Continuous Testing: the Good, the Bad, and the Ugly the Field of Software Functional Testing Is Undergoing a Major Transformation

Total Page:16

File Type:pdf, Size:1020Kb

Continuous Testing: the Good, the Bad, and the Ugly the Field of Software Functional Testing Is Undergoing a Major Transformation White Paper Continuous Testing: The Good, The Bad, and the Ugly The field of software functional testing is undergoing a major transformation. What used to be an onerous manual process took a big step forward with the advent of Selenium and other testing tools. But those tools remain heavily developer-centric and are primarily tethered to rigid script-based approaches that do not scale. And now, with the rise of cloud, big data and machine learning, companies need to re-think their testing strategies and technologies yet again. The core concept behind this new approach is that, in this era of agile development and rapid customer response, testing can no longer be an adjunct to the development process: it needs to be an integral and strategic component of the workflow. Functionize is doing just that with the introduction of our ground-breaking scalable autonomous test platform. The driving force behind this platform is Adaptive Event Analysis TM, a patented and proprietary hybrid of algorithms which span supervised, unsupervised, reinforcement learning and computer vision, enabling lightning-fast test creation and execution, self- healing maintenance, and actionable analytics. Continuous testing is a framework for running automated tests—as early as practicable and across the product delivery pipeline—in which the results of these tests quickly provide risk exposure feedback on a specific software release candidate. The promise of continuous testing is faster delivery of higher quality software. Functionize can help you move faster toward a continuous testing framework that will progressively deliver better products to your customers. The Promise of Continuous Testing The promise of continuous testing is faster delivery of higher quality software. Test automation produces a set of failure/acceptance data points that correspond to product requirements. Continuous testing has a broader scope across more of the development cycle, focuses more on business risk, and provides more insight on the probability that a product is going to be shippable. Continuous testing is a framework for running automated tests—as early as practicable and across the product delivery pipeline—in which the results of these tests quickly provide risk exposure feedback on a specific software release candidate. Generally, the goal is to achieve higher speed with higher quality, by moving testing upstream and testing with a higher degree of frequency. It’s easy to ship a software product if testing is minimal; and it’s easy to get out good software if you’ve got a whole year to dump a feature. Test early, test often, test exhaustively, and get the payoff in higher quality products that potentially release sooner. The price for all of this? You’ll need to reconfigure your delivery pipeline. Full- bore continuous testing includes not only code coverage, functional quality, and compliance, but also impact analysis, and post-release testing. The Need for Continuous Testing Changes in software development continue to increase stress on testing teams—like never before. Also, the complexity of newer technologies and components present more challenges in achieving test automation with conventional methods and tools. Extensive, complex application architectures: Software tools and technologies continue to become more complex, cloud-connected, distributed and expansive with APIs and microservices. There is an ever increasing number of combinations of innovations, application components, and protocols that interact within a single event or transaction. Frequent releases/continuous builds: DevOps and Agile continue a big push toward continuous delivery, which has brought the industry to the point at which no small number of applications release builds many times per day. This is only possible when significant effort has been put into the product lifecycle to automate testing and assess risk of failure. It also means that end-of-cycle testing time must have a much short duration. Managing risk: Software is a primary business interface, so any application failure translates directly to a failure for the business. A “minor” glitch will have a serious negative impact if it significantly affects user experience. For many software vendors and service providers, application integrity risks are now a critical concern for all business leaders. Learn more at: www.functionize.com How does CT differ from Testing Automation? We can categorize the main differences between test automation and continuous testing with categories: risk, broader coverage, and time. Minimizing Business Risk Today, most businesses not only expose many elements of their internal applications to external end users, they have also built many types of additional software that ex- tend and complement those internal applications. Major software application failures have brought serious repercussions to the extent that that software-related risks are now high-profile aspects in many business financial filings. On average, recent statistics suggest that notable software failures result in an average 4% stock price decline—about $2.5 billion reduction in total market capitalization. This is a direct hit to the bottom line, so business leaders are putting more pressure on their IT leaders to find a remedy. With continuous testing, if your test cases haven’t been built to readily assess busi- ness risk, then the results won’t provide the feedback necessary to continually assess risk. The design of most tests is to provide low-level detail on whether requirements/ specifications have been met. Such tests give no indication of how much risk the business would take if the software were released today. Think about this: Could your senior management intelligently make a decision to cancel a release according to test results? If the answer is no, then your tests are out of alignment with your business risk assessment criteria. Broader Coverage Even when a company manages to avoid the detriments of large-scale software failures, it remains true that a supposedly minor defect can cause major problems. If a user evaluation results in an unsatisfactory experience or fails to meet expectations, there is a real risk that the customer will consider your competitors. There is also the risk of damage to the brand if any user takes his complaints to news media. Merely knowing that a unit test fails or an interface test passes doesn’t tell you the extent to which recent app changes will affect user experience. To maintain continuity and satisfaction for the user community your tests must be sufficiently broad to detect application changes that will adversely impact functionality on which users rely. Time The speed at which organizations ship software has become a competitive differentiator, so a majority of companies are looking to DevOps, Agile, and other methodologies to optimize and accelerate delivery pipelines. In its infancy, automated testing brought testing innovations to internal applications and systems that were built with conventional, waterfall development procedures and processes. Since these systems were fully under the control of the organization, everything was dev-complete and test-ready at the designated start of the testing Learn more at: www.functionize.com phase. With the rise of Agile and DevOps, the expectation is forming in many companies that testing must start very soon after development begins. Some highly-optimized DevOps teams are actually realizing continuous delivery with consistent success. These teams can often deliver releases every hour of the day—or more frequently. Feedback at each step in the process must be virtually instantaneous. If quality isn’t a critical concern at your company—minimal disincentive for rolling back when defects are found in production—then it might be sufficient to quickly run some unit and smoke tests on the release. If, on the other hand, your management and your team have got to the level of frustration that drives you to minimize the risk of releasing defective software to customers, then you might be searching for a way to achieve solid risk mitigation. For testing, there are a number of significant impacts: • To be effective in continuous delivery pipelines, testing has to become an integral activity for the entire development cycle—instead of continuing to be seen as a hygiene activity that occurs post-development. • As much as possible, tests should be built concurrently and be ready to execute very soon after the new functions or features are built. • The entire team should work together to analyze and determine which tests should be run at specific points in the delivery pipeline. • Each test suite should be configured to run fast enough to avoid any bottleneck in a particular stage in the software delivery pipeline. • Environment stabilization is important to prevent constant changes from raising false positives. Minimizing Risk By Moving Testing Further Upstream Development teams need to improve their testing abilities and add test automation wherever it’s necessary in the delivery pipeline. One approach is known as service virtualization, which simulates systems or components that are unavailable. This enables a team to test further upstream in the pipeline and test more frequently. When combining service virtualization with test automation, a development team can achieve immediate feedback on quality, which translate into faster and less costly issue resolution. By pursuing and cultivating this approach in their development teams, businesses can bring
Recommended publications
  • Core Elements of Continuous Testing
    WHITE PAPER CORE ELEMENTS OF CONTINUOUS TESTING Today’s modern development disciplines -- whether Agile, Continuous Integration (CI) or Continuous Delivery (CD) -- have completely transformed how teams develop and deliver applications. Companies that need to compete in today’s fast-paced digital economy must also transform how they test. Successful teams know the secret sauce to delivering high quality digital experiences fast is continuous testing. This paper will define continuous testing, explain what it is, why it’s important, and the core elements and tactical changes development and QA teams need to make in order to succeed at this emerging practice. TABLE OF CONTENTS 3 What is Continuous Testing? 6 Tactical Engineering Considerations 3 Why Continuous Testing? 7 Benefits of Continuous Testing 4 Core Elements of Continuous Testing WHAT IS CONTINUOUS TESTING? Continuous testing is the practice of executing automated tests throughout the software development cycle. It’s more than just automated testing; it’s applying the right level of automation at each stage in the development process. Unlike legacy testing methods that occur at the end of the development cycle, continuous testing occurs at multiple stages, including development, integration, pre-release, and in production. Continuous testing ensures that bugs are caught and fixed far earlier in the development process, improving overall quality while saving significant time and money. WHY CONTINUOUS TESTING? Continuous testing is a critical requirement for organizations that are shifting left towards CI or CD, both modern development practices that ensure faster time to market. When automated testing is coupled with a CI server, tests can instantly be kicked off with every build, and alerts with passing or failing test results can be delivered directly to the development team in real time.
    [Show full text]
  • Studying the Feasibility and Importance of Software Testing: an Analysis
    Dr. S.S.Riaz Ahamed / Internatinal Journal of Engineering Science and Technology Vol.1(3), 2009, 119-128 STUDYING THE FEASIBILITY AND IMPORTANCE OF SOFTWARE TESTING: AN ANALYSIS Dr.S.S.Riaz Ahamed Principal, Sathak Institute of Technology, Ramanathapuram,India. Email:[email protected], [email protected] ABSTRACT Software testing is a critical element of software quality assurance and represents the ultimate review of specification, design and coding. Software testing is the process of testing the functionality and correctness of software by running it. Software testing is usually performed for one of two reasons: defect detection, and reliability estimation. The problem of applying software testing to defect detection is that software can only suggest the presence of flaws, not their absence (unless the testing is exhaustive). The problem of applying software testing to reliability estimation is that the input distribution used for selecting test cases may be flawed. The key to software testing is trying to find the modes of failure - something that requires exhaustively testing the code on all possible inputs. Software Testing, depending on the testing method employed, can be implemented at any time in the development process. Keywords: verification and validation (V & V) 1 INTRODUCTION Testing is a set of activities that could be planned ahead and conducted systematically. The main objective of testing is to find an error by executing a program. The objective of testing is to check whether the designed software meets the customer specification. The Testing should fulfill the following criteria: ¾ Test should begin at the module level and work “outward” toward the integration of the entire computer based system.
    [Show full text]
  • Customer Success Story
    Customer Success Story Interesting Dilemma, Critical Solution Lufthansa Cargo AG The purpose of Lufthansa Cargo AG’s SDB Lufthansa Cargo AG ordered the serves more than 500 destinations world- project was to provide consistent shipment development of SDB from Lufthansa data as an infrastructure for each phase of its Systems. However, functional and load wide with passenger and cargo aircraft shipping process. Consistent shipment data testing is performed at Lufthansa Cargo as well as trucking services. Lufthansa is is a prerequisite for Lufthansa Cargo AG to AG with a core team of six business one of the leaders in the international air efficiently and effectively plan and fulfill the analysts and technical architects, headed cargo industry, and prides itself on high transport of shipments. Without it, much is at by Project Manager, Michael Herrmann. stake. quality service. Herrmann determined that he had an In instances of irregularities caused by interesting dilemma: a need to develop inconsistent shipment data, they would central, stable, and optimal-performance experience additional costs due to extra services for different applications without handling efforts, additional work to correct affecting the various front ends that THE CHALLENGE accounting information, revenue loss, and were already in place or currently under poor feedback from customers. construction. Lufthansa owns and operates a fleet of 19 MD-11F aircrafts, and charters other freight- With such critical factors in mind, Lufthansa Functional testing needed to be performed Cargo AG determined that a well-tested API on services that were independent of any carrying planes. To continue its leadership was the best solution for its central shipment front ends, along with their related test in high quality air cargo services, Lufthansa database.
    [Show full text]
  • Drive Continuous Delivery with Continuous Testing
    I Don’t Believe Your Company Is Agile! Alex Martins CTO Continuous Testing CA Technologies October 2017 1 Why Many Companies Think They’re Agile… They moved some Dev projects from waterfall to agile They’re having daily standups They have a scrum master Product owner is part of the team They are all talking and walking agile… And are talking about Continuous Delivery BUT… QA is STILL a Bottleneck… Even in DevOps Shops A 2017 survey of self- …of delays were occurring at proclaimed DevOps 63% the Test/QA stage of the practitioners found that … cycle. “Where are the main hold-ups in the software production process?” 63% 32% 30% 16% 22% 21% 23% http://www.computing.co.uk/digital_assets/634fe325-aa28-41d5-8676-855b06567fe2/CTG-DevOps-Review-2017.pdf 3 Challenges to Achieving Continuous Delivery & Testing IDEA Requirements 64% of total defect cost originate in the requirements analysis and design phase1. ? ? of developers time is spent 80% of teams experience delays in development and QA Development 50% 3 finding and fixing defects2 due to unavailable dependencies X X Security 70x required manual pen 30% of teams only security scan 50% more time spent on security test scan cost vs. automation10 once per year9 defects in lower-performing teams8 X X X 70% of all 63% of testers admit they 50% of time 79% of teams face prohibitive QA / Testing testing is still can’t test across all the different spent looking for restrictions, time limits or access manual4 devices and OS versions5 test data6 fees on needed 3rd party services3 ! Release 57% are dissatisfied with the time it takes to deploy new features7 ! ! Ave.
    [Show full text]
  • Your Continuous Testing with Spirent's Automation Platforms
    STREAMLINE Your Continuous Testing With Spirent’s Automation Platforms DE RELE VE AS LO E P E T A ING T R G ES E T T S N U I O U IN T N E CO STAG Table of Contents Agile 3 What is Continuous Test (CT)? 4 What Hinders CT Implementation? 5 The Chasm 6 The Bridge 7 Spirent Velocity Framework 8 Lab as a Service (LaaS) 9 Test as a Service (TaaS) 10 CT Implementation Best Practices 11 Summary 12 2 of 12 Agile software development practices gained momentum in the late 90s. Agile emphasizes close collaboration between business stakeholders, the development team, and QA. This enabled faster software delivery, better quality and improved customer satisfaction. By employing DevOps practices, the pace and benefits are amplified. 3 of 12 What is Continuous Test (CT)? Continuous Test (CT) enables CT haed Cotuous terato ad Deery ee network testing to be more effectively performed by DEVELOP ITEATE STAGE ELEASE development teams by enabling them to take advantage of the QA team’s knowledge of real world customer use cases and environments. This is known as “shift left” because testing is moved earlier in the development cycle. With “shift left” tests are run as early as possible to accelerate understanding of AUTOMATE TESTS ORCHESTRATE TEST ENVIRONMENTSEXECUTE TESTS EARLIER problem areas in the code and where development attention is required. Why Do You Need CT? The combination of earlier and faster testing shortens time to release while improving quality and customer satisfaction. 4 of 12 What Hinders CT Implementation? Deficient or non existent Insufficient test Lack of test results Inadequate understanding of tools for creating resources for timely analysis tools hinder customer environments and automated tests test execution assessment of test results use cases by developers EW SOFTWAE DEVELOP ITEATE STAGE ELEASE SOFTWAE BILD ELEASE The promise of DevOps can’t be fully realized until Continuous Testing (CT) is factored in.
    [Show full text]
  • Leading Practice: Test Strategy and Approach in Agile Projects
    CA SERVICES | LEADING PRACTICE Leading Practice: Test Strategy and Approach in Agile Projects Abstract This document provides best practices on how to strategize testing CA Project and Portfolio Management (CA PPM) in an agile project. The document does not include specific test cases; the list of test cases and steps for each test case are provided in a separate document. This document should be used by the agile project team that is planning the testing activities, and by end users who perform user acceptance testing (UAT). Concepts Concept Description Test Approach Defines testing strategy, roles and responsibilities of various team members, and test types. Testing Environments Outlines which testing is carried out in which environment. Testing Automation and Tools Addresses test management and automation tools required for test execution. Risk Analysis Defines the approach for risk identification and plans to mitigate risks as well as a contingency plan. Test Planning and Execution Defines the approach to plan the test cases, test scripts, and execution. Review and Approval Lists individuals who should review, approve and sign off on test results. Test Approach The test approach defines testing strategy, roles and responsibilities of various team members, and the test types. The first step is to define the testing strategy. It should describe how and when the testing will be conducted, who will do the testing, the type of testing being conducted, features being tested, environment(s) where the testing takes place, what testing tools are used, and how are defects tracked and managed. The testing strategy should be prepared by the agile core team.
    [Show full text]
  • Functional Testing Functional Testing
    From Pressman, “Software Engineering – a practitionerʼs approach”, Chapter 14 and Pezze + Young, “Software Testing and Analysis”, Chapters 10-11 Today, weʼll talk about testing – how to test software. The question is: How do we design tests? And weʼll start with Functional Testing functional testing. Software Engineering Andreas Zeller • Saarland University 1 Functional testing is also called “black- box” testing, because we see the program as a black box – that is, we ignore how it is being written 2 in contrast to structural or “white-box” testing, where the program is the base. 3 If the program is not the base, then what is? Simple: itʼs the specification. 4 If the program is not the base, then what is? Simple: itʼs the specification. Testing Tactics Functional Structural “black box” “white box” • Tests based on spec • Tests based on code • Test covers as much • Test covers as much specified behavior implemented behavior as possible as possible 5 Why Functional? Functional Structural “black box” “white box” • Program code not necessary • Early functional test design has benefits reveals spec problems • assesses testability • gives additional explanation of spec • may even serve as spec, as in XP 6 Structural testing can not detect that some required feature is missing in the code Why Functional? Functional testing applies at all granularity levels (in contrast to structural testing, which only applies to Functional Structural unit and integration testing) “black box” “white box” • Best for missing logic defects Common problem: Some program logic was simply forgotten Structural testing would not focus on code that is not there • Applies at all granularity levels unit tests • integration tests • system tests • regression tests 7 2,510,588,971 years, 32 days, and 20 hours to be precise.
    [Show full text]
  • HP Functional Testing Software Data Sheet
    HP Functional Testing software Data sheet With HP Functional Testing you can automate functional and regression testing for every modern software application and environment, extend testing to a wider range of teams, and accelerate the testing process—so you can improve application quality and still make your market window. Simplifies test creation and HP Functional Testing makes it easy to insert, modify, data-drive, and remove test steps. It features: maintenance • Keyword capabilities: Using keywords, testers HP Functional Testing is advanced, automated can build test cases by capturing flows directly testing software for building functional and regression from the application screens and applying robust test suites. It captures, verifies, and replays user record/replay capturing technology. interactions automatically and helps testers quickly • Automatic updating: With new application builds, identify and report on application effects, while you only need to update one reference in the shared providing sophisticated functionality for tester repository and the update is propagated to all collaboration. The product includes HP QuickTest referencing tests. Professional and all of its add-ins. It is sold stand-alone or as part of the broader HP Unified • Easy data-driving: You can quickly data-drive any Functional Testing solution, which couples object definition, method, checkpoint, and output HP Functional Testing with HP Service Test to value through the integrated data table. address both GUI and non-GUI testing. • Timely advice: In
    [Show full text]
  • Continuous Testing Report 2019
    Continuous Testing Report In association with 2 Continuous Testing Report Contents Introduction 4 Executive summary 6 Current trends in continuous testing Test design 9 Functional and performance testing 13 Test data management 17 Test environment management 21 Test orchestration in the agile enterprise 24 Continuous testing: the road ahead 27 About the study 31 About the sponsors 37 3 Introduction Welcome dear readers. dependency on IT solutions today, with the integration of front-office and consumer-facing apps with back- Quality and testing approaches, methods, and office core systems, the leveraging of cloud and expertise have undergone radical changes over the microservices and the integration and use of IoT. And, last few years. Every organization today aspires on top of that, AI is emerging to make these solutions to deliver faster and more valuable IT solutions to autonomous and self learning. business and customers. To do this, they have been leveraging agile and DevOps methodologies and All this technology is delivered by different teams, using smarter automation technologies and as-a- many of which may not even be part of a single Service solutions to deliver IT faster and with greater company. flexibility. As we scramble to deliver innovative solutions for the At the same time, the IT landscape has also been newer, more complex IT landscape, there is, of course, growing in complexity. There is an increased a risk of failure. While some failures are inevitable and often provide a valuable learning opportunity (given a quick feedback loop), there are others that we must prevent from happening. Failures in core systems that seriously disrupt the business operations of an enterprise, failures that seriously impact a large number of clients and therefore jeopardize an organization’s reliability and brand perception, or failures in systems that cannot easily be rolled back all demand good testing of these systems before being deployed.
    [Show full text]
  • Devsecops DEVELOPMENT & DEVOPS INFRASTRUCTURE
    DevSecOps DEVELOPMENT & DEVOPS INFRASTRUCTURE CREATE SECURE APPLICATIONS PARASOFT’S APPROACH - BUILD SECURITY IN WITHOUT DISRUPTING THE Parasoft provides tools that help teams begin their security efforts as DEVELOPMENT PROCESS soon as the code is written, starting with static application security test- ing (SAST) via static code analysis, continuing through testing as part of Parasoft makes DevSecOps possible with API and the CI/CD system via dynamic application security testing (DAST) such functional testing, service virtualization, and the as functional testing, penetration testing, API testing, and supporting in- most complete support for important security stan- frastructure like service virtualization that enables security testing be- dards like CWE, OWASP, and CERT in the industry. fore the complete application is fully available. IMPLEMENT A SECURE CODING LIFECYCLE Relying on security specialists alone prevents the entire DevSecOps team from securing software and systems. Parasoft tooling enables the BENEFIT FROM THE team with security knowledge and training to reduce dependence on PARASOFT APPROACH security specialists alone. With a centralized SAST policy based on in- dustry standards, teams can leverage Parasoft’s comprehensive docs, examples, and embedded training while the code is being developed. ✓ Leverage your existing test efforts for Then, leverage existing functional/API tests to enhance the creation of security security tests – meaning less upfront cost, as well as less maintenance along the way. ✓ Combine quality and security to fully understand your software HARDEN THE CODE (“BUILD SECURITY IN”) Getting ahead of application security means moving beyond just test- ✓ Harden the code – don’t just look for ing into building secure software in the first place.
    [Show full text]
  • Continuous Quality and Testing to Accelerate Application Development
    Continuous Quality and Testing to Accelerate Application Development How to assess your current testing maturity level and practice continuous testing for DevOps Continuous Quality and Testing to Accelerate Application Development // 1 Table of Contents 03 Introduction 04 Why Is Continuous Quality and Testing Maturity Important to DevOps? 05 Continuous Testing Engineers Quality into DevOps 07 Best Practices for Well- Engineered Continuous Testing 08 Continuous Testing Maturity Levels Level 1: Chaos Level 2: Continuous Integration Level 3: Continuous Flow Level 4: Continuous Feedback Level 5: Continuous Improvement 12 Continuous Testing Maturity Assessment 13 How to Get Started with DevOps Testing? 14 Continuous Testing in the Cloud Choosing the right tools for Continuous Testing On-demand Development and Testing Environments with Infrastructure as Code The Right Tests at the Right Time 20 Get Started 20 Conclusion 21 About AWS Marketplace and DevOps Institute 21 Contributors Introduction A successful DevOps implementation reduces the bottlenecks related to testing. These bottlenecks include finding and setting up test environments, test configurations, and test results implementation. These issues are not industry specific. They can be experienced in manufacturing, service businesses, and governments alike. They can be reduced by having a thorough understanding and a disciplined, mature implementation of Continuous Testing and related recommended engineering practices. The best place to start addressing these challenges is having a good understanding of what Continuous Testing is. Marc Hornbeek, the author of Engineering DevOps, describes it as: “A quality assessment strategy in which most tests are automated and integrated as a core and essential part of DevOps. Continuous Testing is much more than simply ‘automating tests.’” In this whitepaper, we’ll address the best practices you can adopt for implementing Continuous Quality and Testing on the AWS Cloud environment in the context of the DevOps model.
    [Show full text]
  • Continuous Testing for Devops Evolving Beyond Simple Automation
    Technical Whitepaper 1 Continuous Testing for DevOps Evolving Beyond Simple Automation INTRODUCTION DevOps represents a cultural shift that stresses collaboration be- on acceleration. Moreover, adopting a bona fide Continuous Testing tween the business, developers, and IT professionals. Software test process (more than just automated tests running regularly) helps automation can enhance these connections and help organizations promote all of the core pillars of DevOps: Culture, Automation, Lean, achieve desired SDLC acceleration, but it’s important to recognize Metrics, and Sharing. that automation is just one piece of the DevOps puzzle. In this paper, we’ll explore why and how Continuous Testing’s real- Since testing is often one of the greatest constraints in the SDLC, time objective assessment of an application’s business risks is a optimizing quality processes to allow testing to begin earlier, as well critical component of DevOps. as shrink the amount of testing required, can have a marked impact DEVOPS PRINCIPLES There are several key pieces to understanding DevOps revolutions and they are often brought about by a compelling event at an organization, such as a shift to agile. As organizations start to move into an agile development methodology, they start to uncover other processes that can be accelerated, such as delivery by DevOps and testing by Continuous Testing. The acceleration that is set in motion via agile makes it necessary to accelerate the release schedule. In order to ensure a successful release, an organization must adopt continuous testing to make sure the conveyer belt does not break down. The modernization maturity model has these three distinct phases: AGILE Agile software development is a different way of thinking about approaching the challenge of development time.
    [Show full text]