Dissertation Filing Form

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation Filing Form University of Nevada, Reno Use of synthetic sugar analogs to probe plant cell wall function in Arabidopsis thaliana A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry by Jose A. Villalobos Jr Ian S. Wallace / Dissertation Advisor December 2020 THE GRADUATE• SCHOOL We recommend that the dissertation prepared under our supervision by entitled be accepted in partial fulfillment of the requirements for the degree of Advisor Committee Member Committee Member Committee Member Graduate School Representative David W. Zeh, Ph.D., Dean Graduate School i Abstract: Plants are terrestrial photosynthetic multicellular organisms responsible for producing most of the world’s oxygen. Plants are also responsible for fixating approximately 1011 metric tones of carbon dioxide into reduced forms of carbon that are used for plant metabolism as well as human and animal nutrition. Approximately 70% of plant biomass is derived from plant cell walls. Plant cell walls are polysaccharide-rich extracellular matrices that encapsulate nearly all plant cells and collectively, these polysaccharides are the most abundant biopolymers on the planet. The evolution of cell wall polysaccharides was integral for plants to populate terrestrial environments. Functionally, cell wall polysaccharides are essential for normal plant growth and development, and compromises to the structure or biosynthesis causes severe developmental defects and are often lethal. The essential nature of cell wall polysaccharides creates challenges in conducting genetic studies to elucidate the biosynthesis and function cell wall polysaccharides. The goal of this work was to implement a chemical biology strategy to probe cell wall function in a spatial, temporal, and dose-dependent manner. Our strategy was to use semi-rationally designed monosaccharide analogs that may inhibit glycosyltransferases by competitively binding to their active sites. We screened a small library of monosaccharide analogs and found three analogs: 2-deoxy-2-fluoro-L-fucose (2F-Fuc), 2-deoxy-2-fluoro-D-mannose (2F-Man), and N-dodecyldeoxynojirimycin (ND-DNJ) inhibit growth in Arabidopsis thaliana. Only 2F-Fuc repressed growth by inhibiting fucosylation of a pectic cell wall polysaccharide while 2F-Man and ND-DNJ inhibited ii growth in unexpected ways. In 2F-Man, the primary mechanism of inhibition was through the glucose repression pathway in Arabidopsis. The mechanism of 2F-Man toxicity was further supported in yeast as it also inhibited growth through a similar glucose repression pathway. Uniquely, ND-DNJ inhibited glycosylation events in sphingolipids in Arabidopsis and as a result inhibited crystalline cellulose deposition, highlighting a novel connection between cellulose and glycosylated sphingolipids. Finally, we discovered suberin deposition occurs in response to cellulose biosynthesis inhibition. iii Acknowledgments: This dissertation would not be possible without the support and advice from everyone around me over the years. First, I would like to thank my advisor Dr. Ian Wallace for the opportunity to work on various projects and continuously challenging me to think critically and creatively. For believing in me when I didn’t and giving me that extra push when I needed it, none of this would be possible without you. I would also like to thank my committee members: Dr. Dylan K. Kosma, Jeff F. Harper, John C. Cushman, and Laina M. Geary. Your advice and questions continuously helped improve the direction of my research and getting me to always think outside the box. Thank you all for taking the time to answer my random questions, providing me insight into techniques I was not familiar with, and helping me grow as a graduate student. I would like to thank Jeff for backcrossing our resistant lines. I would also like to thank Dylan for showing me the ins and outs of operating a GC. I would also like to thank Zackary Wahrenburg for our suberin analysis and your expertise with the GC-MS. Finally, I would like to thank the Cahoon lab for the sphingolipidomic analysis. A special thank you to the members of the Wallace lab who have come and gone over the years: Devin Smith, Bret Hart, Edward Cruz, Andrew Larson, Celeste Rodriquez, Eli Holschbach, Megan Warner, Tori Speicher, Hans Joseph Struffert, Bo Yi, Timothy Fox, Brett Allen, Sienna Ogawa, Gabriel Aguilar, Jon Lau, KassaDee Herring, Daniel Jones, Daniel Kinder, and Sarah Pennington. From bouncing ideas back and forth, talking science, teaching me new techniques, to the camaraderie we shared made my Ph.D. experience that much more fulfilling. I would like to thank Bret for the imaging iv experiments with ND-DNJ and Devin for analyzing the kymographs that led to our mind- blowing result. A special thanks to Andrew Larson for your help with kinase assays. I’m grateful for the team I had the opportunity to work with. v Table of Contents List of Tables x List of Figures xi Chapter 1: Introduction to plant cell walls and function. 1 I. Plant Cell walls 1 II. Cell walls: Pectin structure and function 2 a. Homogalacturonan 5 b. Rhamnogalacturonan-I 9 c. Rhamnogalacturonan-II 11 III. Cell walls: Hemicellulose structure and function 14 a. Mannan and Glucomannan 14 b. Xyloglucan 17 c. Xylan 19 IV. Cell walls: Cellulose biosynthesis and regulation 20 a. Cellulose production 22 b. CSC accessory proteins 25 c. Regulation of CSCs 28 V. Non-polysaccharide wall components: lignin and suberin 32 a. Lignin 32 b. Suberin 35 vi VI. Cell walls: Integrity sensing and Cell wall damage 37 a. Cell wall integrity sensing 37 VII. Plant Glycoproteins and Glycolipids: Structure, function and metabolism 40 a. Protein Glycosylation 40 b. Glycosylphosphatidylinositol anchors 45 c. Glucosylceramides 48 d. Glycoinositol phosphoceramides 51 VIII. Use of small molecules, monosaccharide analogs, and monosaccharide 53 mimicking small molecules a. Common cell wall biosynthesis inhibitors 54 b. Monosaccharide analogs as diagnostic tools and inhibitors 57 c. Iminosugars a class of monosaccharide mimicking compounds 60 IX. Screening of monosaccharide analogs as semi-rational inhibitors of plant 61 cell wall biosynthesis References 68 Chapter 2: 2-Deoxy-2-Fluoro-L-Fucose is a metabolically incorporated 114 inhibitor of plant cell wall polysaccharide fucosylation. I. Introduction 114 II. Materials and Methods 117 III. Results 122 IV. Discussion 145 References 149 Chapter 3: 2-Deoxy-2-Fluoro-D-Mannose is an inhibitor of energy 154 metabolism in Arabidopsis thaliana. I. Introduction 154 vii II. Materials and Methods 158 III. Results 167 IV. Discussion 191 References 197 Chapter 4: 2-Deoxy-2-Fluoro-D-Mannose is a potent inhibitor of fungal 212 growth. I. Introduction 212 II. Materials and Methods 214 III. Results 223 IV. Discussion 244 References 248 Chapter 5: Sphingolipids are required for cellulose deposition and cellulose 258 synthase complex motility. I. Introduction 258 II. Materials and Methods 261 III. Results 265 IV. Discussion 283 References 292 Chapter 6: Cellulose biosynthesis inhibitors induce suberin production in 306 Arabidopsis thaliana as part of the Cell Wall Damage response. I. Introduction 306 II. Materials and Methods 310 III. Results 312 IV. Discussion 318 viii References 323 Chapter 7: Discussion 330 I. Potential of fluoro fucose resistant lines 330 a. Current state of the ffr lines and their potential 330 b. Other utilities of 2F-Fuc 333 II. Sugar sensing in plants and fungi in relation to glucose and mannose 337 a. Sugar sensing in plants 338 b. Sugar sensing in yeast 342 III. Implications of sphingolipid biosynthesis on cellulose 346 a. Known glycosylated sphingolipid biosynthesis mutants: do they contain 346 less cellulose b. Non-motile observation in ND-DNJ and DCB 347 c. Utility of other iminosugars 350 IV. Cell wall integrity sensing and differential responses to cell wall damage 352 a. THESIUS1 and STRUBBELIG in response to cellulose defects 352 b. Lignin and suberin, in response to cell wall damage 353 V. Possible strategies to isolate novel GTs 355 a. Capture of GTs with photo-reactive crosslinkers 355 b. Isolation of partial polysaccharide glycans as substrates 359 VI. Implications of sugar analogs as herbicides 361 VII. Other monosaccharide analogs to explore in plant growth 363 VIII Conclusions 365 ix References 367 x List of Tables Chapter 1 Table 1.1: Monosaccharide analog screen on Arabidopsis. 66 Chapter 2 Table 2.1: Primer sequences used in this chapter. 123 Table 2.2: T-DNA lines used in this chapter. 131 Table 2.3: Analysis of potential fluoro fucose resistant lines. 141 Table 2.4: Segregation Ratios of ffr x Col-0 F2 progeny. 144 Chapter 3 Table 3.1: Retesting fmr lines on 50 µM 2F-Man 185 Chapter 4 Table 4.1: Primer sequences used in this study 219 Table 4.2: IC50 Values of hypersensitive deletion strains. 236 Chapter 5 Table 5.1: Nojirimycin analogs screened against Arabidopsis 268 Col-0. xi List of Figures Chapter 1 Figure 1.1: General representation of where cell wall polysaccharides, 4 glycan containing lipid, and proteins are synthesized. Figure 1.2: Structures of common pectin polymers found in plant cell walls. 6 Figure 1.3: Structures of common Hemicellulose polymers found in plant 15 cell walls. Figure 1.4: Schematic of cellulose biosynthesis. 21 Figure 1.5: Structures of Lignin and Suberin monomers. 34 Figure 1.6: Structures of N-linked Glycans and GPI-Anchors found in plant 41 cells. Figure 1.7: Structures of GlcCers and GIPCs found in plant cells. 49 Figure 1.8: Structures of cellulose biosynthesis inhibitors and RG-II 55 biosynthesis inhibitor. Figure 1.9: Hypothetical SN2 mechanisms of deoxy and fluor/Azido 63 monosaccharide analogs in non-retaining GTs. Figure 1.10: Monosaccharide analog screen on Arabidopsis thaliana. 65 Chapter 2 Figure 2.1: Effects of fucose analogs on Arabidopsis root growth. 125 xii Figure 2.2: Effects of short-term 2F-Fuc treatment on Arabidopsis seedlings. 127 Figure 2.3: Matrix polysaccharide analysis of 2F-Fuc treated seedlings.
Recommended publications
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
    [Show full text]
  • Enzymatic Encoding Methods for Efficient Synthesis Of
    (19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN,
    [Show full text]
  • Download (PDF)
    Tomono et al.: Glycan evolution based on phylogenetic profiling 1 Supplementary Table S1. List of 173 enzymes that are composed of glycosyltransferases and functionally-linked glycan synthetic enzymes UniProt ID Protein Name Categories of Glycan Localization CAZy Class 1 Q8N5D6 Globoside -1,3-N -acetylgalactosaminyltransferase 1 Glycosphingolipid Golgi apparatus GT6 P16442 Histo-blood group ABO system transferase Glycosphingolipid Golgi apparatus GT6 P19526 Galactoside 2--L-fucosyltransferase 1 Glycosphingolipid Golgi apparatus GT11 Q10981 Galactoside 2--L-fucosyltransferase 2 Glycosphingolipid Golgi apparatus GT11 Q00973 -1,4 N -acetylgalactosaminyltransferase 1 Glycosphingolipid Golgi apparatus GT12 Q8NHY0 -1,4 N -acetylgalactosaminyltransferase 2 O -Glycan, N -Glycan, Glycosphingolipid Golgi apparatus GT12 Q09327 -1,4-mannosyl-glycoprotein 4--N -acetylglucosaminyltransferase N -Glycan Golgi apparatus GT17 Q09328 -1,6-mannosylglycoprotein 6--N -acetylglucosaminyltransferase A N -Glycan Golgi apparatus GT18 Q3V5L5 -1,6-mannosylglycoprotein 6--N -acetylglucosaminyltransferase B O -Glycan, N -Glycan Golgi apparatus GT18 Q92186 -2,8-sialyltransferase 8B (SIAT8-B) (ST8SiaII) (STX) N -Glycan Golgi apparatus GT29 O15466 -2,8-sialyltransferase 8E (SIAT8-E) (ST8SiaV) Glycosphingolipid Golgi apparatus GT29 P61647 -2,8-sialyltransferase 8F (SIAT8-F) (ST8SiaVI) O -Glycan Golgi apparatus GT29 Q9NSC7 -N -acetylgalactosaminide -2,6-sialyltransferase 1 (ST6GalNAcI) (SIAT7-A) O -Glycan Golgi apparatus GT29 Q9UJ37 -N -acetylgalactosaminide -2,6-sialyltransferase
    [Show full text]
  • Evolution of Protein N-Glycosylation Process in Golgi Apparatus
    www.nature.com/scientificreports OPEN Evolution of protein N-glycosylation process in Golgi apparatus which shapes diversity of protein N-glycan Received: 13 October 2016 Accepted: 01 December 2016 structures in plants, animals Published: 11 January 2017 and fungi Peng Wang1, Hong Wang2, Jiangtao Gai1, Xiaoli Tian3, Xiaoxiao Zhang4, Yongzhi Lv1 & Yi Jian1 Protein N-glycosylation (PNG) is crucial for protein folding and enzymatic activities, and has remarkable diversity among eukaryotic species. Little is known of how unique PNG mechanisms arose and evolved in eukaryotes. Here we demonstrate a picture of onset and evolution of PNG components in Golgi apparatus that shaped diversity of eukaryotic protein N-glycan structures, with an emphasis on roles that domain emergence and combination played on PNG evolution. 23 domains were identified from 24 known PNG genes, most of which could be classified into a single clan, indicating a single evolutionary source for the majority of the genes. From 153 species, 4491 sequences containing the domains were retrieved, based on which we analyzed distribution of domains among eukaryotic species. Two domains in GnTV are restricted to specific eukaryotic domains, while 10 domains distribute not only in species where certain unique PNG reactions occur and thus genes harboring these domains are supoosed to be present, but in other ehkaryotic lineages. Notably, two domains harbored by β-1,3 galactosyltransferase, an essential enzyme in forming plant-specific Lea structure, were present in separated genes in fungi and animals, suggesting its emergence as a result of domain shuffling. Genes with new functions emerge continuously throughout the tree of life.
    [Show full text]
  • Mannosyltransferase
    Ribeiro et al. Parasites & Vectors (2019) 12:60 https://doi.org/10.1186/s13071-019-3305-2 SHORT REPORT Open Access Mannosyltransferase (GPI-14) overexpression protects promastigote and amastigote forms of Leishmania braziliensis against trivalent antimony Christiana Vargas Ribeiro†, Bruna Fonte Boa Rocha†, Douglas de Souza Moreira, Vanessa Peruhype-Magalhães and Silvane Maria Fonseca Murta* Abstract Background: Glycosylphosphatidylinositol is a surface molecule important for host-parasite interactions. Mannosyltransferase (GPI-14) is an essential enzyme for adding mannose on the glycosylphosphatidyl group. This study attempted to overexpress the GPI-14 gene in Leishmania braziliensis to investigate its role in the antimony- resistance phenotype of this parasite. Results: GPI-14 mRNA levels determined by quantitative real-time PCR (qRT-PCR) showed an increased expression in clones transfected with GPI-14 compared to its respective wild-type line. In order to investigate the expression profile of the surface carbohydrates of these clones, the intensity of the fluorescence emitted by the parasites after concanavalin-A (a lectin that binds to the terminal regions of α-D-mannosyl and α-D-glucosyl residues) treatment was analyzed. The results showed that the clones transfected with GPI-14 express 2.8-fold more mannose and glucose residues than those of the wild-type parental line, indicating effective GPI-14 overexpression. Antimony susceptibility tests using promastigotes showed that clones overexpressing the GPI-14 enzyme are 2.4- and 10.5- fold more resistant to potassium antimonyl tartrate (SbIII) than the parental non-transfected line. Infection analysis using THP-1 macrophages showed that amastigotes from both GPI-14 overexpressing clones were 3-fold more resistant to SbIII than the wild-type line.
    [Show full text]
  • Using Glyco-Engineering to Produce Therapeutic Proteins
    Assigned Reading: Using glyco-engineering to produce therapeutic proteins. Dicker M and Strasser R Expert Opin. Biol. Ther. (2015) 15:1501. Advances in the production of human therapeutic proteins in yeasts and filamentous fungi Gerngross TU, Nat. Biotech, 22:1409 (2004) Glycan Engineering for Cell and Developmental Biology Griffin ME and Hsieh-Wilson LC Cell Chem Biol, 23:108 (2016) Expert Opinion on Biological Therapy ISSN: 1471-2598 (Print) 1744-7682 (Online) Journal homepage: http://www.tandfonline.com/loi/iebt20 Using glyco-engineering to produce therapeutic proteins Martina Dicker & Richard Strasser To cite this article: Martina Dicker & Richard Strasser (2015) Using glyco-engineering to produce therapeutic proteins, Expert Opinion on Biological Therapy, 15:10, 1501-1516, DOI: 10.1517/14712598.2015.1069271 To link to this article: http://dx.doi.org/10.1517/14712598.2015.1069271 Published online: 14 Jul 2015. Submit your article to this journal Article views: 345 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=iebt20 Download by: [University of California, San Diego] Date: 17 May 2016, At: 09:13 Review Using glyco-engineering to produce therapeutic proteins † Martina Dicker & Richard Strasser 1. Introduction University of Natural Resources and Life Sciences, Department of Applied Genetics and Cell Biology, Vienna, Austria 2. N-glycosylation of proteins 3. What are the targets for Introduction: Glycans are increasingly important in the development of N-glycan-engineering? new biopharmaceuticals with optimized efficacy, half-life, and antigenicity. 4. O-glycosylation of proteins Current expression platforms for recombinant glycoprotein therapeutics typically do not produce homogeneous glycans and frequently display non- 5.
    [Show full text]
  • N-Glycosylation in Sugarcane
    Genetics and Molecular Biology, 24 (1-4), 231-234 (2001) N-glycosylation in sugarcane Ivan G. Maia1,2 and Adilson Leite1* Abstract The N-linked glycosylation of secretory and membrane proteins is the most complex posttranslational modification known to occur in eukaryotic cells. It has been shown to play critical roles in modulating protein function. Although this important biological process has been extensively studied in mammals, much less is known about this biosynthetic pathway in plants. The enzymes involved in plant N-glycan biosynthesis and processing are still not well defined and the mechanism of their genetic regulation is almost completely unknown. In this paper we describe our first attempt to understand the N-linked glycosylation mechanism in a plant species by using the data generated by the Sugarcane Expressed Sequence Tag (SUCEST) project. The SUCEST database was mined for sugarcane gene products potentially involved in the N-glycosylation pathway. This approach has led to the identification and functional assignment of 90 expressed sequence tag (EST) clusters sharing significant sequence similarity with the enzymes involved in N-glycan biosynthesis and processing. The ESTs identified were also analyzed to establish their relative abundance. INTRODUCTION tide chain (Hubbard and Ivatt, 1981). Immediately after the transfer, Glc Man GlcNAc undergoes trimming of the In plants, as in other eukaryotes, most of the soluble 3 9 2 glucose (Glc) and some of the mannose (Man) residues, and membrane bound proteins that are synthesized on poly- first in the ER and then in the Golgi apparatus (Figure 2A; ribosomes associated with the endoplasmic reticulum (ER) for a review see Herscovics, 1999), giving rise to high-ma- are glycoproteins, including those proteins which will later nnose-type N-glycans containing from five to nine ma- be exported to the Golgi apparatus, lysosomes, plasma nnose residues.
    [Show full text]
  • Advances in Understanding Glycosyltransferases from A
    Available online at www.sciencedirect.com ScienceDirect Advances in understanding glycosyltransferases from a structural perspective Tracey M Gloster Glycosyltransferases (GTs), the enzymes that catalyse commonly activated nucleotide sugars, but can also be glycosidic bond formation, create a diverse range of lipid phosphates and unsubstituted phosphate. saccharides and glycoconjugates in nature. Understanding GTs at the molecular level, through structural and kinetic GTs have been classified by sequence homology into studies, is important for gaining insights into their function. In 96 families in the Carbohydrate Active enZyme data- addition, this understanding can help identify those enzymes base (CAZy) [1 ]. The CAZy database provides a highly which are involved in diseases, or that could be engineered to powerful predictive tool, as the structural fold and synthesize biologically or medically relevant molecules. This mechanism of action are invariant in most of the review describes how structural data, obtained in the last 3–4 families. Therefore, where the structure and mechanism years, have contributed to our understanding of the of a GT member for a given family has been reported, mechanisms of action and specificity of GTs. Particular some assumptions about other members of the family highlights include the structure of a bacterial can be made. Substrate specificity, however, is more oligosaccharyltransferase, which provides insights into difficult to predict, and requires experimental charac- N-linked glycosylation, the structure of the human O-GlcNAc terization of individual GTs. Determining both the transferase, and the structure of a bacterial integral membrane sugar donor and acceptor for a GT of unknown function protein complex that catalyses the synthesis of cellulose, the can be challenging, and is one of the reasons there are most abundant organic molecule in the biosphere.
    [Show full text]
  • Ep 1 117 822 B1
    Europäisches Patentamt (19) European Patent Office & Office européen des brevets (11) EP 1 117 822 B1 (12) EUROPÄISCHE PATENTSCHRIFT (45) Veröffentlichungstag und Bekanntmachung des (51) Int Cl.: Hinweises auf die Patenterteilung: C12P 19/18 (2006.01) C12N 9/10 (2006.01) 03.05.2006 Patentblatt 2006/18 C12N 15/54 (2006.01) C08B 30/00 (2006.01) A61K 47/36 (2006.01) (21) Anmeldenummer: 99950660.3 (86) Internationale Anmeldenummer: (22) Anmeldetag: 07.10.1999 PCT/EP1999/007518 (87) Internationale Veröffentlichungsnummer: WO 2000/022155 (20.04.2000 Gazette 2000/16) (54) HERSTELLUNG VON POLYGLUCANEN DURCH AMYLOSUCRASE IN GEGENWART EINER TRANSFERASE PREPARATION OF POLYGLUCANS BY AMYLOSUCRASE IN THE PRESENCE OF A TRANSFERASE PREPARATION DES POLYGLUCANES PAR AMYLOSUCRASE EN PRESENCE D’UNE TRANSFERASE (84) Benannte Vertragsstaaten: (56) Entgegenhaltungen: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU WO-A-00/14249 WO-A-00/22140 MC NL PT SE WO-A-95/31553 (30) Priorität: 09.10.1998 DE 19846492 • OKADA, GENTARO ET AL: "New studies on amylosucrase, a bacterial.alpha.-D-glucosylase (43) Veröffentlichungstag der Anmeldung: that directly converts sucrose to a glycogen- 25.07.2001 Patentblatt 2001/30 like.alpha.-glucan" J. BIOL. CHEM. (1974), 249(1), 126-35, XP000867741 (73) Patentinhaber: Südzucker AG Mannheim/ • BUTTCHER, VOLKER ET AL: "Cloning and Ochsenfurt characterization of the gene for amylosucrase 68165 Mannheim (DE) from Neisseria polysaccharea: production of a linear.alpha.-1,4-glucan" J. BACTERIOL. (1997), (72) Erfinder: 179(10), 3324-3330, XP002129879 • GALLERT, Karl-Christian • DE MONTALK, G. POTOCKI ET AL: "Sequence D-61184 Karben (DE) analysis of the gene encoding amylosucrase • BENGS, Holger from Neisseria polysaccharea and D-60598 Frankfurt am Main (DE) characterization of the recombinant enzyme" J.
    [Show full text]
  • European Patent Office U.S. Patent and Trademark Office
    EUROPEAN PATENT OFFICE U.S. PATENT AND TRADEMARK OFFICE CPC NOTICE OF CHANGES 89 DATE: JULY 1, 2015 PROJECT RP0098 The following classification changes will be effected by this Notice of Changes: Action Subclass Group(s) Symbols deleted: C12Y 101/01063 C12Y 101/01128 C12Y 101/01161 C12Y 102/0104 C12Y 102/03011 C12Y 103/01004 C12Y 103/0103 C12Y 103/01052 C12Y 103/99007 C12Y 103/9901 C12Y 103/99013 C12Y 103/99021 C12Y 105/99001 C12Y 105/99002 C12Y 113/11013 C12Y 113/12012 C12Y 114/15002 C12Y 114/99028 C12Y 204/01119 C12Y 402/01052 C12Y 402/01058 C12Y 402/0106 C12Y 402/01061 C12Y 601/01025 C12Y 603/02027 Symbols newly created: C12Y 101/01318 C12Y 101/01319 C12Y 101/0132 C12Y 101/01321 C12Y 101/01322 C12Y 101/01323 C12Y 101/01324 C12Y 101/01325 C12Y 101/01326 C12Y 101/01327 C12Y 101/01328 C12Y 101/01329 C12Y 101/0133 C12Y 101/01331 C12Y 101/01332 C12Y 101/01333 CPC Form – v.4 CPC NOTICE OF CHANGES 89 DATE: JULY 1, 2015 PROJECT RP0098 Action Subclass Group(s) C12Y 101/01334 C12Y 101/01335 C12Y 101/01336 C12Y 101/01337 C12Y 101/01338 C12Y 101/01339 C12Y 101/0134 C12Y 101/01341 C12Y 101/01342 C12Y 101/03043 C12Y 101/03044 C12Y 101/98003 C12Y 101/99038 C12Y 102/01083 C12Y 102/01084 C12Y 102/01085 C12Y 102/01086 C12Y 103/01092 C12Y 103/01093 C12Y 103/01094 C12Y 103/01095 C12Y 103/01096 C12Y 103/01097 C12Y 103/0701 C12Y 103/08003 C12Y 103/08004 C12Y 103/08005 C12Y 103/08006 C12Y 103/08007 C12Y 103/08008 C12Y 103/08009 C12Y 103/99032 C12Y 104/01023 C12Y 104/01024 C12Y 104/03024 C12Y 105/01043 C12Y 105/01044 C12Y 105/01045 C12Y 105/03019 C12Y 105/0302
    [Show full text]
  • Wo 2008/127291 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 23 October 2008 (23.10.2008) WO 2008/127291 A2 (51) International Patent Classification: Jeffrey, J. [US/US]; 106 Glenview Drive, Los Alamos, GOlN 33/53 (2006.01) GOlN 33/68 (2006.01) NM 87544 (US). HARRIS, Michael, N. [US/US]; 295 GOlN 21/76 (2006.01) GOlN 23/223 (2006.01) Kilby Avenue, Los Alamos, NM 87544 (US). BURRELL, Anthony, K. [NZ/US]; 2431 Canyon Glen, Los Alamos, (21) International Application Number: NM 87544 (US). PCT/US2007/021888 (74) Agents: COTTRELL, Bruce, H. et al.; Los Alamos (22) International Filing Date: 10 October 2007 (10.10.2007) National Laboratory, LGTP, MS A187, Los Alamos, NM 87545 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, (30) Priority Data: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, 60/850,594 10 October 2006 (10.10.2006) US ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (71) Applicants (for all designated States except US): LOS LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, ALAMOS NATIONAL SECURITY,LLC [US/US]; Los MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, Alamos National Laboratory, Lc/ip, Ms A187, Los Alamos, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, NM 87545 (US).
    [Show full text]
  • Structural and Biochemical Insights Into Biosynthesis and Degradation of and Degradation Into Insights Biosynthesis and Biochemical Structural
    Tom Reichenbach Tom kth royal institute of technology Structuralbiochemicaland biosynthesisinsights into degradation and of Doctoral Thesis in Biotechnology Structural and biochemical insights into biosynthesis and degradation of N-glycans TOM REICHENBACH N -glycans ISBN 978-91-7873-660-7 TRITA-CBH-FOU-2020:41 KTH2020 www.kth.se Stockholm, Sweden 2020 Structural and biochemical insights into biosynthesis and degradation of N-glycans TOM REICHENBACH Academic Dissertation which, with due permission of the KTH Royal Institute of Technology, is submitted for public defence for the Degree of Doctor of Philosophy on Friday the 16th October 2020, at 10:00 a.m. in Kollegiesalen, KTH, Brinellvägen 8, Stockholm. Doctoral Thesis in Biotechnology KTH Royal Institute of Technology Stockholm, Sweden 2020 © Tom Reichenbach ISBN 978-91-7873-660-7 TRITA-CBH-FOU-2020:41 Printed by: Universitetsservice US-AB, Sweden 2020 Abstract Carbohydrates are a primary energy source for all living organisms, but importantly, they also participate in a number of life-sustaining biological processes, e.g. cell signaling and cell-wall synthesis. The first part of the thesis examines glycosyltransferases that play a crucial role in the biosynthesis of N-glycans. Precursors to eukaryotic N-glycans are synthesized in the endoplasmic reticulum (ER) in the form of a lipid-bound oligosaccharide, which is then transferred to a nascent protein. The first seven sugar units are assembled on the cytoplasmic side of the ER, which is performed by glycosyltransferases that use nucleotide sugars as donors. The mannosyl transferase PcManGT is produced by the archaeon Pyrobaculum calidifontis, and the biochemical and structural results presented in the thesis suggest that the enzyme may be a counterpart to the glycosyltransferase Alg1 that participates in the biosynthesis of N-glycans in eukaryotes.
    [Show full text]