Homotopy of Operads and Grothendieck– Teichmüller Groups Part 1: the Algebraic Theory and Its Topological Background

Total Page:16

File Type:pdf, Size:1020Kb

Homotopy of Operads and Grothendieck– Teichmüller Groups Part 1: the Algebraic Theory and Its Topological Background Mathematical Surveys and Monographs Volume 217 Homotopy of Operads and Grothendieck– Teichmüller Groups Part 1: The Algebraic Theory and its Topological Background Benoit Fresse American Mathematical Society 10.1090/surv/217.1 Homotopy of Operads and Grothendieck– Teichmüller Groups Part 1: The Algebraic Theory and its Topological Background Mathematical Surveys and Monographs Volume 217 Homotopy of Operads and Grothendieck– Teichmüller Groups Part 1: The Algebraic Theory and its Topological Background Benoit Fresse American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Robert Guralnick Benjamin Sudakov Michael A. Singer, Chair Constantin Teleman MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 55P48; Secondary 18G55, 55P10, 55P62, 57T05, 20B27, 20F36. For additional information and updates on this book, visit www.ams.org/bookpages/surv-217 Library of Congress Cataloging-in-Publication Data Names: Fresse, Benoit. Title: Homotopy of operads and Grothendieck-Teichm¨uller groups / Benoit Fresse. Description: Providence, Rhode Island : American Mathematical Society, [2017]- | Series: Mathe- matical surveys and monographs ; volume 217 | Includes bibliographical references and index. Contents: The algebraic theory and its topological background – The applications of (rational) homotopy theory methods Identifiers: LCCN 2016032055| ISBN 9781470434816 (alk. paper) | ISBN 9781470434823 (alk. paper) Subjects: LCSH: Homotopy theory. | Operads. | Grothendieck groups. | Teichm¨uller spaces. | AMS: Algebraic topology – Homotopy theory – Loop space machines, operads. msc | Category theory; homological algebra – Homological algebra – Homotopical algebra. msc | Algebraic topology – Homotopy theory – Homotopy equivalences. msc | Algebraic topology – Homotopy theory – Rational homotopy theory. msc | Manifolds and cell complexes – Homology and homotopy of topological groups and related structures – Hopf algebras. msc | Group theory and generalizations – Permutation groups – Infinite automorphism groups. msc | Group theory and generalizations – Special aspects of infinite or finite groups – Braid groups; Artin groups. msc Classification: LCC QA612.7 .F74 2017 | DDC 514/.24–dc23 LC record available at https://lccn. loc.gov/2016032055 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http://www.ams.org/rightslink. Send requests for translation rights and licensed reprints to [email protected]. Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes. c 2017 by the American Mathematical Society. All rights reserved. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 222120191817 Un souffle ouvre des br`eches op´eradiques dans les cloisons, – brouille le pivotement des toits rong´es, – disperse les limites des foyers, – ´eclipse les crois´ees. Arthur Rimbaud Nocturne vulgaire. Les Illuminations (1875) Contents This work is divided in two volumes, referred to as “Part 1: The Algebraic The- ory and its Topological Background” and “Part 2: The Applications of (Rational) Homotopy Theory Methods”, as indicated on the cover of the volumes. But our narrative is actually organized into three parts, numbered I-II-III, and three appen- dices, numbered A-B-C, which define the internal divisions of this book. This first volume comprises Part I, “From Operads to Grothendieck–Teichm¨uller Groups”; Appendix A, “Trees and the Construction of Free Operads”; and Appendix B, “The Cotriple Resolution of Operads”. The second volume comprises Part II, “Homotopy Theory and its Applications to Operads”; Part III, “The Computation of Homo- topy Automorphism Spaces of Operads”; and Appendix C, “Cofree Cooperads and the Bar Duality of Operads”. Each volume includes a preface, a notation glossary, a bibliography, and a subject index. References to chapters, sections, paragraphs, and statements of the book are given by §x.y.z when these cross references are done within a part (I, II, and III) and by §P.x.y.z where P =I, II, III otherwise. The cross references to the sections, paragraphs, and statements of the appendices are given by §P.x.y throughout the book, where §P = §A, §B, §C. The preliminary part of the first volume of this book also includes a Foundations and Conventions section, whose paragraphs, numbered §§0.1-0.16, give a summary of the main conventions used in this work. Preliminaries xi Preface xiii Mathematical Objectives xvii Foundations and Conventions xxvii Reading Guide and Overview of this Volume xxxix Part I. From Operads to Grothendieck–Teichm¨uller Groups 1 Part I(a). The General Theory of Operads 3 Chapter 1. The Basic Concepts of the Theory of Operads 5 1.1. The notion of an operad and of an algebra over an operad 6 1.2. Categorical constructions for operads 23 1.3. Categorical constructions for algebras over operads 37 1.4. Appendix: Filtered colimits and reflexive coequalizers 44 vii viii CONTENTS Chapter 2. The Definition of Operadic Composition Structures Revisited 47 2.1. The definition of operads from partial composition operations 48 2.2. The definition of unitary operads 57 2.3. Categorical constructions for unitary operads 74 2.4. The definition of connected unitary operads 80 2.5. The definition of operads shaped on finite sets 90 Chapter 3. Symmetric Monoidal Categories and Operads 99 3.0. Commutative algebras and cocommutative coalgebras in symmetric monoidal categories 100 3.1. Operads in general symmetric monoidal categories 106 3.2. The notion of a Hopf operad 112 3.3. Appendix: Functors between symmetric monoidal categories 122 Part I(b). Braids and E2-operads 127 Chapter 4. The Little Discs Model of En-operads 129 4.1. The definition of the little discs operads 130 4.2. The homology (and the cohomology) of the little discs operads 140 4.3. Outlook: Variations on the little discs operads 150 4.4. Appendix: The symmetric monoidal category of graded modules 157 Chapter 5. Braids and the Recognition of E2-operads 159 5.0. Braid groups 160 5.1. Braided operads and E2-operads 167 5.2. The classifying spaces of the colored braid operad 177 5.3. Fundamental groupoids and operads 187 5.4. Outlook: The recognition of En-operads for n>2 194 Chapter 6. The Magma and Parenthesized Braid Operads 197 6.1. Magmas and the parenthesized permutation operad 198 6.2. The parenthesized braid operad 208 6.3. The parenthesized symmetry operad 220 Part I(c). Hopf Algebras and the Malcev Completion 225 Chapter 7. Hopf Algebras 227 7.1. The notion of a Hopf algebra 228 7.2. Lie algebras and Hopf algebras 236 7.3. Lie algebras and Hopf algebras in complete filtered modules 258 Chapter 8. The Malcev Completion for Groups 277 8.1. The adjunction between groups and complete Hopf algebras 278 8.2. The category of Malcev complete groups 283 8.3. The Malcev completion functor on groups 293 8.4. The Malcev completion of free groups 296 8.5. The Malcev completion of semi-direct products of groups 302 Chapter 9. The Malcev Completion for Groupoids and Operads 311 9.0. The notion of a Hopf groupoid 312 9.1. The Malcev completion for groupoids 315 CONTENTS ix 9.2. The Malcev completion of operads in groupoids 328 9.3. Appendix: The local connectedness of complete Hopf groupoids 334 Part I(d). The Operadic Definition of the Grothendieck– Teichm¨uller Group 337 Chapter 10. The Malcev Completion of the Braid Operads and Drinfeld’s Associators 339 10.0. The Malcev completion of the pure braid groups and the Drinfeld–Kohno Lie algebras 341 10.1. The Malcev completion of the braid operads and the Drinfeld– Kohno Lie algebra operad 349 10.2. The operad of chord diagrams and Drinfeld’s associators 355 10.3. The graded Grothendieck–Teichm¨uller group 368 10.4. Tower decompositions, the graded Grothendieck–Teichm¨uller Lie algebra and the existence of rational Drinfeld’s associators 385 Chapter 11. The Grothendieck–Teichm¨uller Group 399 11.1. The operadic definition of the Grothendieck–Teichm¨uller group 400 11.2. The action on the set of Drinfeld’s associators 408 11.3. Tower decompositions 411 11.4. The graded Lie algebra of the Grothendieck–Teichm¨uller group 414 Chapter 12. A Glimpse at the Grothendieck Program 421 Appendices 427 Appendix A. Trees and the Construction of Free Operads 429 A.1. Trees 430 A.2. Treewise tensor products and treewise composites 442 A.3. The construction of free operads 453 A.4. The construction of connected free operads 462 A.5. The construction of coproducts with free operads 467 Appendix B. The Cotriple Resolution of Operads 477 B.0. Tree morphisms 478 B.1. The definition of the cotriple resolution of operads 485 B.2. The monadic definition of operads 498 Glossary of Notation 503 Bibliography 511 Index 521 Preliminaries Preface The first purpose of this work is to give an overall reference, starting from scratch, on applications of methods of algebraic topology to the study of oper- ads in topological spaces. Most definitions, notably fundamental concepts of the theory of operads and of homotopy theory, are reviewed in this book in order to make our account accessible to graduate students and to researchers coming from the various fields of mathematics related to our subject.
Recommended publications
  • Semiring Frameworks and Algorithms for Shortest-Distance Problems
    Journal of Automata, Languages and Combinatorics u (v) w, x–y c Otto-von-Guericke-Universit¨at Magdeburg Semiring Frameworks and Algorithms for Shortest-Distance Problems Mehryar Mohri AT&T Labs – Research 180 Park Avenue, Rm E135 Florham Park, NJ 07932 e-mail: [email protected] ABSTRACT We define general algebraic frameworks for shortest-distance problems based on the structure of semirings. We give a generic algorithm for finding single-source shortest distances in a weighted directed graph when the weights satisfy the conditions of our general semiring framework. The same algorithm can be used to solve efficiently clas- sical shortest paths problems or to find the k-shortest distances in a directed graph. It can be used to solve single-source shortest-distance problems in weighted directed acyclic graphs over any semiring. We examine several semirings and describe some specific instances of our generic algorithms to illustrate their use and compare them with existing methods and algorithms. The proof of the soundness of all algorithms is given in detail, including their pseudocode and a full analysis of their running time complexity. Keywords: semirings, finite automata, shortest-paths algorithms, rational power series Classical shortest-paths problems in a weighted directed graph arise in various contexts. The problems divide into two related categories: single-source shortest- paths problems and all-pairs shortest-paths problems. The single-source shortest-path problem in a directed graph consists of determining the shortest path from a fixed source vertex s to all other vertices. The all-pairs shortest-distance problem is that of finding the shortest paths between all pairs of vertices of a graph.
    [Show full text]
  • Sheaves and Homotopy Theory
    SHEAVES AND HOMOTOPY THEORY DANIEL DUGGER The purpose of this note is to describe the homotopy-theoretic version of sheaf theory developed in the work of Thomason [14] and Jardine [7, 8, 9]; a few enhancements are provided here and there, but the bulk of the material should be credited to them. Their work is the foundation from which Morel and Voevodsky build their homotopy theory for schemes [12], and it is our hope that this exposition will be useful to those striving to understand that material. Our motivating examples will center on these applications to algebraic geometry. Some history: The machinery in question was invented by Thomason as the main tool in his proof of the Lichtenbaum-Quillen conjecture for Bott-periodic algebraic K-theory. He termed his constructions `hypercohomology spectra', and a detailed examination of their basic properties can be found in the first section of [14]. Jardine later showed how these ideas can be elegantly rephrased in terms of model categories (cf. [8], [9]). In this setting the hypercohomology construction is just a certain fibrant replacement functor. His papers convincingly demonstrate how many questions concerning algebraic K-theory or ´etale homotopy theory can be most naturally understood using the model category language. In this paper we set ourselves the specific task of developing some kind of homotopy theory for schemes. The hope is to demonstrate how Thomason's and Jardine's machinery can be built, step-by-step, so that it is precisely what is needed to solve the problems we encounter. The papers mentioned above all assume a familiarity with Grothendieck topologies and sheaf theory, and proceed to develop the homotopy-theoretic situation as a generalization of the classical case.
    [Show full text]
  • Notes and Solutions to Exercises for Mac Lane's Categories for The
    Stefan Dawydiak Version 0.3 July 2, 2020 Notes and Exercises from Categories for the Working Mathematician Contents 0 Preface 2 1 Categories, Functors, and Natural Transformations 2 1.1 Functors . .2 1.2 Natural Transformations . .4 1.3 Monics, Epis, and Zeros . .5 2 Constructions on Categories 6 2.1 Products of Categories . .6 2.2 Functor categories . .6 2.2.1 The Interchange Law . .8 2.3 The Category of All Categories . .8 2.4 Comma Categories . 11 2.5 Graphs and Free Categories . 12 2.6 Quotient Categories . 13 3 Universals and Limits 13 3.1 Universal Arrows . 13 3.2 The Yoneda Lemma . 14 3.2.1 Proof of the Yoneda Lemma . 14 3.3 Coproducts and Colimits . 16 3.4 Products and Limits . 18 3.4.1 The p-adic integers . 20 3.5 Categories with Finite Products . 21 3.6 Groups in Categories . 22 4 Adjoints 23 4.1 Adjunctions . 23 4.2 Examples of Adjoints . 24 4.3 Reflective Subcategories . 28 4.4 Equivalence of Categories . 30 4.5 Adjoints for Preorders . 32 4.5.1 Examples of Galois Connections . 32 4.6 Cartesian Closed Categories . 33 5 Limits 33 5.1 Creation of Limits . 33 5.2 Limits by Products and Equalizers . 34 5.3 Preservation of Limits . 35 5.4 Adjoints on Limits . 35 5.5 Freyd's adjoint functor theorem . 36 1 6 Chapter 6 38 7 Chapter 7 38 8 Abelian Categories 38 8.1 Additive Categories . 38 8.2 Abelian Categories . 38 8.3 Diagram Lemmas . 39 9 Special Limits 41 9.1 Interchange of Limits .
    [Show full text]
  • An Introduction to Operad Theory
    AN INTRODUCTION TO OPERAD THEORY SAIMA SAMCHUCK-SCHNARCH Abstract. We give an introduction to category theory and operad theory aimed at the undergraduate level. We first explore operads in the category of sets, and then generalize to other familiar categories. Finally, we develop tools to construct operads via generators and relations, and provide several examples of operads in various categories. Throughout, we highlight the ways in which operads can be seen to encode the properties of algebraic structures across different categories. Contents 1. Introduction1 2. Preliminary Definitions2 2.1. Algebraic Structures2 2.2. Category Theory4 3. Operads in the Category of Sets 12 3.1. Basic Definitions 13 3.2. Tree Diagram Visualizations 14 3.3. Morphisms and Algebras over Operads of Sets 17 4. General Operads 22 4.1. Basic Definitions 22 4.2. Morphisms and Algebras over General Operads 27 5. Operads via Generators and Relations 33 5.1. Quotient Operads and Free Operads 33 5.2. More Examples of Operads 38 5.3. Coloured Operads 43 References 44 1. Introduction Sets equipped with operations are ubiquitous in mathematics, and many familiar operati- ons share key properties. For instance, the addition of real numbers, composition of functions, and concatenation of strings are all associative operations with an identity element. In other words, all three are examples of monoids. Rather than working with particular examples of sets and operations directly, it is often more convenient to abstract out their common pro- perties and work with algebraic structures instead. For instance, one can prove that in any monoid, arbitrarily long products x1x2 ··· xn have an unambiguous value, and thus brackets 2010 Mathematics Subject Classification.
    [Show full text]
  • Second-Order Algebraic Theories (Extended Abstract)
    Second-Order Algebraic Theories (Extended Abstract) Marcelo Fiore and Ola Mahmoud University of Cambridge, Computer Laboratory Abstract. Fiore and Hur [10] recently introduced a conservative exten- sion of universal algebra and equational logic from first to second order. Second-order universal algebra and second-order equational logic respec- tively provide a model theory and a formal deductive system for lan- guages with variable binding and parameterised metavariables. This work completes the foundations of the subject from the viewpoint of categori- cal algebra. Specifically, the paper introduces the notion of second-order algebraic theory and develops its basic theory. Two categorical equiva- lences are established: at the syntactic level, that of second-order equa- tional presentations and second-order algebraic theories; at the semantic level, that of second-order algebras and second-order functorial models. Our development includes a mathematical definition of syntactic trans- lation between second-order equational presentations. This gives the first formalisation of notions such as encodings and transforms in the context of languages with variable binding. 1 Introduction Algebra started with the study of a few sample algebraic structures: groups, rings, lattices, etc. Based on these, Birkhoff [3] laid out the foundations of a general unifying theory, now known as universal algebra. Birkhoff's formalisation of the notion of algebra starts with the introduction of equational presentations. These constitute the syntactic foundations of the subject. Algebras are then the semantics or model theory, and play a crucial role in establishing the logical foundations. Indeed, Birkhoff introduced equational logic as a sound and complete formal deductive system for reasoning about algebraic structure.
    [Show full text]
  • Arxiv:Math/0701299V1 [Math.QA] 10 Jan 2007 .Apiain:Tfs F,S N Oooyagba 11 Algebras Homotopy and Tqfts ST CFT, Tqfts, 9.1
    FROM OPERADS AND PROPS TO FEYNMAN PROCESSES LUCIAN M. IONESCU Abstract. Operads and PROPs are presented, together with examples and applications to quantum physics suggesting the structure of Feynman categories/PROPs and the corre- sponding algebras. Contents 1. Introduction 2 2. PROPs 2 2.1. PROs 2 2.2. PROPs 3 2.3. The basic example 4 3. Operads 4 3.1. Restricting a PROP 4 3.2. The basic example 5 3.3. PROP generated by an operad 5 4. Representations of PROPs and operads 5 4.1. Morphisms of PROPs 5 4.2. Representations: algebras over a PROP 6 4.3. Morphisms of operads 6 5. Operations with PROPs and operads 6 5.1. Free operads 7 5.1.1. Trees and forests 7 5.1.2. Colored forests 8 5.2. Ideals and quotients 8 5.3. Duality and cooperads 8 6. Classical examples of operads 8 arXiv:math/0701299v1 [math.QA] 10 Jan 2007 6.1. The operad Assoc 8 6.2. The operad Comm 9 6.3. The operad Lie 9 6.4. The operad Poisson 9 7. Examples of PROPs 9 7.1. Feynman PROPs and Feynman categories 9 7.2. PROPs and “bi-operads” 10 8. Higher operads: homotopy algebras 10 9. Applications: TQFTs, CFT, ST and homotopy algebras 11 9.1. TQFTs 11 1 9.1.1. (1+1)-TQFTs 11 9.1.2. (0+1)-TQFTs 12 9.2. Conformal Field Theory 12 9.3. String Theory and Homotopy Lie Algebras 13 9.3.1. String backgrounds 13 9.3.2.
    [Show full text]
  • Arxiv:1906.03655V2 [Math.AT] 1 Jul 2020
    RATIONAL HOMOTOPY EQUIVALENCES AND SINGULAR CHAINS MANUEL RIVERA, FELIX WIERSTRA, MAHMOUD ZEINALIAN Abstract. Bousfield and Kan’s Q-completion and fiberwise Q-completion of spaces lead to two different approaches to the rational homotopy theory of non-simply connected spaces. In the first approach, a map is a weak equivalence if it induces an isomorphism on rational homology. In the second, a map of path-connected pointed spaces is a weak equivalence if it induces an isomorphism between fun- damental groups and higher rationalized homotopy groups; we call these maps π1-rational homotopy equivalences. In this paper, we compare these two notions and show that π1-rational homotopy equivalences correspond to maps that induce Ω-quasi-isomorphisms on the rational singular chains, i.e. maps that induce a quasi-isomorphism after applying the cobar functor to the dg coassociative coalge- bra of rational singular chains. This implies that both notions of rational homotopy equivalence can be deduced from the rational singular chains by using different alge- braic notions of weak equivalences: quasi-isomorphism and Ω-quasi-isomorphisms. We further show that, in the second approach, there are no dg coalgebra models of the chains that are both strictly cocommutative and coassociative. 1. Introduction One of the questions that gave birth to rational homotopy theory is the commuta- tive cochains problem which, given a commutative ring k, asks whether there exists a commutative differential graded (dg) associative k-algebra functorially associated to any topological space that is weakly equivalent to the dg associative algebra of singu- lar k-cochains on the space with the cup product [S77], [Q69].
    [Show full text]
  • Foundations of Algebraic Theories and Higher Dimensional Categories
    Foundations of Algebraic Theories and Higher Dimensional Categories Soichiro Fujii arXiv:1903.07030v1 [math.CT] 17 Mar 2019 A Doctor Thesis Submitted to the Graduate School of the University of Tokyo on December 7, 2018 in Partial Fulfillment of the Requirements for the Degree of Doctor of Information Science and Technology in Computer Science ii Abstract Universal algebra uniformly captures various algebraic structures, by expressing them as equational theories or abstract clones. The ubiquity of algebraic structures in math- ematics and related fields has given rise to several variants of universal algebra, such as symmetric operads, non-symmetric operads, generalised operads, and monads. These variants of universal algebra are called notions of algebraic theory. Although notions of algebraic theory share the basic aim of providing a background theory to describe alge- braic structures, they use various techniques to achieve this goal and, to the best of our knowledge, no general framework for notions of algebraic theory which includes all of the examples above was known. Such a framework would lead to a better understand- ing of notions of algebraic theory by revealing their essential structure, and provide a uniform way to compare different notions of algebraic theory. In the first part of this thesis, we develop a unified framework for notions of algebraic theory which includes all of the above examples. Our key observation is that each notion of algebraic theory can be identified with a monoidal category, in such a way that theories correspond to monoid objects therein. We introduce a categorical structure called metamodel, which underlies the definition of models of theories.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • A Guide to Self-Distributive Quasigroups, Or Latin Quandles
    A GUIDE TO SELF-DISTRIBUTIVE QUASIGROUPS, OR LATIN QUANDLES DAVID STANOVSKY´ Abstract. We present an overview of the theory of self-distributive quasigroups, both in the two- sided and one-sided cases, and relate the older results to the modern theory of quandles, to which self-distributive quasigroups are a special case. Most attention is paid to the representation results (loop isotopy, linear representation, homogeneous representation), as the main tool to investigate self-distributive quasigroups. 1. Introduction 1.1. The origins of self-distributivity. Self-distributivity is such a natural concept: given a binary operation on a set A, fix one parameter, say the left one, and consider the mappings ∗ La(x) = a x, called left translations. If all such mappings are endomorphisms of the algebraic structure (A,∗ ), the operation is called left self-distributive (the prefix self- is usually omitted). Equationally,∗ the property says a (x y) = (a x) (a y) ∗ ∗ ∗ ∗ ∗ for every a, x, y A, and we see that distributes over itself. Self-distributivity∈ was pinpointed already∗ in the late 19th century works of logicians Peirce and Schr¨oder [69, 76], and ever since, it keeps appearing in a natural way throughout mathematics, perhaps most notably in low dimensional topology (knot and braid invariants) [12, 15, 63], in the theory of symmetric spaces [57] and in set theory (Laver’s groupoids of elementary embeddings) [15]. Recently, Moskovich expressed an interesting statement on his blog [60] that while associativity caters to the classical world of space and time, distributivity is, perhaps, the setting for the emerging world of information.
    [Show full text]
  • Categorical Models of Type Theory
    Categorical models of type theory Michael Shulman February 28, 2012 1 / 43 Theories and models Example The theory of a group asserts an identity e, products x · y and inverses x−1 for any x; y, and equalities x · (y · z) = (x · y) · z and x · e = x = e · x and x · x−1 = e. I A model of this theory (in sets) is a particularparticular group, like Z or S3. I A model in spaces is a topological group. I A model in manifolds is a Lie group. I ... 3 / 43 Group objects in categories Definition A group object in a category with finite products is an object G with morphisms e : 1 ! G, m : G × G ! G, and i : G ! G, such that the following diagrams commute. m×1 (e;1) (1;e) G × G × G / G × G / G × G o G F G FF xx 1×m m FF xx FF m xx 1 F x 1 / F# x{ x G × G m G G ! / e / G 1 GO ∆ m G × G / G × G 1×i 4 / 43 Categorical semantics Categorical semantics is a general procedure to go from 1. the theory of a group to 2. the notion of group object in a category. A group object in a category is a model of the theory of a group. Then, anything we can prove formally in the theory of a group will be valid for group objects in any category. 5 / 43 Doctrines For each kind of type theory there is a corresponding kind of structured category in which we consider models.
    [Show full text]
  • On Iterated Semidirect Products of Finite Semilattices
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 142, 2399254 (1991) On Iterated Semidirect Products of Finite Semilattices JORGE ALMEIDA INIC-Centro de Mawmdtica, Faculdade de Ci&cias, Universidade do Porro, 4000 Porte, Portugal Communicated by T. E. Hull Received December 15, 1988 Let SI denote the class of all finite semilattices and let SI” be the pseudovariety of semigroups generated by all semidirect products of n finite semilattices. The main result of this paper shows that, for every n 2 3, Sl” is not finitely based. Nevertheless, a simple basis of identities is described for each SI”. We also show that SI" is generated by a semigroup with 2n generators but, except for n < 2, we do not know whether the bound 2n is optimal. ‘(” 1991 Academic PKSS, IW 1. INTRODUCTION Among the various operations which allow us to construct semigroups from simpler ones, the semidirect product has thus far received the most attention in the theory of finite semigroups. It plays a special role in the connections with language theory (Eilenberg [S], Pin [9]) and in the Krohn-Rodes decomposition theorem [S]. Questions dealing with semidirect products of finite semigroups are often properly dealt with in the context of pseudovarieties. For pseudovarieties V and W, their semidirect product V * W is defined to be the pseudovariety generated by all semidirect products S * T with SE V and T E W. It is well known that this operation on pseudovarieties is associative and that V * W consists of all homomorphic images of subsemigroups of S * T with SE V and TEW [S].
    [Show full text]