<<

Organic Solar Cells

Samtel Centre for Display Technologies

S. Sundar Kumar Iyer

1 Outline

 Motivation ■ Solar cells ■ Organic solar cells  Background ■ Working of organic ■ Fabrication steps  Research at IIT K ■ , device, circuit and system level

2 Clean Supply Needed for Quality of

 Fossil and nuclear are costly ■ If we include the environmental cost  The shines on everyone ■ Ideal for distributed power generation and remote locations  Tap directly ■ Ideal for distributed power generation ■ More

3 Annual Mean Global Irradiance

On a horizontal plane at the surface of the earth W m-2 averaged over 24 h

With 10% efficient solar cell area of solar cell needed in 2004 India 60 km × 60 km (0.12% area) 4 World need: 350 km × 350 km History

 1839 discovered by Edmond Becquerel  1954 First Solar Cell Bell Lab by Chapin, Fuller and Pearson (η∼6%)  1970s Surge in research to harness solar energy  1986 by Tang of Eastman Kodak  2007 Highest efficiency solar cells with ηηη~40.7% in Spectrolab  A big surge in solar cells research & development is underway

5 The Birth of Silicon

Efficiency ηηη ≈ 6 %

1mm

Chapin et al . 1954 6 Space Applications

www.spacetoday.org

marsrovers.nasa.gov

Photovoltaics are the mainstay 7 Remote Locations

Photovoltaics are attractive

www.dacres.org

summitclimb.com web.worldbank.org 8 Consumer Electronics

9 Grid Supply

Need to make photovoltaics attractive in the marketplace

www.sun-consult.de

www.e2tac.org 10 Solar Energy Usage and Pricing

Solar markets Solar Price/Competing (average of last 5 years) Energy source Remote Industrial 17% 0.1-0.5 times Remote Habitation 22% 0.2-0.8 times Grid Connected 59% 2-5 times Consumer Indoor 2% n/a

Solar Energy: 30 c (Rs. 12) per kWh Need to lower cost to 10c (Rs.4) per kWh and below

http://www.solarbuzz.com/StatsCosts.htm (2006 data; accessed 29.02.2008) 11 Generation Cost

Energy Source Cost

Combined cycle gas turbine 3 ¢ -5 ¢ (Rs.1.20-Rs.2.00)

Wind 4 ¢ -7 ¢ (Rs.1.60-Rs.2.80)

Biomass 7 ¢ -9 ¢ (Rs.2.80-Rs.3.60)

Remote diesel generation 20 ¢ -40 ¢ (Rs.8.00-Rs.16.00)

Solar PV central station 20 ¢ -30 ¢ (Rs.8.00-Rs.12.00)

Solar PV Distributed 20 ¢ -50 ¢ (Rs.8.00-Rs.20.00) http://www.solarbuzz.com/StatsCosts.htm (2006 data; accessed 29.02.2008) 12 Solar Energy Production and Price

R.M. Margolis 2003 13 Cost Breakdown of Silicon Photovoltaics

Module Cell Processing 35% 25%

Silicon Wafer 40%

Data from A. Rohatgi 14 Lowering Cost of Solar Cells

 Solar Cells ■ Multiple junction solar cells (a-Si :H, a-SiGe :H) ■ CdTe based cells ( CdTe , CdS ) CuInSe ■ 2 (CIS) Ternary & Multinary compound solar cells ■ Multicrystalline/Microcrystalline silicon solar cells ■ Thin film GaAs solar cells ■ Organic solar cells

S. Deb 2004 15 Efficiency of PV for Different Materials

Spectrolab 40.7%

Organics Photovoltaic Zweibel et al . 2004 16 Why Organic Solar Cells?

17 High-Throughput and Low-Cost Processing

 Printing ■ Screen Pringing ■ Stamping  Spraying  Spin  Vaporisation

18 Flexible Solar Cells

Flexible Surfaces Conformal Surfaces

Example show is a Prof. Kippelen’s Group; Georgia Tech CIGS solar Cells 19 Eco-Friendly Technology

 Appropriate Process

 Biodegradable Molecule

20 Background

21 Efficiency of a Solar Cell

hννν I  Fill Factor FF is the ratio of p n area of maximum rectangle fitted in the 4 th quadrant I-V V RL I and the product of VOC and ISC Dark  Maximum Power Output × × Pmax = VOC ISC FF

VOC V  Efficiency Pmax (mA)

I η = Max Incident Optical Power Power Rectangle ISC

22 S.M.Sze 1991 V (V) Classic p-n Junction Photovoltaic Cell

Inorganic

hννν> Eg= Ec -Ev hννν

e- Ec Efn Ef φ E Efp bi h+ v n-type p-type

-ve Ebuilt-in +ve

• Incident immediately forms mobile and holes

23 Organic Solar Cells Operation

A Heterojunction Organic Solar Cell Structure

Anode Hole Transport Transport Cathode Layer e- hν e-

Exciton by diffusion

eh-+ h+

Photon Absorption Formation Exciton Diffusion

Charge Transport & Collection EHP Formation Exciton Dissociation24 Photovoltaic Process In Organic Solar Cells  Coupling Absorption Creation Separation Collection Creation of of of of charges of charges of into incident ‘free’ by built-in at Sunlight solar cell charges E field

Light Photons Excitons Charges Charges Reflected Not Recombine Recombine Recombine Away Absorbed     

25 Device Fabrication

- Metal Deposition Al - Ca Al Ca Active Layer Deposition Active Layer PEDOT:PSS

ITO PEDOT:PSS Coating Transparent Substrate Contacts + + + + ITO Patterning

26 Highest Efficiency Reported OSC Till Date

www.sciencemag.org SCIENCE VOL 317 13 JULY 2007 pp. 223-225

-2 Tandem Cell: Jsc = 7.8 mA cm , Voc = 1.24 V, FF = 0.67 and η = 6.5%

27 Organic Solar Cell at IIT K

28 The Team

 Prof. Satyendra Kumar (Physics)  Dr. Ashish Garg (MME)  Prof. Baquer Mazhari (EE)  Prof. R. Gurunath (Chemistry)  Dr. S.P. Das (EE)  Dr. P.S. Sensarma (EE)  Dr. R.S. Anand (EE)  Dr. Vibha Tripathi (EE)  Prof. Y.N. Mohapatra, Prof. Deepak Gupta, Prof. Monica Katiyar, Dr. Siddhartha Panda, Dr. Narain, …

 S. Sundar Kumar Iyer 29 The Processing Laboratory

ISO 6, 220 m 2

30 Characterisation Facilities

31 Three Pronged Approach

 Increasing efficiency of device ■ Physics and circuit model of organic solar cells ■ Choice of Material ■ Structure – Blend, Bilayer, Tandem … ■ Process Optimisation  Reliability and Stability ■ Choice of Material ■ Mechanism of Degradation ■ Encapsulation Techniques  New & emerging technology issues ■ Novel methods of fabrication

■ System level issues 32 Organic Solar Cell Model

V int D I 2 RS

R s, int. + D1 I V P Ddark RSH

Rshunt, int. -

New Model

RS I  IL is a function of voltage + V  I RSH Exciton generation IP is a constant L - 33 B. Mazhari 2006 Traditional Model Optical Efficiency ηηηO

   Optical losses maybe due to ■ Reflection at the surface  n0=1 for air  n1, κκκ ■ Unabsorbed light leaking out Device  Solutions

Back ■ Anti Reflection Coating (ARC) ■ Texturing the top surface ηηηO = 1-R where ■ Concentrators 2 2 (n1-n0) + κκκ R = 2 ■ Thickness of layers (n1+n0) + κκκ ni : refractive index of medium i κκκ: attenuation coefficient in device 34 Light Trapping by TiO 2 Nanoparticles

P3HT-PCBM-TiO2_40 100 100 TiO 2 particle is dispersed in the P3HT:PCBM blend 90 P3HT:PCBM 80 80

70 P3HT:PCBM + TiO 2 60 60

50   40

40Reflectance(%)

30

Reflectance (%) Device 20 20

10 Back electrode

0 0 300300 400 500 500 600 700 700 800 900 900 1000 λ (nm ) λλλ (nm) 35 Jyoti Singh 2008 Cathode Variation

Al Active Area Ca

) ITO Glass -2 Voltage (V)

Illumination: AM1.5D 100 mW cm -2 Current Density Current (mADensity cm

36 Nitin Sahai 2008 Effect of Post Process Anneal

P3HT: PCBM Blend Cathode Heterostructure Blend PEDOT:PSS Glass ITO

37 Vinod Pagare 2007 Degradation Models

Degradation under Electrical & Optical Stress

• Statistically arrive at parameters that matter most • Identify the physics of degradation • Use learning to increase device lifetime

38 Munish Jassi 2006 Summary

Organic solar cells offers unique opportunities in future ■ Low-cost high volume production ■ Distributed production ■ Environmentally benign devices Work at IIT Kanpur ■ Molecule and material level ■ Process ■ Device level ■ Circuit level ■ System level 39 Let us make Organic Solar Cells Happen!

40