Boyles, Highlights for Children Science Editor Ever since humans first looked up at the night sky, the Moon has been tempting us to reach for it. On July 20, 1969, humans did reach it. The National Aeronautics and Space Administration (NASA) landed astronauts on the Moon. Between 1969 and 1972, a total of twelve astronauts left their footprints in the lunar dust. Their adventures have been told many times. But we don't often hear the story of the Moon. The Apollo astronauts brought that drama back with them. Before astronauts reached the Moon, scientists had many unanswered questions. How old was the Moon? Where had it come from? What created the bright and dark areas that make the man in the moon? The Apollo astronauts brought back 840 pounds of Moon rocks, along with photographs and other information. Out of that evidence came the story of the Moon. Rocks from the highlands (the bright areas) ended once and for all the idea that the Moon’s craters had been made by volcanoes. Instead, the highlands are hills of rocks and dust that were tossed up as asteroids and meteorites blasted craters in the Moon’s crust. There was a time when meteorites battered these hills. Newer craters overlapped and even erased older ones. Rocks were broken apart by one meteorite, then jumbled up and fused together when others struck. Scientists have named this period the Heavy Bombardment, and they say it ended about four billion years ago. They take that date from the ages of the rocks from the highlands. The Dark Plains The plains are the dark areas that form the eyes and mouth of the man in the moon. They began to form near the end of the Heavy Bombardment. At that time, huge impacts shattered the Moon’s crust, creating giant craters and letting lava seep out of the mantle as liquid rock. Many lava flows filled those giant craters, and when the lava cooled and hardened, it became the plains. The plains were never pounded as heavily as the highlands were, so the Heavy Bombardment was over before the plains were fully formed. Since the Apollo missions, scientists have found signs of the Heavy Bombardment throughout the solar system. Some Moon rocks were puzzling. The highlands contained a lot of a mineral called feldspar. Scientists wondered what could have happened while the Moon was forming that could have concentrated this light mineral so neatly in the outer layer of rock. Their best idea is that—long before the Heavy Bombardment began—the Moon was covered by an ocean of molten rock, which scientists have called an ocean of magma. In that free-flowing soup, light minerals like feldspar would have risen to the surface. As the Ocean of Magma cooled, feldspar would have naturally become part of the Moon’s crust. Birth of the Moon These two ideas—the Heavy Bombardment and the Ocean of Magma—helped scientists accept a surprising idea about how the Moon was born. Before the Apollo missions, scientists had three different ideas about the birth of the Moon. But each of these ideas left questions unanswered. Some scientists thought the Moon had been a wandering planet that was captured by the Earth. But how could a small planet like Earth capture such a big moon? Other scientists thought the Earth and Moon had formed from the same rotating cloud of rocks and dust. But if they did, why didn't the Moon have a big, heavy core like Earth’s? A third idea was that a chunk of the Earth had split off and formed the Moon. But if the Earth were once spinning fast enough to lose a piece of itself, then it should still be spinning much faster than it is today. The Giant Impact A fourth idea, called the Giant Impact Hypothesis, had been proposed and then ignored for many years. According to this idea, an object about the size of Mars struck the young Earth. The impact destroyed the Mars-like object, blasting a huge amount of material into space. Some of it remained in orbit around Earth and clumped together, forming the Moon. After the Apollo missions, this idea began to make sense. The Heavy Bombardment had shown that big impacts were common in the past. A giant impact might have released enough heat to create the Moon’s Ocean of Magma, and it could have given the Earth its tilt and spin. Also, the Mars-like object’s heavy core could have become part of Earth’s. That would explain why the Moon’s core seems small and light compared to Earth's. The Apollo program helped change our ideas about the Moon. Before Apollo, the Moon was a mysterious rock. Now it’s a reminder that the Earth and Moon are still reeling from the collision that made them. These samples revealed the Moon’s violent past. This lunar sample, 15415 (from the Apollo 15 mission), is a rare piece of the Moon’s original crust. Scientists think it formed as the Ocean of Magma cooled, and was broken out of the crust later by a meteorite impact. This moon rock, brought back by the Apollo 16 astronauts, was formed as meteorite impacts fused together different types of rocks. .
Recommended publications
  • Chapter 12 the Moon and Mercury: Comparing Airless Worlds The
    11/4/2015 The Moon: The View from Earth From Earth, we always see the same side of the moon. Moon rotates around its axis in the same time that it takes to orbit Chapter 12 around Earth: The Moon and Mercury: Tidal coupling: Earth’s gravitation has Comparing Airless Worlds produced tidal bulges on the moon; Tidal forces have slowed rotation down to same period as orbital period Lunar Surface Features Highlands and Lowlands Two dramatically Sinuous rilles = different kinds of terrain: remains of ancient • Highlands: lava flows Mountainous terrain, scarred by craters May have been lava • Lowlands: ~ 3 km lower than highlands; smooth tubes which later surfaces: collapsed due to Maria (pl. of mare): meteorite bombardment. Basins flooded by Apollo 15 lava flows landing site The Highlands Impact Cratering Saturated with craters Impact craters on the moon can be seen easily even with small telescopes. Older craters partially … or flooded by Ejecta from the impact can be seen as obliterated by more lava flows bright rays originating from young recent impacts craters 1 11/4/2015 History of Impact Cratering Missions to the Moon Rate of impacts due to Major challenges: interplanetary Need to carry enough fuel for: bombardment decreased • in-flight corrections, rapidly after the formation of the solar system. • descent to surface, • re-launch from the surface, • return trip to Earth; Most craters seen on the need to carry enough food and other moon’s (and Mercury’s) life support for ~ 1 week for all surface were formed astronauts on board. Lunar module (LM) of within the first ~ ½ billion Solution: Apollo 12 on descent to the years.
    [Show full text]
  • Physical Characteristics
    Physical Characteristics Encyclopedia—moon The study of the moon's surface increased with the invention of the telescope by Galileo in 1610 and culminated in 1969 when the first human actually set foot on the moon's surface. The physical characteristics and surface of the moon thus have been studied telescopically, photographically, and more recently by instruments carried by manned and unmanned spacecraft (see space exploration). The moon's diameter is about 2,160 mi (3,476 km) at the moon's equator, somewhat more than 1/4 the earth's diameter. The moon has about 1/81 the mass of the earth and is 3/5 as dense. On the moon's surface the force of gravitation is about 1/6 that on earth. It has been established that the moon completely lacks an atmosphere and, despite some tantalizing hints that there might be ice under the surface dust in shaded portions of Shackleton Crater (near the moon's south pole), there is no definite evidence of water. The surface temperature rises above 100°C (212°F) at lunar noon and sinks below -155°C (-247°F) at night. The gross surface features of the moon are visible to the unaided eye and were first studied telescopically in 1610 by Galileo. Surface Features The lunar surface is divided into the mountainous highlands and the large, roughly circular plains called maria (sing. mare; from Lat.,=sea) by early astronomers, who erroneously believed them to be bodies of water. The smooth floors of the maria, varying from flat to gently undulating, are covered by a thin layer of powdered rock that darkens them and accounts for the moon's low albedo (only 7% of the incident sunlight is reflected back, the rest being absorbed).
    [Show full text]
  • X-Ray Computed Tomography of Tranquility Base Moon Rock
    X-ray Computed Tomography of Tranquility Base Moon Rock Dr. Justin S. Jones / Code 541 Dr. Jim Garvin / Code 600 Collaborators: Mike Viens/540, Ryan Kent/541, and Bruno Munoz/541 GSFC X-Ray CT System (Code 541 NDE Laboratory) Technique Background: • X-ray Computed Tomography (CT) is very similar Filtered Back- to Medical “CAT” scans Projection • An x-ray source creates a “cone beam” which enables geometric magnification • A series of 2D radiographs are taken at precise angle steps as the part rotates • Feldkamp filtered back-projection algorithm is applied to image “projections” to create 3D reconstructed “volume” Main Components: • 7-axis motion/manipulator system, up to 100lb capacity on rotation stage X-ray Source • Detector: Dexela 7529 CMOS with CsI scintillator – 75 µm pitch, 3888 x 3072 pixel array X-ray Detector • X-ray Source: Yxlon FXE-225.99 Dual Head Microfocus: 225kV • Installed in radiation shielded room Sample Stage (arbitrary • North Star Imaging and VG Studio Max software sample shown) • Reconstruction PC with 4 Tesla GPU computing North Star Imaging, custom X5000CT 2 GSFC CT Examples - Composites Impact Damage in Structural Experimental “Topological Composite Core” Composite Structure 3 GSFC CT Examples – Metallic Parts JWST: ISIM Structure 3D Welded Joint ISS: Cracked magnet in Europa: Additively EMU FPS Rotor Manufactured “Venturi” Assembly with stress relief crack 4 GSFC CT Examples – Circuit Boards/Components Circuit Board Interior Wiring Plane Full Circuit Board HV801 Diode Terminals 5 GSFC CT Examples – Reverse Engineering / 3D Reproduction JWST: CT Scan of Transition Link Assembly (fuse wire, ~1cm) 3D Model “Surfacing” to export as STL file for CAD/FEA/3D printer 3D printed replica of actual TLA (lower) at 10x scale 6 Apollo 11 Mission Background The following text was sourced, with minor edits, from the NASA site: http://nssdc.gsfc.nasa.gov/nmc/masterCatalog.d o?sc=1969-059C • ‘The Lunar Module landed at 20:17:40 UT (4:17:40 p.m.
    [Show full text]
  • Geology of the Moon
    Geology of the moon William Joyce The moon is a little more accessible than other bodies in the solar system and this talk aimed to explain what moon rock reveals about the geology of the moon, which is an igneous cumulate complex. After some facts about the moon it looked at early ideas of the nature and origin of the moon, observations from earth, a look at both sides of the moon, major surface types – maria, highlands – craters and fieldwork near and on the moon. It finished with modern ideas on how the moon formed and some thoughts on impacting asteroids and volcanic eruptions. Facts The moon’s mass is 7.35x1022kg, 1.25% that of the earth. Its radius is 1,737km, 27.25% of the earth’s and its surface area 3.79x107km2, 7% of the earth’s. Its density is 60% of earth’s at 3.3g/cm3 and its gravity is 16.5% of earth’s at 1.62m/sec2. Its day is 27.322 earth days and temperatures range from +130oC to -130oC. As the only long-term natural companion of earth, the moon is a fairly large planetary body in its own right and has a complex geological history. 1t is 384,400km distant from earth, the equivalent of 60 earth radii. Early ideas Galileo Galilei was one of the first to make observations of the moon using a 20X telescope and published drawings of it in his Sidereii nunclus (1610). Thomas Harriot used a 6X telescope and produced the first drawings of the moon in 1609, before Galileo, and produced a map of the moon.
    [Show full text]
  • Little Learners' Activity Guide
    LUNAR RECONNAISSANCE ORBITER CAMERA Little Learners’ Activity Guide Learn about the Moon with puzzles, coloring, and fun facts! Mare Imbrium Mare Serenitatis Mare Tranquillitatis Oceanus Procellarum Mare Humorum Tycho Crater Visit us online at lroc.sese.asu.edu Online resources Additional information and content, including supplemental learning activities, can be accessed at the following online locations: 1. Little Learners’ Activity Guide: lroc.sese.asu.edu/littlelearners 2. LROC website: lroc.sese.asu.edu 3. Resources for teachers: lroc.sese.asu.edu/teach 4. Learn about the Moon’s history: lroc.sese.asu.edu/learn 5. LROC Lunar Quickmap 3D: quickmap.lroc.asu.edu Copyright 2018, Lunar Reconnaissance Orbiter Camera i Lunar Reconnaissance Orbiter Camera Fun Facts for Beginners • The Moon is 363,301 kilometers (225,745 miles) from the Earth. • The surface area of the Moon is almost as large as the continent of Africa. • It takes 27 days for the Moon to orbit around the Earth. • The farside is the side of the Moon we cannot see from Earth. • South Pole Aitken is the largest impact basin on the lunar farside. • Impact basins are formed as the result of impacts from asteroids or comets and are larger than craters. • Regolith is a layer of loose dust, dirt, soil, and broken rock deposits that cover solid rock. • The two main types of rock that make up the Moon’s crust are anorthosite and basalt. • A person weighing 120 lbs on Earth weighs 20 lbs on the Moon because gravity on the Moon is 1/6 as strong as on Earth.
    [Show full text]
  • Earth-Moon System
    ©JSR 2013/2018 Astronomy: Earth-Moon system Earth-Moon System Earth at night To see even the bright Moon properly you need clear skies and I can't resist taking the opportunity of beginning with NASA’s spectacular Earth-at-night picture - or how the Earth would appear without cloud cover. It's a picture that is not only of astronomical interest, but one that says a lot about the world's demography and economy. This section of the course, taking two to three lectures, covers the Earth-Moon system. Moon slide There are many features of the Earth-Moon system that are relevant to the study of the Universe at large. • It is held together by universal gravitation, whose basic law is simple but whose effects are not. • The Moon has craters, like many other objects in our solar system and presumably throughout the Universe. How were they formed and what do they tell us? • Measuring size and distance is a fundamental issue in astronomy. We have to start from homebase. The surer we are of distances in the solar system, the surer we are of measuring the much larger distances between stars and between galaxies. The Moon is the first permanent body beyond the Earth. The Earth-Moon system is the obvious first solar system distance to find. • The Earth-Moon system provides the fascinating spectacle of both lunar and solar eclipses. These have influenced societies, ancient and modern, and provided valuable insights into the nature of the Sun in particular. • There is a tendency to think of heavenly objects as points, because they are so far away.
    [Show full text]
  • The Moon Gateway to the Solar System
    THE MOON GATEWAY TO THE SOLAR SYSTEM G. Jeffrey Taylor, PhD WHEN ASTRONAUTS dug into the Moon’s surface during the Apollo program, they were doing more than digging up dry, dark sediment. They were time travelers. The rocks and sediment returned by Apollo contain vital clues to how Earth and the Moon formed, the nature and timing of early melting, the intensity of impact bombardment and its variation with time, and even the history of the Sun. Most of this information, crucial parts of the story of planet Earth, cannot be learned by studying rocks on Earth because our planet is so geologi-cally active that it has erased much of the record. The clues have been lost in billions of years of mountain building, volcanism, weath-ering, and erosion. Colliding tectonic plates The Moon, front and back The top right photograph is a telescopic image of the Earth-facing half of the Moon obtained at Lick Observatory in California. The one below right was taken during the Apollo 16 mission and shows mostly the farside, except for the dark areas on the left, which can be seen, though barely, from Earth. The two major types of terrain are clearly visible. The highlands, which are especially well displayed in the photograph of the farside, are light-colored and heavily cratered. The maria are darker and smoother; they formed when lava flows filled depressions. One of the mysteries about the Moon is why fewer maria occur on the farside than nearside. Note how many craters stand shoulder to shoulder on the farside.
    [Show full text]
  • Goodwill Moon Rock Rev B.Pages
    !Full product specification Goodwill Rock Lucky Moon Rock 70017 THE UNIVERSE IN THE PALM OF YOUR HANDS Product Name!Lucky Moon Rock 70017! ! Family Member! Moon Rock! ! Product Code! MR-70017! ! ! Schmitt standing next to a giant boulder during the Apollo Overview! !! 17 mission. Credit: NASA, Public domain Moon rock refers to rocks found on the Earth’s moon. Moon rock has been brought back to Earth by the US Apollo and Soviet Union Luna missions for scientists to study. The six manned Apollo missions brought back the most moon rock with a total of 2,415 samples weighing altogether 382 kg (842 lb). A variety of tools were used to gather the rocks and included: !hammers, scoops, tongs, rakes and core tubes.! The Goodwill Moon Rock (officially labelled sample 70017) was picked up by astronauts Eugene Cernan and Harrison Schmitt on the last of the Apollo Program moonwalks. They dedicated this special find to the young people of Earth. Back on Earth, President Nixon ordered that this rock be broken into fragments to share with the world. The pieces were mounted onto wooden plagues and presented to 135 foreign heads of state and the 50 US states.! ! Physical Properties! Composition ! The most common type of moon rock is igneous, meaning it is a rock formed through the cooling and solidification of magma or lava. There are four types of Moon rock:! • dark basalt (formed from rapidly cooling molten rock fem massive lava flow)! • anorthosite (when lava cools more slowly)! • breccias (fragments of different rocks, fused together by meteor impacts)! ! • lunar soil (glass like blobs, possibly created by the heat and pressure from a meteor impact)! Chemicals! Moon rock typically contains:! • refractory elements (eg: Calcium, Aluminium, Titanium) which have a high melting point! ! • silicon and oxygen! Precious metals such as Titanium are valuable and widely used here on Earth.
    [Show full text]
  • Magnificent, Mysterious Moon
    Adapted From AAC Newsletter FirstLight (2002 Oct & 2004 Apr/May) Magnificent, Mysterious Moon Howard L. Cohen Usually the bane of amateur and professional astronomers alike, the Moon is the most exquisite, detailed and educational object on the sky! “The Moon was but a Chin of Gold A Night or two ago — And now she turns Her perfect Face Upon the World below —” ~ Emily Dickinson ometime ago a colleague of mine stated that once you’ve seen the Moon, there is no sense having a second look. This is like saying once you’ve seen the Grand SCanyon, there is no sense coming back. If this is your thinking too, you need not read any further. Gerald North in his popular book, Observing the Moon, wrote that, “Interest in the Moon periodically ebbs and flows, like the tides it causes in our oceans.” Certainly interest in the Moon peaked during the Apollo landings more than thirty years ago and it has been on the wane ever since. Today, with many amateur astronomers proud owners of large reflecting telescopes, deep sky observing seems more fashionable. And professional astronomers usually hold star formation, exploding stars, black holes and galactic encounters among the more “fashionable” fields of study. Indeed, when moonlight prevails, astronomers often stow their telescopes and retreat indoors. The First Quarter Moon. Magnificent even in small telescopes. (Photo by author.) Still, our nearest celestial neighbor has attracted attention since earliest times and has influenced our culture in ways unknown to most people. Now ignorance and myths of the Moon prevail including the perception that, if you have seen a moon rock (or crater), you’ve seen it all.
    [Show full text]
  • Sampling South Pole-Aitken Basin to Determine the Age of the Impact Event and Test the Cataclysm Hypothesis
    Lunar Surface Science Workshop 2020 (LPI Contrib. No. 2241) 5091.pdf SAMPLING SOUTH POLE-AITKEN BASIN TO DETERMINE THE AGE OF THE IMPACT EVENT AND TEST THE CATACLYSM HYPOTHESIS. B. L. Jolliff1, C. K. Shearer2, N. E. Petro3, and B. A. Cohen3. 1Depart- ment of Earth & Planetary Sciences, Washington University in St. Louis, One Brookings Dr., St. Louis, MO 63130; 2University of New Mexico, Albuquerque, NM; 3Goddard Space Flight Center, Greenbelt, MD. ([email protected]) Summary: Regolith and rock samples collected at size [6] and excavating materials from great depth, po- landing sites near the south pole, including near Shack- tentially including crust and mantle materials. Its effects leton crater, will contain materials ejected by the impact on the Moon were global, forming a Moon-wide strati- that formed the giant South Pole-Aitken (SPA) basin graphic event. Determining the age of SPA will bracket [1]. Shackleton crater occurs on an SPA basin massif the ages of other ancient, Pre-Nectarian basins on the and the impact that formed it excavated and mixed SPA Moon as well the origin of the apparent episode of ig- material into the local regolith. Rock materials collected neous activity around 4.35 Ga [7-10]. Materials from near Shackleton will be suitable for petrographic, geo- SPA basin hold a record of the process of very large im- chemical, and chronologic analyses of SPA material. pact-basin formation [11] and will serve as ground truth Based on the known diversity of rock fragments in for remote sensing of SPA basin materials. Volcanic Apollo regolith samples, regolith sieved on the Moon rocks that occur in the SPA interior will contribute to will yield rock fragments in the several mm to cm size our understanding of basin materials and chronology, range that are ideal for studies needed to identify and and mantle heterogeneity.
    [Show full text]
  • The New Moon Race: Lunar Agriculture
    Project Number: JMW LUNA The New Moon Race: Lunar Agriculture An Interactive Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor Science By ________________________ Peter Conerly Date: April 28, 2009 Approved: ________________________ Professor John M. Wilkes, Major Advisor 1 Abstract A lunar base is valuable economically as a foothold with relatively easy access to all of space. The burden of such a base will be providing it with resources. If a base can grow food for itself then it will become much less of a burden. Many factors surrounding lunar agriculture have been studied although plants have never been grown on the moon. This report examines the problem and proposed a strategy for productive agriculture on the moon. 2 Table of Contents: Abstract ………………………………………………………………………………………………….……….……….……………..2 Table of Contents………………………………………………………………………………………………….….…….………..3 Table of Figures………………………………………………………………………………………………….…….…….………..4 1: Introduction..……………………………………………………………………………………………………..….………………5 2: Literature Review.…………………………………………………………………………………………….….……………….6 2.1 IQP: Sustaining Agriculture on the Moon…………………………………………………...…..……….6 2.2 IQP: Proposal for the Development of an Economically Viable Lunar Base……..…….…7 3: Lunar Conditions.…………………………………………………………………………………………..…..….………………8 4: Agriculture Strategy.……………………………………………………………………………………..…….………………12 4.1: Growing Techniques…………………………………………………………………………..……….…………12 4.2:
    [Show full text]
  • China Shoots the Moon
    Volume 18 | Issue 23 | Number 3 | Article ID 5520 | Dec 01, 2020 The Asia-Pacific Journal | Japan Focus China Shoots the Moon Philip J. Cunningham China is taking aim at the moon, establishing itself as a space power to be reckoned with. While currently playing catch-up behind the space accomplishments of the US and Russia, it is rapidly gaining ground as a result of an ambitious Chinese space program coinciding with domestic squabbling in the US, budgetary shortfalls in Russia, and lack of focused political will on the part of both space pioneers. November 23, 2020 launch of China’s Chang'e-5 from Wenchang Satellite With the freshly-launched Chang’e 5 probe, Launch Center in Hainan locked into a moon orbit as of November 28, for the first time in forty years an attempt is being made to collect rocks on the moon and bring them back to earth for study. Abstract: With China’s Chang’e 5 rocket launch, which landed on the moon on The US Advance in Space and its December 1, the long US-Russian domination Subsequent Decline of space has a major challenger. The issues extend beyond national pride to a global The heyday of moon exploration by the US and leadership initiative in rocketry whose the USSR in the 1960s and 1970s coincided implications extend to military, economic and with a deadly serious space race that was diverse scientific applications at a time of effectively war by other means for the two mounting US-China rivalry in all spheres. reigning superpowers.
    [Show full text]