Storage Capacity

Total Page:16

File Type:pdf, Size:1020Kb

Storage Capacity EU GeoCapacity D16 Project no. SES6-518318 EU GeoCapacity Assessing European Capacity for Geological Storage of Carbon Dioxide Instrument type: Specific Targeted Research Project Priority name: Sustainable Energy Systems D16 WP2 Report Storage capacity Organisation name of lead contractor for this deliverable: Geological Survey of Denmark and Greenland Project no.: SES6-518318 Project acronym: EU GeoCapacity Project title: Assessing European Capacity for Geological Storage of Carbon Dioxide Instrument: Specific Targeted Research Project Start date of project: 2006-01-01 Duration: 3 years D 16 WP2 Report Storage capacity Revision: Draft, 0, 1, 2, ... Organisation name of lead contractor for this deliverable: Geological Survey of Denmark and Greenland Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PU PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential , only for members of the consortium (including the Commission Services) Deliverable number: D 16 Deliverable name: WP2 Report Work package: WP 2 Storage capacity Lead contractor: GEUS Status of deliverable Action By Date Submitted (Author(s)) Thomas Vangkilde-Pedersen, GEUS (Editor) 2009-05-25 Verified (WP-leader) Thomas Vangkilde-Pedersen, GEUS 2009-05-25 Approved (SP-leader) Thomas Vangkilde-Pedersen, GEUS 2009-05-25 Author(s) Name Organisation E-mail D. Allier BRGM [email protected] S. Anghel GeoEcoMar K.L. Anthonsen GEUS [email protected] D. Bossie-Codreanu IFP [email protected] M. Car GEO-INZ [email protected] F. Donda OGS [email protected] A. Dudu GeoEcoMar [email protected] G. Falus ELGI [email protected] G. Georgiev US [email protected] G. Hatziyannis IGME-Geece [email protected] E. Hegedűs ELGI [email protected] V. Hladik CGS [email protected] O. Ivanova LEGMA [email protected] H. Jencsel ELGI K. Kirk BGS [email protected] S. Knopf BGR [email protected] V. Kolejka CGS [email protected] J. Kotulová SGUDS [email protected] L. Kucharič SGUDS [email protected] Y.M. Le Nindre BRGM [email protected] M. Marina IGME-Spain R. Martinez IGME-Spain [email protected] N. Maurand IFP [email protected] F. May BGR [email protected] E. Micevski MAGA F. Neele TNO [email protected] I. Nulle LEGMA [email protected] K. Opovski MAGA [email protected] S. Persoglia OGS [email protected] R. Pomeranceva LEGMA [email protected] N.E. Poulsen (ed) GEUS [email protected] I. Prifti AGS [email protected] A. Proca GeoEcoMar B. Saftic RGN [email protected] C. Sava GeoEcoMar [email protected] A. Shogenova IGTUT [email protected] K. Shogenov IGTUT [email protected] R. Sliaupiene IGG [email protected] S. Sliaupa IGG [email protected] I. Suárez IGME-Spain [email protected] Á. Szamosfalvi ELGI R. Tarkowski MEERI PAS [email protected] B. Uliasz-Misiask MEERI PAS [email protected] R. Vaher IGTUT [email protected] T. Vangkilde-Pedersen GEUS [email protected] B. Willscher BGR [email protected] A. Wójcicki PBG [email protected] M. Xenakis IGME-Greece [email protected] M. Zapatero IGME-Spain [email protected] S.A. Zivkovic Bosnia-Herzegovina Abstract This document is deliverable D16 WP2 Report Storage Capacity and provides a description of the work carried out in WP2. It also provides a summary of capacity estimates for deep saline aquifers, hydrocarbon fields and coal beds for each country and brief descriptions of the methodology used and assumptions made. Geological descriptions and further details and background information for the storage capacity estimates in the GeoCapacity GIS database appear from the technical reports of WP2 and WP3. Page 1 TABLE OF CONTENTS Page 1 INTRODUCTION...................................................................................................................3 2 WP 2.1 NORTH EAST GROUP.............................................................................................5 2.1 Slovakia ........................................................................................................................5 2.2 Estonia ........................................................................................................................13 2.3 Latvia..........................................................................................................................18 2.4 Lithuania.....................................................................................................................27 2.5 Poland .........................................................................................................................39 2.6 Czech Republic...........................................................................................................47 3 WP 2.2 CENTRAL EAST GROUP ......................................................................................57 3.1 Hungary ......................................................................................................................57 3.2 Romania......................................................................................................................65 3.3 Bulgaria ......................................................................................................................77 3.4 Albania .......................................................................................................................81 3.5 FYROM......................................................................................................................92 4 WP 2.3 SOUTH GROUP ......................................................................................................97 4.1 Croatia ........................................................................................................................97 4.2 Spain .........................................................................................................................107 4.3 Italy...........................................................................................................................113 4.4 Slovenia ....................................................................................................................118 4.5 Bosnia-Herzegovina .................................................................................................121 5 WP 2.4 COUNTRY UPDATES..........................................................................................125 5.1 Germany ...................................................................................................................125 5.2 The Netherlands........................................................................................................131 5.3 France .......................................................................................................................137 5.4 Greece.......................................................................................................................144 5.5 United Kingdom.......................................................................................................148 5.6 Denmark ...................................................................................................................153 6 EUROPEAN SUMMARY..................................................................................................157 7 REFERENCES....................................................................................................................164 D 16 Copyright © EU GeoCapacity Consortium 2006-2009 Page 3 1 INTRODUCTION The focus of the GeoCapacity project is GIS mapping of CO2 point sources, infrastructure and geological storage in Europe. The main objective is to assess the European capacity for geological storage of CO2 in deep saline aquifers, oil and gas structures and coal beds. Other priorities are further development of methods for capacity assessment, economic modelling and site selection as well as international cooperation, especially with China. The results of GeoCapacity include 25 countries and comprise most European sedimentary basins suitable for geological storage of CO2. The Work in GeoCapacity has been structured in 7 work packages: • WP1: Inventory of emissions and infrastructure, GIS • WP2: Storage capacity • WP3: Economic use of CO2 • WP4: Standards and site selection criteria • WP5: Economic evaluations • WP6: International cooperation • WP7: Project management This document is deliverable D16 WP2 Report Storage Capacity and provides a description of the work carried out in WP2. It also provides a summary of capacity estimates for deep saline aquifers, hydrocarbon fields and coal beds for each country and brief descriptions of the methodology used and assumptions made. Geological descriptions and further details and background information for the storage capacity estimates in the GeoCapacity GIS database appear from the following more technical reports: • Deliverable D11/D12 Geological information and storage capacity of deep saline aquifers • Deliverable D17 Assessment of the capacity for the use of CO2 in hydrocarbon fields • Deliverable D18 Assessment of potential for CO2 usage in coal fields • Deliverable D19 GeoCapacity economic use of CO2 in hydrocarbon fields • Deliverable D20 Calculation of amount of CO2 that could be stored in coal beds The participating countries have been divided into three geographical groups facilitating regional cooperation. The groups comprise new countries
Recommended publications
  • Active Tectonics of the Pyrenees: a Review
    ISSN (print): 1698-6180. ISSN (online): 1886-7995 www.ucm.es/info/estratig/journal.htm Journal of Iberian Geology 38 (1) 2012: 9-30 http://dx.doi.org/10.5209/rev_JIGE.2012.v38.n1.39203 Active Tectonics of the Pyrenees: A review Revisión de la tectónica activa de los Pirineos P. Lacan 1,2, M. Ortuño* 1,3 1 Centro de Geociencias, Universidad Nacional Autónoma de México, Blvd. Juriquilla, 3001, 76230, Juriquilla, Querétaro, Mexico 2 Laboratoire des Fluides Complexes et leurs Réservoirs (LFC-R) UMR5150 - CNRS, Université de Pau, IPRA, BP 1155, F-64013 Pau Cedex, France 3 Departament de Geodinàmica i Geofisica, Universitat de Barcelona, Martí i Franquès s/n, 08028, Barcelona, Spain *Corresponding author: [email protected]. Tel.: +52 (442) 238-1104 Ext. 104; fax: +52 (442) 238-1124 Received: 05/07/2011 / Accepted: 18/04/2012 Abstract The Pyrenees have experienced at least seven earthquakes with magnitude M > 5 in the last 400 years. During the last decades, se- veral seismotectonic, neotectonic and paleoseismological studies have focused on identifying the main active structures of the areas experiencing damaging earthquakes. In spite of these studies, the regional stress regime is still discussed and there is no unequivocal seismotectonic model at the scale of the range. In this paper, we first present a revision of the former works on active faults in the Pyrenees, and then we discuss the main results in terms of their neotectonic setting. We have distinguished five neotectonic regions according to their seismicity, faulting style and morphologic evolution: the westernmost Pyrenees, the North Western Pyrenean zone, the Foreland basins, the Lower Thrust Sheets Domain and the Eastern Pyrenees.
    [Show full text]
  • Seismicity Patterns in Southwestern France
    Seismicity patterns in southwestern France Matthieu Sylvander, Alexis Rigo, Guy Sénéchal, Jean Battaglia, Sébastien Benahmed, Marie Calvet, Sébastien Chevrot, Jean-Michel Douchain, Frank Grimaud, Jean Letort, et al. To cite this version: Matthieu Sylvander, Alexis Rigo, Guy Sénéchal, Jean Battaglia, Sébastien Benahmed, et al.. Seismic- ity patterns in southwestern France. Comptes Rendus Géoscience, Elsevier Masson, 2021, 10.5802/cr- geos.60>. hal-03284165 HAL Id: hal-03284165 https://hal.archives-ouvertes.fr/hal-03284165 Submitted on 12 Jul 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Comptes Rendus Géoscience Sciences de la Planète Matthieu Sylvander, Alexis Rigo, Guy Sénéchal, Jean Battaglia, Sébastien Benahmed, Marie Calvet, Sébastien Chevrot, Jean-Michel Douchain, Frank Grimaud, Jean Letort and Hélène Pauchet Seismicity patterns in southwestern France Online first, 7th June 2021 <https://doi.org/10.5802/crgeos.60> Part of the Special Issue: Seismicity in France Guest editors: Carole Petit (Université de Nice, CNRS, France), Stéphane Mazzotti (Université Montpellier 2, France) and Frédéric Masson (Université de Strasbourg, CNRS, France) © Académie des sciences, Paris and the authors, 2021. Some rights reserved.
    [Show full text]
  • Field T Rip Guide Book
    Volume n° 2 - from B16 to B33 32nd INTERNATIONAL GEOLOGICAL CONGRESS WESTERN PYRENEES FOLD-AND- THRUST-BELT: GEODYNAMICS, SEDIMENTATION AND PLATE BOUNDARY RECONSTRUCTION FROM RIFTING TO INVERSION Field Trip Guide Book - B16 Field Trip Leaders: R. Bourrouilh, L. Moen-Maurel, J. Muñoz, A. Teixell Florence - Italy August 20-28, 2004 Pre-Congress B16 The scientific content of this guide is under the total responsibility of the Authors Published by: APAT – Italian Agency for the Environmental Protection and Technical Services - Via Vitaliano Brancati, 48 - 00144 Roma - Italy Series Editors: Luca Guerrieri, Irene Rischia and Leonello Serva (APAT, Roma) English Desk-copy Editors: Paul Mazza (Università di Firenze), Jessica Ann Thonn (Università di Firenze), Nathalie Marléne Adams (Università di Firenze), Miriam Friedman (Università di Firenze), Kate Eadie (Freelance indipendent professional) Field Trip Committee: Leonello Serva (APAT, Roma), Alessandro Michetti (Università dell’Insubria, Como), Giulio Pavia (Università di Torino), Raffaele Pignone (Servizio Geologico Regione Emilia-Romagna, Bologna) and Riccardo Polino (CNR, Torino) Acknowledgments: The 32nd IGC Organizing Committee is grateful to Roberto Pompili and Elisa Brustia (APAT, Roma) for their collaboration in editing. Graphic project: Full snc - Firenze Layout and press: Lito Terrazzi srl - Firenze Volume n° 2 - from B16 to B33 32nd INTERNATIONAL GEOLOGICAL CONGRESS WESTERN PYRENEES FOLD-AND- THRUST-BELT: GEODYNAMICS, SEDIMENTATION AND PLATE BOUNDARY RECONSTRUCTION FROM RIFTING TO INVERSION AUTHORS: R. Bourrouilh1, L. Moen-Maurel2, J. Muñoz3, A. Teixell4 1 Laboratoire CIBAMAR, Université Bordeaux 1, Talence Cedex - France 2 TOTAL, Pau Cedex - France 3 Departament de Geodinamica i Geofisica, Facultat de Geologia, Universitat de Barcelona - Spain 4 Departament de Geologia, Universitat Autònoma de Barcelona, Bellaterra - Spain Florence - Italy August 20-28, 2004 Pre-Congress B16 Front Cover: 1.
    [Show full text]
  • Carbon Capture and Storage: the Lacq Pilot. Project and Injection Period
    CARBON CAPTURE AND STORAGE The Lacq pilot - Project and injection period 2006 - 2013 FORE- WORD “We wish you an interesting read and hope at the end key concerns regarding CCS industry will be more comprehensive for all. We hope this book provides valuable insights for those involved in developing CCS in the future.” Olivier CLERET de LANGAVANT Senior Vice President Strategy, Business Development and Research & Development Total Exploration & Production TOTAL IS COMMITTED TO REDUCING THE IMPACT OF ITS ACTIVITIES ON THE ENVIRONMENT, ESPECIALLY ITS GREENHOUSE GAS EMISSIONS. The group’s priorities in term of greenhouse gas control are to improve The experimental plant was unique the energy efficiency of its industrial facilities, to deliver innovative in several respects; by its size in solutions in terms of energy efficiency to its consumers, to reduce capturing carbon through a 30 MWth and then eliminate the flaring of associated gas, to invest in the oxy-combustion gas boiler (unpre- development of complementary energy sources (biomass, solar) and to partici- cedented worldwide), by the choice pate in operational and R&D programs on CO2 capture, transport and geological of a depleted deep gas reservoir storage. Total is also consolidating its efforts to address climate change by: (unprecedented in Europe) located onshore five kilometers south of ¬ Supporting the United Nations Global Compact’s call for companies the agglomeration of Pau (around to factor an internal carbon price into their investment decisions. 140,000 inhabitants) and by its scope, ¬ Joining the World Bank's planned Zero Routine Flaring by 2030 Initiative. operating a fully integrated industrial ¬ Joining the Climate and Clean Air Coalition, which works to more chain project (comprising extraction, effectively measure, manage and mitigate emissions of methane, a gas treatment, combustion of natural gas, whose global warming potential is much higher than carbon dioxide’s.
    [Show full text]