Let's Get Started

Total Page:16

File Type:pdf, Size:1020Kb

Let's Get Started Let's get started Once user needs and resources are understood, system engineering begins with RF planning Aug 1, 2010 Ira Wiesenfeld, P.E. and Robert C. Shapiro, P.E. | Urgent Communications Reprinted by permission of Urgent Communications http://urgentcomm.com/mobile_voice/mag/rf-planning-201008/ After the systems engineer has an understanding of the proposed land-mobile radio system user's needs, budget process and the available technologies, the next step starts the real engineering work, i.e., the radio frequency (RF) planning process. This section will introduce some of the fundamentals of RF engineering, but there is much more to the engineering process than just these fundamentals. We will cover more of the RF engineering items in later articles, but it is imperative that the reader understands these fundamentals first. The RF planning process begins with an understanding of the customer requirements and ends with a decision that includes the technical requirements and financial constraints. In between, myriad design elements must be considered, including the following: • Frequency band selection; • RF link budgets, including RF coverage drive-testing; • Regulations and technical capabilities of the repeaters, base stations and subscribers; • Radio transmissions, including RF coverage planning; • Radio site locations; • Verification and testing of noise and interference; and • Understanding of the receivers' ability to hear signals above the noise and interference. The frequency band will have a major influence on the rest of the system design. It will dictate the type and size of the antennas, the choice for the transmission lines, the necessary height of the tower(s), the complexity of the radios, and the amount of interference that can be expected over the life of the equipment. In most circumstances, the range and reliability of the system will be based on the band that the engineer chooses for the system to operate on. (See sidebar.) Another factor to consider when choosing a band for operation concerns interoperability with other units with which the radios must communicate. With the advent of software-defined radios − which identify and move to open frequencies without the user realizing it is happening − and multiband radios, the need to always use the same band as your neighbors or workmates has been lessened. The trade-off is the considerably higher price of the subscriber units. The link budget takes into account all of the gains and losses experienced by the signal as it moves from the transmitter to the receiver; it takes into account the amount of power being transmitted, the circuit path loss, and the difference between the received level and the receiver's ability to hear a signal at that level. For instance, when the received signal level exceeds the receiver sensitivity and is above any noise and interference, then you have a viable working communications path. If the received level is below the sensitivity of the receiver, or there is detrimental localized noise and interference, then you do not have a viable communications path. There are many elements of the radio link budget − both in the talk-out, or downlink, path and the talk-back, or uplink, path − to be considered. These include base station transmitters, cavity filter losses, coaxial transmission line losses, transmitter antenna gains, RF path loss, subscriber receiver antenna gains, coaxial transmission line losses, and the subscriber receiver's ability to interpret the signal over any noise or interference in the downlink path. More specifically, in a typical radio system − conventional or trunked − establishing the link budget in the downlink path starts with the base station or repeater transmitter, coaxial jumper and the combining of multiple transmitters or cavity filtering to prevent transmitter noise and intermodulation. After the combiner or cavity filtering, the system engineer must take into account another jumper, the lightning surge arrestor, the large coaxial cable that runs up the tower or rooftop, yet another jumper, and finally the termination at the transmit antenna. In the uplink path, the engineer first considers the transmitter power, any losses to the subscriber antenna, and the type and location of the antenna. Then there is the path loss, the base station or repeater receive antenna − either proceeding to a low-noise amplifier located with the antenna and/or a jumper, then proceeding to the large coaxial cable − the lightning surge arrestor, another jumper, a pre-selector filter, and finally the receiver multicoupler (if the system uses multiple receivers in the same band). Balancing of the link budget between the downlink and uplink is critical to allow the mobiles and portables to have the same coverage in both directions, in order to prevent receiving a signal and not being able to return the call, and vice versa. The transmitter power is the baseline part of the link budget. If you do not need to cover a large geographic area, then low-power transmitters will work well. But if you need to cover a large geographic area − or an area where you need quite a bit of signal due to obstructions attenuating the signal − then you need to start with a high level of transmitter power. To further the discussion of link budgeting, we next focus on the individual components, starting with the base station transmitters, which are specified in watts − this needs to be converted to decibels using the equation, PdBm = 30 + 10 log Pwatts. When a radio manufacturer submits its products to be type-accepted by the FCC or other regulating body, so that the product can be sold and used legally, the maximum and minimum power utilized by the transmitter will be taken into consideration. This means that any given radio transmitter cannot operate above, or below, a certain power level. The system engineer must know ahead of time, during the design phase of a project, what the transmitter power range must be before the equipment is placed into service, as the power level for a given radio cannot be varied by much. The full transmitter power will not be the same as the power that is fed into the antenna. There will be losses caused by connectors, transmission line loss, duplexer or other filter losses, isolators, and any impedance mismatches. The actual transmitter power, which not only takes into account system losses but also gains, is referred to as Effective Radiated Power, or ERP. In order to make up for system losses, the engineer can use a high-gain antenna such that the losses can be overcome, and in some cases, actually provide for a true gain of system performance. We will spend more time on antenna systems in a future article. With advances in technology, and as the frequencies of operation expand above 1 GHz, antenna design engineers began to model devices such as parabolic reflectors using computer programs, as the standard dipole antennas did not lend themselves to the formulas unless a focus point was used in the design. These engineers started using the term Effective Isotropic Radiated Power, or EiRP, to describe the patterns and gains, but the technicians measuring the systems found that their levels were off by a factor of 2.1 dB lower than the engineers had stated. In the ensuing years, the use of isotropic radiators has migrated to the LMR and cellular industries, where the manufacturers will give their specified antenna gains in decibels over a dipole and decibels over an Isotropic point in space. The non-technical individuals such as purchasing agents will think that it is better to buy an 8.1 dBi antenna over a 6 dBd antenna, where they actually are the same antennas with the same amount of gain. The radios in the link budgeting can be used as base stations, mobile stations, repeaters, control stations, and portable stations. There are myriad antennas available for each type of station, and these all must fit into the system design. In addition, just as the antennas must be a proper impedance match for the transmitters, they also must be a good match for the receiving channel. If your receiver channel is far removed in frequency from the transmitter channel frequency, you might have a problem with the antenna having a poor impedance match at one or both of the channels. In addition, the gain of the antenna might be seriously degraded or become a loss from the incorrect spacing at the different channel frequencies. A well-engineered system always will have these parameters in the proper ranges for the given system. The receiver portion of the radio system, including the study of noise and interference, is an important part of the link budget, and will be examined − along with antenna systems, RF coverage tools and drive test methods − in the next installment of this series. Common Frequency Bands The common bands for LMR systems in the United States are: • High-frequency HF (3.0 MHz-30.0 MHz); • Low-band VHF (30 MHz-50 MHz); • Mid-band (72 MHz-76 MHz); • VHF high band (138 MHz-174 MHz); • 220 MHz; • UHF band (380 MHz-470 MHz); • UHF T-band (470 MHz-512 MHz); • 700 MHz band (narrowband and broadband); • 800 MHz; • 900 MHz band; • 2.4 GHz band; • 3.6 GHz; • 4.9 GHz band; • 5.2 GHz; • 5.8 GHz band Part 1: Class is in session: Basic LMR and FCC definitions Part 2: Start at the beginning: Understanding LMR user needs Part 3: The devil's in the details: Conducting a user-needs survey Part 4: Decisions, decisions: The procurement process Part 6: The lynchpin: Receiver planning and installation Part 7: Connecting the dots: How to connect LMR sites Part 8: The next piece of the puzzle: Understanding dispatch communications Part 9: Now the real work begins: How to select a suitable LMR site Part 10: The bane of your existence: How to deal with RF interference Part 11: Winning the battle: What causes radio frequency interference Ira Wiesenfeld, P.E., is a consulting engineer who has been involved in the radio communications business since 1966.
Recommended publications
  • Real Time C Band Link Budget Model Calculation
    REAL TIME C BAND LINK BUDGET MODEL CALCULATION Item Type text; Proceedings Authors Rubio, Pedro; Fernandez, Francisco; Jimenez, Francisco Publisher International Foundation for Telemetering Journal International Telemetering Conference Proceedings Rights Copyright © held by the author; distribution rights International Foundation for Telemetering Download date 27/09/2021 23:53:15 Link to Item http://hdl.handle.net/10150/624184 REAL TIME C BAND LINK BUDGET MODEL CALCULATION Pedro Rubio, Francisco Fernandez, Francisco Jimenez Airbus D&S - Flight Test 1. ABSTRACT The purpose of this paper is to show the integration of the transmission gain values of a telemetry transmission antenna according to its relative position and integrate them in the C band link budget, in order to obtain an accuracy vision of the link. Once our C band link budget was fully performed to model our link and ready to work in real time with several received values (GPS position, roll, pitch and yaw) from the aircraft and other values from the Ground System (azimuth and elevation of the reception telemetry antenna), it was necessary to avoid a constant value of the transmitter antenna and estimate its values with better accuracy depending of the relative beam angles between the transmitter antenna and receiver antenna. Keeping in mind an aircraft is not a static telecommunication system it was necessary to have a real time value of the transmission gain. In this paper, we will show how to perform a real time link budget (C band). Keywords: Telemetry, Link Budget, C band, Real time, Dynamic gain 2. WHY C BAND AND REAL TIME – THE PREVIOUS SITUATION The new C Band migration involves the change of all telemetry chain and the challenge to cover the same area than in S Band with the same quality of service.
    [Show full text]
  • Repeaters, Satellites, EME and Direction Finding 23
    Repeaters, Satellites, EME and Direction Finding 23 Repeaters his section was written by Paul M. Danzer, N1II. In the late 1960s two events occurred that changed the way radio amateurs communicated. The T first was the explosive advance in solid state components — transistors and integrated circuits. A number of new “designed for communications” integrated circuits became available, as well as improved high-power transistors for RF power amplifiers. Vacuum tube-based equipment, expensive to maintain and subject to vibration damage, was becoming obsolete. At about the same time, in one of its periodic reviews of spectrum usage, the Federal Communications Commission (FCC) mandated that commercial users of the VHF spectrum reduce the deviation of truck, taxi, police, fire and all other commercial services from 15 kHz to 5 kHz. This meant that thousands of new narrowband FM radios were put into service and an equal number of wideband radios were no longer needed. As the new radios arrived at the front door of the commercial users, the old radios that weren’t modified went out the back door, and hams lined up to take advantage of the newly available “commer- cial surplus.” Not since the end of World War II had so many radios been made available to the ham community at very low or at least acceptable prices. With a little tweaking, the transmitters and receivers were modified for ham use, and the great repeater boom was on. WHAT IS A REPEATER? Trucking companies and police departments learned long ago that they could get much better use from their mobile radios by using an automated relay station called a repeater.
    [Show full text]
  • ECE145C: RF CMOS Communication Circuits and Systems Prof
    ECE145C: RF CMOS Communication Circuits and Systems Prof. James Buckwalter © James Buckwalter 1 Organization • email: [email protected] • Lecture: Girvetz Hall 1112 8-9:15 • Faq: Piazza access code: ece145c (Gauchospace?) • Please allow 24-48 hour turnaround • Computing Lab: E1 • TAs – Di Li • Office Hours: T/Th 12-1, TBD • OH Location: ESB-2205C © James Buckwalter 2 Scope: ECE 145C should • refine fundamental understanding of RF circuits and systems to analyze modern wireless technology. • present a comprehensive understanding from devices to systems. • teach applications of RF CMOS as well as III-V • analyze RF transmitter/receiver architectures. Modern cellular and RF technologies are a mash-up of communication theory and devices. One needs to understand device limitations to understand communication system limits and vice versa. © James Buckwalter 3 Topics for our class • Propagation, Noise and Distortion Budgeting • Basics of Modulation / Cellular Standards • Receiver Filtering, Mixing, and Architectures • Power Amplifiers (Linear and Nonlinear): Output power and Efficiency • High-efficiency transmitters • RF Architectures (Putting it all together) © James Buckwalter 4 Lecture Topic Lecture Topic 1 (3/31) System Perspective: 2 (4/2) System Perspective: Link Budget Interference 3 (4/7) System Perspective: EVM 4 (4/9) System Perspective: Reciprocal Mixing 5 (4/14) Mixers (1) 6 (4/16) Mixers(2) 7 (4/21) Tunable Filters (I) 8 (4/23) Midterm 9 (4/28) Tunable Filters (II) 10 (4/30) RX Architectures: Mixer First 11 (5/5) RX Architectures: Direct 12 (5/7) Power Amplifiers: Classes Sampling 13 (5/12) Power Amplifiers: Classes 14 (5/14) Power Amplifiers: Spectral Regrowth 15 (5/19) Outphasing 16 (5/21) Outphasing Modulators Modulators…Transmitters 17 (5/26) Doherty Transmitters 18 (5/28) Doherty Transmitters 19 (6/1) Envelope Tracking 20 (6/3) Midterm Transmitters Reference Material • Razavi…for now.
    [Show full text]
  • Path Loss and Link Budget
    Path Loss and Link Budget Harald Welte <[email protected]> Path Loss A fundamental concept in planning any type of radio communications link is the concept of Path Loss. Path Loss describes the amount of signal loss (attenuation) between a receive and a transmitter. As GSM operates in frequency duplex on uplink and downlink, there is correspondingly an Uplink Path Loss from MS to BTS, and a Downlink Path Loss from BTS to MS. Both need to be considered. It is possible to compute the path loss in a theoretical ideal situation, where transmitter and receiver are in empty space, with no surfaces anywhere nearby causing reflections, and with no objects or materials in between them. This is generally called the Free Space Path Loss. Path Loss Estimating the path loss within a given real-world terrain/geography is a hard problem, and there are no easy solutions. It is impacted, among other things, by the height of the transmitter and receiver antennas whether there is line-of-sight (LOS) or non-line-of-sight (NLOS) the geography/terrain in terms of hills, mountains, etc. the vegetation in terms of attenuation by foliage any type of construction, and if so, the type of materials used in that construction, the height of the buildings, their distance, etc. the frequency (band) used. Lower frequencies generally expose better NLOS characteristics than higher frequencies. The above factors determine on the one hand side the actual attenuation of the radio wave between transmitter and receiver. On the other hand, they also determine how many reflections there are on this path, causing so-called Multipath Fading of the signal.
    [Show full text]
  • Wireless Link Budget Analysis How to Calculate Link Budget for Your Wireless Network
    Wireless Link Budget Analysis How to Calculate Link Budget for Your Wireless Network Whitepaper Radio Systems How far can it go and what will the throughput be? These are the two common questions that come up when designing a high speed wireless data link. There are several factors that may impact the performance of a radio system. Available and permitted output power, available bandwidth, receiver sensitivity, antenna gains, radio technology, and environmental conditions are some of the major factors that may impact system performance. For large scale network deployments, a detailed site survey and network design are highly recommended. This paper will attempt to provide the reader with an overview on how a link budget is calculated. Line-of-Sight (LOS) Link Budget To limit the scope of this paper, only line-of-sight links with sufficient Fresnel Zone clearance will be considered. The following equation shows the basic elements that need to considered when calculating a link budget: Received Power (dBm) = Transmitted Power (dBm) + Gains (dB) − Losses (dB) If the estimated received power is sufficiently large (typically relative to the receiver sensitivity), the link budget is said to be sufficient for sending data under perfect conditions. The amount by which the received power exceeds receiver sensitivity is FSPL (dB) called the link margin . Distance 900MHz 2.4GHz 5.8GHz 1km Free-Space Path Loss 91.53 100.05 107.72 2km 97.56 106.07 113.74 In a line-of-sight radio system, losses are mainly due to free-space path loss (FSPL ). FSPL is proportional to the square of the distance between the transmitter and 3km 101.08 109.60 117.26 receiver as well as the square of the frequency of the radio signal.
    [Show full text]
  • AN1631-Simple Link Budget Estimation and Performance
    AN1631 Simple Link Budget Estimation and Performance Measurements of Microchip Sub-GHz Radio Modules Usually, Sub-GHz channels are part of unlicensed Author: Pradeep Shamanna Industrial Scientific Medical (ISM) frequency bands. Microchip Technology Inc. Sub-GHz nodes generally target low-cost systems, with each node costing approximately 30% to 40% less compared to the advanced wireless systems and uses INTRODUCTION less stack memory. Many protocols such as IEEE ® The increased popularity of short range wireless in 802.15.4 based ZigBee (currently, the only protocol home, building and industrial applications with Sub- offering both 2.4 GHz and Sub-GHz versions in the GHz (<1 GHz) band requires the system designers to 868 MHz and 900 MHz bands), automation protocols, understand the methods, estimation, cost and trade-off cordless phones, Wireless Modbus, Remote Keyless in short range wireless communication. Apart from Entry (RKE), Tire Pressure Monitoring System (TPMS) considering the range estimation formula, it is good to and lot of proprietary protocols (including MiWi™), understand the wireless channel and propagation occupy this band. However, operation in the Sub-GHz environment involved with Sub-GHz. Generally, RF/ ISM band induces the radios to interfere with other wireless engineers perform a link budget while starting protocols utilizing the same spectrum which includes an RF design. The link budget considers range, threat from mobile phones, licensed cordless phones, transmit power, receiver sensitivity, antenna gains, and so on. frequency, reliability, propagation medium (which This application note describes a simple link budget includes the principles of physics linked to reflection, analysis, measurement and techniques to evaluate the diffraction and scattering of electromagnetic waves), range and performance of wireless transmission with and environment factors to accurately calculate the results, and uses developed models to estimate the performance of a Sub-GHz RF radio link.
    [Show full text]
  • Range Calculation for 300Mhz to 1000Mhz Communication Systems
    APPLICATION NOTE Range Calculation for 300MHz to 1000MHz Communication Systems RANGE CALCULATION Description For restricted-power UHF* communication systems, as defined in FCC Rules and Regula- tions Title 47 Part 15 Subpart C “intentional radiators*”, communication range capability is a topic which generates much interest. Although determined by several factors, communica- tion range is quantified by a surprisingly simple equation developed in 1946 by H.T. Friis of Denmark. This paper begins by introducing the Friis Transmission Equation and examining the terms comprising it. Then, real-world-environment factors which influence RF commu- nication range and how they affect a “Link Budget*” are investigated. Following that, some methods for optimizing RF-link range are given. Range-calculation spreadsheets, including the special case of RKE, are presented. Finally, information concerning FCC rules govern- ing “intentional radiators”, FCC-established radiation limits, and similar reference material is provided. Section 7. “Appendix” on page 13 includes definitions (words are marked with an asterisk *) and formulas. Note: “For additional information, two excel spreadsheets, RKE Range Calculation (MF).xls and Generic Range Calculation.xls, have been attached to this PDF. To open the attachments, in the Attachments panel, select the attachment, and then click Open or choose Open Attachment from the Options menu. For addi- tional information on attachments, please refer to Adobe Acrobat Help menu“ 9144C-RKE-07/15 1. The Friis Transmission Equation For anyone using a radio to communicate across some distance, whatever the type of communication, range capability is inevitably a primary concern. Whether it is a cell-phone user concerned about dropped calls, kids playing with their walkie- talkies, a HAM radio operator with VHF/UHF equipment providing emergency communications during a natural disaster, or a driver opening a garage door from their car in the pouring rain, an expectation for reliable communication always exists.
    [Show full text]
  • ITU-R Report 2233
    Report ITU-R M.2233 (11/2011) Examples of technical characteristics for unmanned aircraft control and non-payload communications links M Series Mobile, radiodetermination, amateur and related satellite services ii Rep. ITU-R M.2233 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • The HAMNET Mikrotik's Role in the World of Amateur Radio
    The HAMNET Mikrotik's role in the world of Amateur Radio Jann Traschewski, DG8NGN German Amateur Radio Club (DARC e.V.) [email protected] User access Interlinks http://hamnetdb.net → Map Introduction – Jann, DG8NGN Member of the German Amateur IP-Coordination Team – Region South: Jann Traschewski, DG8NGN – Region North-West: Egbert Zimmermann, DD9QP – Region North-East: Thomas Osterried, DL9SAU VHF/UHF/Microwave Manager DARC e.V. Profession: System Engineer for Spectrum Monitoring Systems (Rohde & Schwarz Munich) Facts about Amateur Radio ● Exams Germany: Multiple-Choice Test ● Class A (full license) ● Class E (entry level license: less power, less frequency bands) ● License allows Amateur Radio Operation on Amateur Radio Frequencies ● Amateur Radio Operators have their own worldwide unique Callsign e.g. Jann Traschewski = DG8NGN ● Amateur Radio Operators are everywhere around us (esp. in technical business) – ~2 million amateur radio operators worldwide (~70.000 in Germany) – growing numbers in the last few years Facts about Amateur Radio ● Amateur Radio has its own national laws (rights & duties) – Amateur radio homebrew: Due to the technical knowledge proven by the exams, amateurs are allowed to build and operate their homemade radios – No commercial usage: Amateurs may not use their radio frequencies to provide commercial services – No obsurced messages: Amateurs may not obscure the content of their transmissions – Identification: Amateurs need to identfiy with their callsign regularly Amateur Radio Operation ● Space Communication ● Moonbounce International Space Station Callsign: DP0ISS 8.6m diameter Dish!! Moonbounce station from Joe, K5SO (http://www.k5so.com) Amateur Radio Operation ● Weak Signal Propagation Reporter ● very low power (e.g. 20dBm) ● very low bandwidth ● very high range WSPRnet progagation map 14 MHz (http://wsprnet.org) Amateur Radio Operation ● Repeater Operation standalone vs.
    [Show full text]
  • Terahertz Channel Model and Link Budget Analysis for Intrabody Nanoscale Communication Hadeel Elayan, Student Member, IEEE, Raed M
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 16, NO. 6, SEPTEMBER 2017 491 Terahertz Channel Model and Link Budget Analysis for Intrabody Nanoscale Communication Hadeel Elayan, Student Member, IEEE, Raed M. Shubair, Senior Member, IEEE, Josep Miquel Jornet, Member, IEEE, and Pedram Johari, Member, IEEE Abstract— Nanosized devices operating inside the nanosensors and nanomachines. On the one hand, nanosensors human body open up new prospects in the healthcare are capable of detecting events with unprecedented accuracy. domain. Invivo wireless nanosensor networks (iWNSNs) On the other hand, nanomachines are envisioned to accomplish will result in a plethora of applications ranging from intrabody health-monitoring to drug-delivery systems. With tasks ranging from computing and data storing to sensing the development of miniature plasmonic signal sources, and actuation [1]. Recently, in vivo wireless nanosensor net- antennas, and detectors, wireless communications among works (iWNSNs) have been presented to provide fast and intrabody nanodevices will expectedly be enabled at accurate disease diagnosis and treatment. These networks are both the terahertz band (0.1–10 THz) as well as optical capable of operating inside the human body in real time and frequencies (400–750 THz). This result motivates the analysis of the phenomena affecting the propagation will be of great benefit for medical monitoring and medical of electromagnetic signals inside the human body. implant communication [2]. In this paper, a rigorous channel model for intrabody Despite the fact that nanodevice technology has been communication in iWNSNs is developed. The total path witnessing great advancements, enabling the commuication loss is computed by taking into account the combined among nanomachines is still a major challenge.
    [Show full text]
  • Link Budget Calculation
    Link Budget Calculation Ermanno Pietrosemoli Marco Zennaro Goals ● To be able to calculate how far we can go with the equipment we have ● To understand why we need high masts for long links ● To learn about software that helps to automate the process of planning radio links 2 Free space loss ‣ Signal power is diminished by the geometric spreading of the wavefront, commonly known as Free Space Loss. ‣ The power of the signal is spread over a wave front, the area of which increases as the distance from the transmitter increases. Therefore, the power density diminishes. Figure from http://en.wikipedia.org/wiki/Inverse_square 3 Free Space Loss at 2.4 GHz ‣ Using decibels to express the loss and using 2.4 GHz as the signal frequency, the equation for the Free Space Loss is: Lfs = 100 + 20*log10(d) ‣ ...where Lfs is expressed in dB and d is in kilometers. 4 Free Space Loss (any frequency) ‣ Using decibels to express the loss and at a generic frequency f, the equation for the Free Space Loss is: Lfs = 92,45 + 20*log(d) + 20*log(f) ‣ ...where Lfs is expressed in dB, d is in kilometers and f is in GHz. 5 Free Space Loss Versus distance for different bands } WiFi } TVWS 6 Power in a wireless system 7 Analogy money in a journey $ ATM withdrawal Taxi fare ATM withdrawal Initial purse Meals and drinks Remaining Cash payment on the road Taxi Margin fare Expenses 8 Link budget ‣ Link budget is a way of quantifying the link performance. ‣ The received power in an wireless link is determined by three factors: transmit power, transmitting antenna gain, and receiving antenna gain.
    [Show full text]
  • Link Budget Calculations for a Satellite Link with an Electronically Steerable Antenna Terminal
    LINK BUDGET CALCULATIONS FOR A SATELLITE LINK WITH AN ELECTRONICALLY STEERABLE ANTENNA TERMINAL 1 JUNE 2019 793-00004-000-REV01 © 2019 Kymeta Corporation and its affiliates. KYMETA, CONNECTED BY KYMETA, MTENNA, KĀLO image, and KĀLO are trademarks of Kymeta Corporation, with registrations or pending applications for these marks in Brazil, the European Union, Japan, Norway, Singapore, South Korea, and the United States. All other trademarks are the property of their respective owners. TABLE OF CONTENTS 1 Introduction ..............................................................................................................................................................................1 2 The ESA compared to the parabolic dish ............................................................................................................................1 3 The three types of link budgets .............................................................................................................................................3 3.1 FWD link: hub to terminal ...............................................................................................................................................4 3.2 Simple RTN link: terminal to satellite .........................................................................................................................4 3.3 Complex RTN link: terminal to satellite and satellite to hub ................................................................................4 4 Link components and their parameters
    [Show full text]