3, Coherent and Squeezed States 1. Coherent States 2. Squeezed States

Total Page:16

File Type:pdf, Size:1020Kb

3, Coherent and Squeezed States 1. Coherent States 2. Squeezed States 3, Coherent and Squeezed States 1. Coherent states 2. Squeezed states 3. Field Correlation Functions 4. Hanbury Brown and Twiss experiment 5. Photon Antibunching 6. Quantum Phenomena in Simple Nonlinear Optics Ref: Ch. 2, 4, 16 in ”Quantum Optics,” by M. Scully and M. Zubairy. Ch. 3, 4 in ”Mesoscopic Quantum Optics,” by Y. Yamamoto and A. Imamoglu. Ch. 6 in ”The Quantum Theory of Light,” by R. Loudon. Ch. 5, 7 in ”Introductory Quantum Optics,” by C. Gerry and P.Knight. Ch. 5, 8 in ”Quantum Optics,” by D. Wall and G. Milburn. IPT5340, Fall ’06 – p. 1/50 Uncertainty relation Non-commuting observable do not admit common eigenvectors. Non-commuting observables can not have definite values simultaneously. Simultaneous measurement of non-commuting observables to an arbitrary degree of accuracy is thus incompatible. variance: ∆Aˆ2 = Ψ (Aˆ Aˆ )2 Ψ = Ψ Aˆ2 Ψ Ψ Aˆ Ψ 2. h | −h i | i h | | i−h | | i 1 ∆A2∆B2 [ Fˆ 2 + Cˆ 2], ≥ 4 h i h i where [A,ˆ Bˆ]= iC,ˆ and Fˆ = AˆBˆ + BˆAˆ 2 Aˆ Bˆ . − h ih i Take the operators Aˆ =q ˆ (position) and Bˆ =p ˆ (momentum) for a free particle, ~2 [ˆq, pˆ]= i~ ∆ˆq2 ∆ˆp2 . →h ih i≥ 4 IPT5340, Fall ’06 – p. 2/50 Uncertainty relation if Re(λ) = 0, Aˆ + iλBˆ is a normal operator, which have orthonormal eigenstates. the variances, iλ i ∆Aˆ2 = [ Fˆ + i Cˆ ], ∆Bˆ2 = [ Fˆ i Cˆ ], − 2 h i h i − 2λ h i− h i set λ = λr + iλi, 2 1 2 1 2 ∆Aˆ = [λi Fˆ + λr Cˆ ], ∆Bˆ = ∆Aˆ , λi Cˆ λr Fˆ = 0. 2 h i h i λ 2 h i− h i | | if λ = 1, then ∆Aˆ2 =∆Bˆ2, equal variance minimum uncertainty states. | | if λ = 1 along with λ = 0, then ∆Aˆ2 =∆Bˆ2 and Fˆ = 0, uncorrelated equal | | i h i variance minimum uncertainty states. 2 λi 2 λ 2 1 if λr = 0, then Fˆ = Cˆ , ∆Aˆ = | | Cˆ , ∆Bˆ = Cˆ . 6 h i λr h i 2λr h i 2λr h i If Cˆ is a positive operator then the minimum uncertainty states exist only if λr > 0. IPT5340, Fall ’06 – p. 3/50 Minimum Uncertainty State (ˆq qˆ ) ψ = iλ(ˆp pˆ ) ψ −h i | i − −h i | i 2r if we define λ = e− , then r r r r (e qˆ + ie− pˆ) ψ =(e qˆ + ie− pˆ ) ψ , | i h i h i | i the minimum uncertainty state is defined as an eigenstate of a non-Hermitian operator erqˆ + ie rpˆ with a c-number eigenvalue er qˆ + ie r pˆ . − h i − h i the variances of qˆ and pˆ are ~ ~ 2 2r 2 2r ∆ˆq = e− , ∆ˆp = e . h i 2 h i 2 here r is referred as the squeezing parameter. IPT5340, Fall ’06 – p. 4/50 Quantization of EM fields ˆ ~ 1 the Hamiltonian for EM fields becomes: H = j ωj (ˆaj†aˆj + 2 ), the electric and magnetic fields become, P ~ω ˆ j 1/2 iωj t iωj t Ex(z,t) = ( ) [ˆaj e− +a ˆj†e ] sin(kj z), ǫ0V Xj = cj [ˆa1j cos ωj t +a ˆ2j sin ωj t]uj (r), Xj IPT5340, Fall ’06 – p. 5/50 Phase diagram for EM waves Electromagnetic waves can be represented by Eˆ(t)= E [Xˆ sin(ωt) Xˆ cos(ωt)] 0 1 − 2 where Xˆ1 = amplitude quadrature Xˆ2 = phase quadrature IPT5340, Fall ’06 – p. 6/50 Quadrature operators the electric and magnetic fields become, ~ω ˆ j 1/2 iωj t iωj t Ex(z,t) = ( ) [ˆaj e− +a ˆj†e ] sin(kj z), ǫ0V Xj = cj [ˆa1j cos ωj t +a ˆ2j sin ωj t]uj (r), Xj note that aˆ and aˆ† are not hermitian operators, but (ˆa†)† =a ˆ. 1 1 aˆ1 = (ˆa +a ˆ ) and aˆ2 = (ˆa aˆ ) are two Hermitian (quadrature) operators. 2 † 2i − † the commutation relation for aˆ and aˆ† is [ˆa, aˆ†] = 1, the commutation relation for and is i , aˆ aˆ† [ˆa1, aˆ2]= 2 and ∆ˆa2 ∆ˆa2 1 . h 1ih 2i≥ 16 IPT5340, Fall ’06 – p. 7/50 Minimum Uncertainty State (ˆa1 aˆ1 ) ψ = iλ(ˆa2 aˆ2 ) ψ −h i | i − −h i | i 2r r r r r if we define λ = e , then (e aˆ1 + ie aˆ2) ψ =(e aˆ1 + ie aˆ2 ) ψ , − − | i h i − h i | i the minimum uncertainty state is defined as an eigenstate of a non-Hermitian operator eraˆ + ie raˆ with a c-number eigenvalue er aˆ + ie r aˆ . 1 − 2 h 1i − h 2i the variances of aˆ1 and aˆ2 are 2 1 2r 2 1 2r ∆ˆa = e− , ∆ˆa = e . h 1i 4 h 2i 4 here r is referred as the squeezing parameter. when r = 0, the two quadrature amplitudes have identical variances, 1 ∆ˆa2 = ∆ˆa2 = , h 1i h 2i 4 r r in this case, the non-Hermitian operator, e aˆ1 + ie− aˆ2 =a ˆ1 + iaˆ2 =a ˆ, and this minimum uncertainty state is termed a coherent state of the electromagnetic field, an eigenstate of the annihilation operator, aˆ α = α α . | i | i IPT5340, Fall ’06 – p. 8/50 Coherent States r r in this case, the non-Hermitian operator, e aˆ1 + ie− aˆ2 =a ˆ1 + iaˆ2 =a ˆ, and this minimum uncertainty state is termed a coherent state of the electromagnetic field, an eigenstate of the annihilation operator, aˆ α = α α . | i | i expand the coherent states in the basis of number states, aˆn αn α = n n α = n 0 α = 0 α n , | i | ih | i | ih | √ | i √ h | i| i n n n! n n! X X X imposing the normalization condition, α α = 1, we obtain, h | i m n 2 (α∗) α α 2 1= α α = m n = e| | 0 α , h | i h | i √ √ |h | i| n m m! n! X X we have 1 2 n α ∞ α α = e− 2 | | n , | i √n! | i nX=0 IPT5340, Fall ’06 – p. 9/50 Properties of Coherent States the coherent state can be expressed using the photon number eigenstates, 1 2 n α ∞ α α = e− 2 | | n , | i √n! | i nX=0 the probability of finding the photon number n for the coherent state obeys the Poisson distribution, 2 e α α 2n P (n) n α 2 = −| | | | , ≡ |h | i| n! the mean and variance of the photon number for the coherent state α are, | i nˆ = nP (n)= α 2, h i | | n X ∆ˆn2 = nˆ2 nˆ 2 = α 2 = nˆ , h i h i−h i | | h i IPT5340, Fall ’06 – p. 10/50 Poisson distribution IPT5340, Fall ’06 – p. 11/50 Photon number statistics For photons are independent of each other, the probability of occurrence of n photons, or photoelectrons in a time interval T is random. Divide T into N intervals, the probability to find one photon per interval is, p =n/N ¯ , the probability to find no photon per interval is, 1 p, − the probability to find n photons per interval is, N! n N n P (n)= p (1 p) − , n!(N n)! − − which is a binomial distribution. when N , → ∞ n¯nexp( n¯) P (n)= − , n! this is the Poisson distribution and the characteristics of coherent light. IPT5340, Fall ’06 – p. 12/50 Real life Poisson distribution IPT5340, Fall ’06 – p. 13/50 Displacement operator coherent states are generated by translating the vacuum state 0 to have a finite | i excitation amplitude α, 1 2 n 1 2 n α ∞ α α ∞ (αaˆ†) α = e− 2 | | n = e− 2 | | 0 , | i √ | i n! | i n=0 n! n=0 1 2 X X α αaˆ† = e− 2 | | e 0 , | i ∗ since aˆ 0 = 0, we have e α aˆ 0 = 0 and | i − | i 1 2 α αaˆ† α∗aˆ α = e− 2 | | e e− 0 , | i | i any two noncommuting operators Aˆ and Bˆ satisfy the Baker-Hausdorff relation, 1 Aˆ+Bˆ Aˆ Bˆ [A,ˆ Bˆ] e = e e e− 2 , provided [A,ˆ [A,ˆ Bˆ]]=0, using Aˆ = αaˆ , Bˆ = α aˆ, and [A,ˆ Bˆ]= α 2, we have, † − ∗ | | αaˆ† α∗aˆ α = Dˆ (α) 0 = e− − 0 , | i | i | i where Dˆ(α) is the displacement operator, which is physically realized by a classical oscillating current. IPT5340, Fall ’06 – p. 14/50 Displacement operator the coherent state is the displaced form of the harmonic oscillator ground state, αaˆ† α∗aˆ α = Dˆ (α) 0 = e− − 0 , | i | i | i where Dˆ(α) is the displacement operator, which is physically realized by a classical oscillating current, the displacement operator Dˆ(α) is a unitary operator, i.e. 1 Dˆ †(α)= Dˆ ( α)=[Dˆ (α)]− , − Dˆ (α) acts as a displacement operator upon the amplitudes aˆ and aˆ†, i.e. 1 Dˆ − (α)ˆaDˆ (α) =a ˆ + α, 1 Dˆ − (α)ˆa†Dˆ (α) =a ˆ† + α∗, IPT5340, Fall ’06 – p. 15/50 Radiation from a classical current the Hamiltonian (p A) that describes the interaction between the field and the · current is given by V = J(r, t) Aˆ(r, t)d3r, · Z where J(r, t) is the classical current and Aˆ(r, t) is quantized vector potential, 1 iωkt+ik r Aˆ(r, t)= i Ekaˆke− · + H.c., − ωk Xk the interaction picture Schrödinger equation obeys, d i Ψ(t) = V Ψ(t) , dt | i − ~ | i the solution is Ψ(t) = exp[α aˆ α aˆ ] 0 , where | i k k † − k∗ k | ik 1 t iωt′ ik r αk = Ek dt′ drJ(r, t)e − · , ~ωk 0 Q R R this state of radiation field is called a coherent state, α = (αaˆ† α∗aˆ) 0 .
Recommended publications
  • Squeezed and Entangled States of a Single Spin
    SQUEEZED AND ENTANGLED STATES OF A SINGLE SPIN Barı¸s Oztop,¨ Alexander A. Klyachko and Alexander S. Shumovsky Faculty of Science, Bilkent University Bilkent, Ankara, 06800 Turkey e-mail: [email protected] (Received 23 December 2007; accepted 1 March 2007) Abstract We show correspondence between the notions of spin squeez- ing and spin entanglement. We propose a new measure of spin squeezing. We consider a number of physical examples. Concepts of Physics, Vol. IV, No. 3 (2007) 441 DOI: 10.2478/v10005-007-0020-0 Barı¸s Oztop,¨ Alexander A. Klyachko and Alexander S. Shumovsky It is well known that the concept of squeezed states [1] was orig- inated from the famous work by N.N. Bogoliubov [2] on the super- fluidity of liquid He4 and canonical transformations. Initially, it was developed for the Bose-fields. Later on, it has been extended on spin systems as well. The two main objectives of the present paper are on the one hand to show that the single spin s 1 can be prepared in a squeezed state and on the other hand to demonstrate≥ one-to-one correspondence between the notions of spin squeezing and entanglement. The results are illustrated by physical examples. Spin-coherent states | Historically, the notion of spin-coherent states had been introduced [3] before the notion of spin-squeezed states. In a sense, it just reflected the idea of Glauber [4] about creation of Bose-field coherent states from the vacuum by means of the displacement operator + α field = D(α) vac ;D(α) = exp(αa α∗a); (1) j i j i − where α C is an arbitrary complex parameter and a+; a are the Boson creation2 and annihilation operators.
    [Show full text]
  • Coherent State Path Integral for the Harmonic Oscillator 11
    COHERENT STATE PATH INTEGRAL FOR THE HARMONIC OSCILLATOR AND A SPIN PARTICLE IN A CONSTANT MAGNETIC FLELD By MARIO BERGERON B. Sc. (Physique) Universite Laval, 1987 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF PHYSICS We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA October 1989 © MARIO BERGERON, 1989 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis . for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver, Canada DE-6 (2/88) Abstract The definition and formulas for the harmonic oscillator coherent states and spin coherent states are reviewed in detail. The path integral formalism is also reviewed with its relation and the partition function of a sytem is also reviewed. The harmonic oscillator coherent state path integral is evaluated exactly at the discrete level, and its relation with various regularizations is established. The use of harmonic oscillator coherent states and spin coherent states for the computation of the path integral for a particle of spin s put in a magnetic field is caried out in several ways, and a careful analysis of infinitesimal terms (in 1/N where TV is the number of time slices) is done explicitly.
    [Show full text]
  • Coherent and Squeezed States on Physical Basis
    PRAMANA © Printed in India Vol. 48, No. 3, __ journal of March 1997 physics pp. 787-797 Coherent and squeezed states on physical basis R R PURI Theoretical Physics Division, Central Complex, Bhabha Atomic Research Centre, Bombay 400 085, India MS received 6 April 1996; revised 24 December 1996 Abstract. A definition of coherent states is proposed as the minimum uncertainty states with equal variance in two hermitian non-commuting generators of the Lie algebra of the hamil- tonian. That approach classifies the coherent states into distinct classes. The coherent states of a harmonic oscillator, according to the proposed approach, are shown to fall in two classes. One is the familiar class of Glauber states whereas the other is a new class. The coherent states of spin constitute only one class. The squeezed states are similarly defined on the physical basis as the states that give better precision than the coherent states in a process of measurement of a force coupled to the given system. The condition of squeezing based on that criterion is derived for a system of spins. Keywords. Coherent state; squeezed state; Lie algebra; SU(m, n). PACS Nos 03.65; 02-90 1. Introduction The hamiltonian of a quantum system is generally a linear combination of a set of operators closed under the operation of commutation i.e. they constitute a Lie algebra. Since their introduction for a hamiltonian linear in harmonic oscillator (HO) oper- ators, the notion of coherent states [1] has been extended to other hamiltonians (see [2-9] and references therein). Physically, the HO coherent states are the minimum uncertainty states of the two quadratures of the bosonic operator with equal variance in the two.
    [Show full text]
  • Wigner Function for SU(1,1)
    Wigner function for SU(1,1) U. Seyfarth1, A. B. Klimov2, H. de Guise3, G. Leuchs1,4, and L. L. Sánchez-Soto1,5 1Max-Planck-Institut für die Physik des Lichts, Staudtstraße 2, 91058 Erlangen, Germany 2Departamento de Física, Universidad de Guadalajara, 44420 Guadalajara, Jalisco, Mexico 3Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada 4Institute for Applied Physics,Russian Academy of Sciences, 630950 Nizhny Novgorod, Russia 5Departamento de Óptica, Facultad de Física, Universidad Complutense, 28040 Madrid, Spain In spite of their potential usefulness, Wigner functions for systems with SU(1,1) symmetry have not been explored thus far. We address this problem from a physically-motivated perspective, with an eye towards applications in modern metrology. Starting from two independent modes, and after getting rid of the irrelevant degrees of freedom, we derive in a consistent way a Wigner distribution for SU(1,1). This distribution appears as the expectation value of the displaced parity operator, which suggests a direct way to experimentally sample it. We show how this formalism works in some relevant examples. Dedication: While this manuscript was under review, we learnt with great sadness of the untimely passing of our colleague and friend Jonathan Dowling. Through his outstanding scientific work, his kind attitude, and his inimitable humor, he leaves behind a rich legacy for all of us. Our work on SU(1,1) came as a result of long conversations during his frequent visits to Erlangen. We dedicate this paper to his memory. 1 Introduction Phase-space methods represent a self-standing alternative to the conventional Hilbert- space formalism of quantum theory.
    [Show full text]
  • 1 Coherent States and Path Integral Quantiza- Tion. 1.1 Coherent States Let Q and P Be the Coordinate and Momentum Operators
    1 Coherent states and path integral quantiza- tion. 1.1 Coherent States Let q and p be the coordinate and momentum operators. They satisfy the Heisenberg algebra, [q,p] = i~. Let us introduce the creation and annihilation operators a† and a, by their standard relations ~ q = a† + a (1) r2mω m~ω p = i a† a (2) r 2 − Let us consider a Hilbert space spanned by a complete set of harmonic os- cillator states n , with n =0,..., . Leta ˆ† anda ˆ be a pair of creation and annihilation operators{| i} acting on that∞ Hilbert space, and satisfying the commu- tation relations a,ˆ aˆ† =1 , aˆ†, aˆ† =0 , [ˆa, aˆ] = 0 (3) These operators generate the harmonic oscillators states n in the usual way, {| i} 1 n n = aˆ† 0 (4) | i √n! | i aˆ 0 = 0 (5) | i where 0 is the vacuum state of the oscillator. Let| usi denote by z the coherent state | i † z = ezaˆ 0 (6) | i | i z = 0 ez¯aˆ (7) h | h | where z is an arbitrary complex number andz ¯ is the complex conjugate. The coherent state z has the defining property of being a wave packet with opti- mal spread, i.e.,| ithe Heisenberg uncertainty inequality is an equality for these coherent states. How doesa ˆ act on the coherent state z ? | i ∞ n z n aˆ z = aˆ aˆ† 0 (8) | i n! | i n=0 X Since n n−1 a,ˆ aˆ† = n aˆ† (9) we get h i ∞ n z n n aˆ z = a,ˆ aˆ† + aˆ† aˆ 0 (10) | i n! | i n=0 X h i 1 Thus, we find ∞ n z n−1 aˆ z = n aˆ† 0 z z (11) | i n! | i≡ | i n=0 X Therefore z is a right eigenvector ofa ˆ and z is the (right) eigenvalue.
    [Show full text]
  • Detailing Coherent, Minimum Uncertainty States of Gravitons, As
    Journal of Modern Physics, 2011, 2, 730-751 doi:10.4236/jmp.2011.27086 Published Online July 2011 (http://www.SciRP.org/journal/jmp) Detailing Coherent, Minimum Uncertainty States of Gravitons, as Semi Classical Components of Gravity Waves, and How Squeezed States Affect Upper Limits to Graviton Mass Andrew Beckwith1 Department of Physics, Chongqing University, Chongqing, China E-mail: [email protected] Received April 12, 2011; revised June 1, 2011; accepted June 13, 2011 Abstract We present what is relevant to squeezed states of initial space time and how that affects both the composition of relic GW, and also gravitons. A side issue to consider is if gravitons can be configured as semi classical “particles”, which is akin to the Pilot model of Quantum Mechanics as embedded in a larger non linear “de- terministic” background. Keywords: Squeezed State, Graviton, GW, Pilot Model 1. Introduction condensed matter application. The string theory metho- dology is merely extending much the same thinking up to Gravitons may be de composed via an instanton-anti higher than four dimensional situations. instanton structure. i.e. that the structure of SO(4) gauge 1) Modeling of entropy, generally, as kink-anti-kinks theory is initially broken due to the introduction of pairs with N the number of the kink-anti-kink pairs. vacuum energy [1], so after a second-order phase tran- This number, N is, initially in tandem with entropy sition, the instanton-anti-instanton structure of relic production, as will be explained later, gravitons is reconstituted. This will be crucial to link 2) The tie in with entropy and gravitons is this: the two graviton production with entropy, provided we have structures are related to each other in terms of kinks and sufficiently HFGW at the origin of the big bang.
    [Show full text]
  • ECE 604, Lecture 39
    ECE 604, Lecture 39 Fri, April 26, 2019 Contents 1 Quantum Coherent State of Light 2 1.1 Quantum Harmonic Oscillator Revisited . 2 2 Some Words on Quantum Randomness and Quantum Observ- ables 4 3 Derivation of the Coherent States 5 3.1 Time Evolution of a Quantum State . 7 3.1.1 Time Evolution of the Coherent State . 7 4 More on the Creation and Annihilation Operator 8 4.1 Connecting Quantum Pendulum to Electromagnetic Oscillator . 10 Printed on April 26, 2019 at 23 : 35: W.C. Chew and D. Jiao. 1 ECE 604, Lecture 39 Fri, April 26, 2019 1 Quantum Coherent State of Light We have seen that a photon number state1 of a quantum pendulum do not have a classical correspondence as the average or expectation values of the position and momentum of the pendulum are always zero for all time for this state. Therefore, we have to seek a time-dependent quantum state that has the classical equivalence of a pendulum. This is the coherent state, which is the contribution of many researchers, most notably, George Sudarshan (1931{2018) and Roy Glauber (born 1925) in 1963. Glauber was awarded the Nobel prize in 2005. We like to emphasize again that the mode of an electromagnetic oscillation is homomorphic to the oscillation of classical pendulum. Hence, we first con- nect the oscillation of a quantum pendulum to a classical pendulum. Then we can connect the oscillation of a quantum electromagnetic mode to the classical electromagnetic mode and then to the quantum pendulum. 1.1 Quantum Harmonic Oscillator Revisited To this end, we revisit the quantum harmonic oscillator or the quantum pen- dulum with more mathematical depth.
    [Show full text]
  • Arxiv:2010.08081V3 [Quant-Ph] 9 May 2021 Dipole fields [4]
    Time-dependent quantum harmonic oscillator: a continuous route from adiabatic to sudden changes D. Mart´ınez-Tibaduiza∗ Instituto de F´ısica, Universidade Federal Fluminense, Avenida Litor^anea, 24210-346 Niteroi, RJ, Brazil L. Pires Institut de Science et d'Ing´enierieSupramol´eculaires, CNRS, Universit´ede Strasbourg, UMR 7006, F-67000 Strasbourg, France C. Farina Instituto de F´ısica, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil In this work, we provide an answer to the question: how sudden or adiabatic is a change in the frequency of a quantum harmonic oscillator (HO)? To do this, we investigate the behavior of a HO, initially in its fundamental state, by making a frequency transition that we can control how fast it occurs. The resulting state of the system is shown to be a vacuum squeezed state in two bases related by Bogoliubov transformations. We characterize the time evolution of the squeezing parameter in both bases and discuss its relation with adiabaticity by changing the transition rate from sudden to adiabatic. Finally, we obtain an analytical approximate expression that relates squeezing to the transition rate as well as the initial and final frequencies. Our results shed some light on subtleties and common inaccuracies in the literature related to the interpretation of the adiabatic theorem for this system. I. INTRODUCTION models to the dynamical Casimir effect [32{39] and spin states [40{42], relevant in optical clocks [43]. The main The harmonic oscillator (HO) is undoubtedly one of property of these states is to reduce the value of one of the most important systems in physics since it can be the quadrature variances (the variance of the orthogonal used to model a great variety of physical situations both quadrature is increased accordingly) in relation to coher- in classical and quantum contexts.
    [Show full text]
  • `Nonclassical' States in Quantum Optics: a `Squeezed' Review of the First 75 Years
    Home Search Collections Journals About Contact us My IOPscience `Nonclassical' states in quantum optics: a `squeezed' review of the first 75 years This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1 (http://iopscience.iop.org/1464-4266/4/1/201) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 132.206.92.227 The article was downloaded on 27/08/2013 at 15:04 Please note that terms and conditions apply. INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF OPTICS B: QUANTUM AND SEMICLASSICAL OPTICS J. Opt. B: Quantum Semiclass. Opt. 4 (2002) R1–R33 PII: S1464-4266(02)31042-5 REVIEW ARTICLE ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years V V Dodonov1 Departamento de F´ısica, Universidade Federal de Sao˜ Carlos, Via Washington Luiz km 235, 13565-905 Sao˜ Carlos, SP, Brazil E-mail: [email protected] Received 21 November 2001 Published 8 January 2002 Online at stacks.iop.org/JOptB/4/R1 Abstract Seventy five years ago, three remarkable papers by Schrodinger,¨ Kennard and Darwin were published. They were devoted to the evolution of Gaussian wave packets for an oscillator, a free particle and a particle moving in uniform constant electric and magnetic fields. From the contemporary point of view, these packets can be considered as prototypes of the coherent and squeezed states, which are, in a sense, the cornerstones of modern quantum optics. Moreover, these states are frequently used in many other areas, from solid state physics to cosmology.
    [Show full text]
  • Redalyc.Harmonic Oscillator Position Eigenstates Via Application of An
    Revista Mexicana de Física ISSN: 0035-001X [email protected] Sociedad Mexicana de Física A.C. México Soto-Eguibar, Francisco; Moya-Cessa, Héctor Manuel Harmonic oscillator position eigenstates via application of an operator on the vacuum Revista Mexicana de Física, vol. 59, núm. 2, julio-diciembre, 2013, pp. 122-127 Sociedad Mexicana de Física A.C. Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=57048159005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative EDUCATION Revista Mexicana de F´ısica E 59 (2013) 122–127 JULY–DECEMBER 2013 Harmonic oscillator position eigenstates via application of an operator on the vacuum Francisco Soto-Eguibar and Hector´ Manuel Moya-Cessa Instituto Nacional de Astrof´ısica, Optica´ y Electronica,´ Luis Enrique Erro 1, Santa Mar´ıa Tonantzintla, San Andres´ Cholula, Puebla, 72840 Mexico.´ Received 21 August 2013; accepted 17 October 2013 Harmonic oscillator squeezed states are states of minimum uncertainty, but unlike coherent states, in which the uncertainty in position and momentum are equal, squeezed states have the uncertainty reduced, either in position or in momentum, while still minimizing the uncertainty principle. It seems that this property of squeezed states would allow to obtain the position eigenstates as a limiting case, by doing null the uncertainty in position and infinite in momentum. However, there are two equivalent ways to define squeezed states, that lead to different expressions for the limiting states.
    [Show full text]
  • Fp3 - 4:30 Quantum Mechanical System Symmetry*
    Proceedings of 23rd Conference on Decision and Control Las Vegas, NV, December 1984 FP3 - 4:30 QUANTUM MECHANICAL SYSTEM SYMMETRY* + . ++ +++ T. J. Tarn, M. Razewinkel and C. K. Ong + Department of Systems Science and Mathematics, Box 1040, Washington University, St. Louis, Missouri 63130, USA. ++ Stichting Mathematisch Centrum, Kruislaan 413, 1098 S J Amsterdam, The Netherlands. +++M/A-COM Development Corporation, M/A-COM Research Center, 1350 Piccard Drive, Suite 310, Rockville. Maryland 20850, USA. Abstract Cll/i(X, t) ifi at :: H(x,t) , ( 1) The connection of quantum nondemolition observables with the symmetry operators of the Schrodinger where t/J is the wave function of the system and x an equation, is shown. The connection facilitates the appropriate set of dynamical coordinates. construction of quantum nondemolition observables and thus of quantum nondemolition filters for a given Definition 1. The symmetry algebra of the Hamiltonian system. An interpretation of this connection is H of a quantum system is generated by those operators given, and it has been found that the Hamiltonian that commute with H and possess together with H a description under which minimal wave pockets remain common dense invariant domain V. minimal is a special case of our investigation. With the above definition, if [H,X1J:: 0 and [H,X2J = 1. Introduction O, then [H,[X1 ,x 2 JJ:: 0 also on D. Clearly all constants of the motion belong to the symmetry algebra In developing the theory of quantum nondemolition of the Hamiltonian. observables, it has been assumed that the output observable is given. The question of whether or not the given output observable is a quantum nondemolition Denote the Schrodinger operator by filter has been answered in [1,2].
    [Show full text]
  • Operators and States
    Operators and States University Press Scholarship Online Oxford Scholarship Online Methods in Theoretical Quantum Optics Stephen Barnett and Paul Radmore Print publication date: 2002 Print ISBN-13: 9780198563617 Published to Oxford Scholarship Online: January 2010 DOI: 10.1093/acprof:oso/9780198563617.001.0001 Operators and States STEPHEN M. BARNETT PAUL M. RADMORE DOI:10.1093/acprof:oso/9780198563617.003.0003 Abstract and Keywords This chapter is concerned with providing the necessary rules governing the manipulation of the operators and the properties of the states to enable us top model and describe some physical systems. Atom and field operators for spin, angular momentum, the harmonic oscillator or single mode field and for continuous fields are introduced. Techniques are derived for treating functions of operators and ordering theorems for manipulating these. Important states of the electromagnetic field and their properties are presented. These include the number states, thermal states, coherent states and squeezed states. The coherent and squeezed states are generated by the actions of the Glauber displacement operator and the squeezing operator. Angular momentum coherent states are described and applied to the coherent evolution of a two-state atom and to the action of a beam- splitter. Page 1 of 63 PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter
    [Show full text]