Fall 2019 Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fog Computing and Networking: Part 2
GUEST EDITORIAL FOG COMPUTING AND NETWORKING: PART 2 Mung Chiang Sangtae Ha Chih-Lin I Fulvio Risso Tao Zhang ue to the large number of submissions responding to the “A Fog Operating System for User-Oriented IoT Services: Chal- Call for Papers on “Fog Computing and Networking,” the lenges and Research Directions” presents the high-level introduc- Guest Editors selected additional papers based on reviewer tion of a fog computing architecture for IoT services, FogOS. It is Dcomments that are now published in Part 2. The overview provided composed of service/resource abstraction, a resource manager, an by the Guest Editors in the form of Q&A was published in Part 1 in application manager, and edge resource identification/registration. April. Here, in this August issue of the magazine, we continue to see The article further identifies some of the challenges facing IoT services a range of perspectives, some qualitative and others quantitative. and possible solutions through FogOS; notably, how the diversity and Collectively, they expand the scope of edge research labs that started heterogeneity of IoT services and edge devices can be managed. a decade ago to the current momentum in fog research and deploy- In “A Hierarchical Game Framework for Resource Management ment and academia-industry collaboration such as the OpenFog Con- in Fog Computing,” the authors consider a scenario with three types sortium. In the following, we briefly overview the articles in this issue. of entities: fog nodes (FNs), authorized data service subscribers In “Architectural Imperatives for Fog Computing,” the author (ADSSs), and data service operators (DSOs). -
International Symposium on Chemical Reaction Engineering the I
The Ith International Symposium on Chemical Reaction Engineering The Palmer House Hilton Hotel Chicago, Illinois, USA June 6-9, 2004 WELCOME The Organizing Committee extends a warm welcome to all attendees of the 18th International Symposium on Chemical Reaction Engineering (ISCRE 18). These biennial symposia have a rich history that dates back to 1970, with ISCRE 1 held in Washington, DC. Continuing in the tradition, famous for its architectural beauty, cosmopoli- tan character, and the splendor of Lake Michigan, Chicago is the host city this year. The scientific theme for the meeting, “From Molecular to Product and Process Engineering,” emphasizes the emerging paradigm that valuable products and novel processes can be engineered based on an understanding of the molecular level interactions. The meeting program includes a broad range of topics, encompassing both tradi- tional and newer fields within the discipline. The goal is to discuss various approaches for the rational application of reaction engineering principles to solve important technological problems facing society. While participating in the social and technical programs of ISCRE 18, enjoy your stay in Chicago! ORGANIZING COMMITTEE Arvind Varma, Purdue University, ISCRE 18 Chair Bala Subramaniam, University of Kansas, ISCRE 18 Co-Chair Kurt Vanden Bussche, UOP LLC, ISCRE 18 Co-Chair SYMPOSIUM SECRETARIAT Ketkesy Sanavongsay, UOP LLC SCIENTIFIC COMMITTEE Alexis T. Bell, University of California at Berkeley Dan Luss, University of Houston Linda Broadbelt, Northwestern University R. A. Mashelkar, Council of Scientific and Industrial Milorad P. Dudukovic, Washington University, St. Louis Research, India Gerhart Eigenberger, University of Stuttgart, Germany Massimo Morbidelli, ETH Zurich Robert J. Farrauto, Engelhard Corporation Jacob A. -
Insights Fall/Winter 2003
College of Engineering University of Notre Dame Volume 29, Number 1 Fall/Winter 2002-03 lthough invisible to the human eye, nano- and microparticles — such as In July Notre Dame created the Environmental Molecular Science Institute (EMSI). Funded by the bacteria, natural organic matter, and mineral aggregates — exist in National Science Foundation and the Department virtually all groundwater systems. More important, they affect the mobility of Energy, the goal of EMSI is to bring engineers of contaminants in the subsurface. According to Jeremy B. Fein, associate and scientists together in order to better under- stand, model, and predict the interaction between professor of civil engineering and geological sciences and director of the newly created A microparticles and heavy metals in the environ- Environmental Molecular Science Institute (EMSI), “We’ve known for a long time that ment. Researchers, centered at the University, will work closely with their counterparts at Argonne, there are nano- and microparticles in the ground, even to great depths under the earth’s Oak Ridge, and Sandia National laboratories and surface. What we’re finding is that these particles interact both with the minerals that DuPont Engineering Technology. These collabora- tive efforts pool expertise from a wide range of make up the geologic matrix and with dissolved contaminants. These interactions can environmental sciences, including aqueous and strongly influence how metals, organic solvents, and other contaminants are distributed organic chemistry, actinide chemistry, environ- mental engineering, hydrology, microbiology and in soil and groundwater aquifers.” geomicrobiology, mineralogy, molecular dynamics While groundwater is generally considered a safe source modeling, physics, and surface chemistry. -
Mass and Heat Transfer: Analysis of Mass Contractors and Heat Exchangers T
Cambridge University Press 978-0-521-88670-3 - Mass and Heat Transfer: Analysis of Mass Contractors and Heat Exchangers T. W. Fraser Russell, Anne Skaja Robinson and Norman J. Wagner Frontmatter More information MASS AND HEAT TRANSFER This book allows instructors to teach a course on heat and mass transfer that will equip students with the pragmatic, applied skills required by the modern chemical industry. This new approach is a combined presentation of heat and mass transfer, maintaining mathe- matical rigor while keeping mathematical analysis to a minimum. This allows students to develop a strong conceptual understanding and teaches them how to become proficient in engineering analysis of mass contactors and heat exchangers and the transport theory used as a basis for determining how the critical coefficients depend on physical properties and fluid motions. Students will first study the engineering analysis and design of equipment important in experiments and for the processing of material at the commercial scale. The second part of the book presents the fundamentals of transport phenomena relevant to these applications. A complete teaching package includes a comprehensive instructor’s guide, exercises, design case studies, and project assignments. T. W. Fraser Russell is the Allan P. Colburn Professor of Chemical Engineering at the University of Delaware. Professor Russell is a member of the National Academy of Engineering and a Fellow of the American Institute of Chemical Engineering (AIChE). He has been the recipient of several national honors, including the AIChE Chemical Engineering Practice Award. Anne Skaja Robinson is an Associate Professor of Chemical Engineering at the Uni- versity of Delaware and Director of the National Science Foundation (NSF) Integra- tive Graduate Education and Research Traineeship program in biotechnology. -
Resolution Approving Awarding of Honorary Degrees to Leah Jamieson, Richard Sweeney, and Ras J
RESOLUTION APPROVING AWARDING OF HONORARY DEGREES TO LEAH JAMIESON, RICHARD SWEENEY, AND RAS J. BARAKA WHEREAS by awarding honorary degrees, New Jersey Institute of Technology recognizes outstanding individuals whose accomplishments are of such excellence that they provide inspiration to our graduates, and WHEREAS the following individuals have displayed the level of exemplary achievement deemed worthy of the singular recognition conveyed by the conferral of an honorary degree by the university, namely: Leah Jamieson, an American engineering educator serving at present as the John A. Edwardson Dean of Engineering and Ransburg Distinguished Professor of Electrical and Computer Engineering at Purdue University. She is a member of the US National Academy of Engineering and served as the 2007 President and CEO of the Institute of Electrical and Electronics Engineers (IEEE). Jamieson was a founder of the Engineering Projects in Community Service program (EPICS), a multi-university engineering design program that operates in a service-learning context. She is a recipient of the Gordon Prize. Jamieson was born in 1949 and grew up in New Jersey. She received the B.S. degree in mathematics in 1972 from the Massachusetts Institute of Technology (MIT). She received M.A. and M.S.E. degrees in 1974 and a Ph.D. in 1977, all three from Princeton University. Jamieson worked as Professor of Engineering at Purdue University since 1976. Her research interests include speech analysis and recognition; the design and analysis of parallel processing algorithms; and the application of parallel processing to the areas of digital speech, image, and signal processing. She has authored over 160 journal and conference papers in these areas and has co-edited books on algorithmically specialized parallel computers (Academic Press, 1985) and the characteristics of parallel algorithms (MIT Press,1987). -
Conference Profiles & Expanded Information
Conference Profiles & Expanded Information CONFERENCE LEADERSHIP General Chair Scholarships Jan Cuny, National Science Foundation Co-Chairs: Gloria Townsend, DePauw University and Program Chair Kelly Van Busum, DePauw University. Committee: Thank you to the forty one members of the Scholarship Committee: review team Lucy Sanders, National Center for Women and IT which made reviewing the record number of submissions possible. Local Co-Chairs Beth Simons, University of San Diego and Jeanne Ferrante, Technical Posters Co-Chairs Co-Chairs: Rachel Pottinger, University of British Columbia University of San Diego and Cheryl Seals, Auburn Publicity Chair Erin Buxton, Halliburton Saturday Session Co-Chairs: Leah Jamieson, Purdue University and Illah Nourbakhsh, Event Producer Carnegie Mellon University. Committee: Chris Bailey-Kellogg, Donna Cappo, ACM Dartmouth College, Patrice Buzzanell, Purdue University, Webmaster James Early, Purdue University, Jeanne Ferrante, University of Kimberly Blessing, Kimmie Corp. California San Diego, Emily Hamner Carnegie Mellon Academic Fund Raising Industry Advisory Board Chair: Debra Richardson, UC Irvine Sharon Perl, Google, Michael Smith, France Telecom, Committee: Valerie Barr, Union College Sandra Carter, IBM, Carole Dulong, Google, Tammy Wong, Panels and Workshops Sun Microsystems, Kathleen Fisher, AT&T, Kellee Noonan, HP Co-Chairs: Heidi Kvinge, Intel and Padma Raghavan, Academic Advisory Board Pennsylvania State University. Committee: Chandra Krintz, Anne Condon, University of British Columbia, Nancy Amato, University of California, Santa Barbara, Lois Curfman McInnes, Texas A&M University, Tracy Camp, Colorado School of Mines, Argonne National Laboratory, Beth A. Plale, Indiana University, Sheila Casteneda, Clarke College Suzanne Shontz, University of Minnesota, Gita Gopal, HP, Anita Borg Technical Leadership Award Joanne L. Martin, IBM, Steve J. -
Arvind Varma of Notre Dame
Ind. Eng. Chem. Res. 2008, 47, 8957–8959 8957 Arvind Varma: Educator, Researcher and Leader It is a distinct pleasure for us to present this Festschrift to funding. In January 2004, he moved to Purdue University as honor Professor Arvind Varma of Purdue University on the the R. Games Slayter Distinguished Professor and Head of occasion of his 60th birthday. the School of Chemical Engineering. Arvind Varma was born on October 13, 1947 in Firozabad, Professor Varma is a distinguished researcher in the field India. This city, near Agra where the Taj Mahal is located, of chemical reaction engineering for more than 35 years. His is famous for its long-established glass industry, particularly contributions include original research publications, author- glass bangles. He received his B.S. degree in Chemical ship of textbook and monographs, editorship of a book series, Engineering from Panjab University in 1966 and his M.S. and professional activities. Through creative experimental degree in Chemical Engineering from the University of New and theoretical research, Arvind Varma has made pioneering Brunswick, Canada in 1968. He then went to the University contributions to the understanding, analysis and design of of Minnesota where, in 1972, he completed his Ph.D., under chemical and catalytic reacting systems, and synthesis of the mentorship of the legendary Professor Neal Amundson. advanced materials, with desired composition and properties While at Minnesota, he also developed a strong friendship achieved by microstructural control. In these areas, he has with Professor Rutherford Aris, another pioneer in the field authored or co-authored 258 archival journal articles, as well of chemical reactor theory. -
Service-Learning in Engineering: a Resource Guidebook William Oakes
University of Nebraska Omaha DigitalCommons@UNO Higher Education Service Learning 2004 Service-Learning in Engineering: A Resource Guidebook William Oakes Follow this and additional works at: http://digitalcommons.unomaha.edu/slcehighered Part of the Service Learning Commons Recommended Citation Oakes, William, "Service-Learning in Engineering: A Resource Guidebook" (2004). Higher Education. Paper 165. http://digitalcommons.unomaha.edu/slcehighered/165 This Report is brought to you for free and open access by the Service Learning at DigitalCommons@UNO. It has been accepted for inclusion in Higher Education by an authorized administrator of DigitalCommons@UNO. For more information, please contact [email protected]. Service-Learning in ENGINEERING A RESOURCE GUIDEBOOK WILLIAM OAKES, PE “Tell me, and I forget. Teach me, and I may remember. Involve me, and I learn.” BEN FRANKLIN WEB: WWW.COMPACT.ORG PH: 401.867.3950 Campus Compact is a national coalition of more than 900 college and university presidents who are committed to fulfilling the civic purposes of higher education. To support this mission, Campus Compact promotes community service initiatives that develop stu- dents’ citizenship skills, helps cam- puses forge effective community partnerships, and provides resources and practical guidance for faculty seeking to integrate civic engage- ment into their teaching and research. Campus Compact comprises a national office based in Providence, RI, and 30 state offices in CA, CO, CT, FL, HI, IA, IL, IN, KS, MA, ME, MI, MN, MO, MT, NC, NH, NY, OH, OK, OR, PA, RI, TX, UT, VA, VT, WA, WI, and WV. The work that provided the basis for this publication was supported by funding under a grant with the U.S. -
Chapter 6 — Building for the Future. Reklaitis and Varma (1987-2011)
Chapter 6: Building for the Future. Reklaitis and Varma 173 Chapter 6 Building for the Future. Reklaitis and Varma (1987-2011) After Andres announced his desire to step down as the Head of Chemical Engineering, Dean Henry Yang rapidly appointed one of his Assistant Deans, Gintaras ―Rex‖ Reklaitis, as the Interim Head in August 1987. The Dean then formed a fairly large search committee with himself as the chair. It soon became obvious to the search committee that the best candidate to become the next head was performing the duties as interim head. Since the custom of Engineering was to do a national search for Head, the search committee spent over a month convincing Dean Yang that in this case a national search was not needed and would be counter-productive. Dean Yang eventually agreed to do what he wanted to do and Rex Reklaitis was named as the ninth Head of the School. He officially started as Head in December 1987 and relinquished his Assistant Dean position in 1988. Left: Dean Henry T. Yang Right: Gintaras V. (Rex) Reklaitis (ChE 1970- present, Head 1987-2003) In summer 1988 one of the first two hires under Reklaitis, Venkat Venkatasubramanian (B. Tech. ChE ‗77 University of Madras, M.S. Physics ‘79 Vanderbilt University, Ph.D. ‘84 ChE Cornell), an assistant professor at Columbia University, joined the School as Associate Professor. Venkat earned tenure in 1991 and was promoted to full professor in 1995. On February 3, 2011, the Purdue University Board of Trustees ratified the appointment of Venkat Venkatasubramanian as Reilly Professor of Chemical Engineering. -
Awards Program
Award Selection Committee Chairs Frontiers in Education Conference Benjamin J. Dasher Best Paper Award ........................................................... Diane Rover Helen Plants Award ........................................................................................ Elizabeth Eschenbach Ronald J. Schmitz Award ............................................................................... Robert Hofinger ASEE Electrical and Computer Engineering Division Hewlett-Packard Frederick Emmons Terman Award ..................................... Jeffrey Andrews IEEE Education Society IEEE William E. Sayle Award for Achievement in Education ....................... Susan Conry IEEE Transactions on Education Theodore Bachman Award ........................ Susan Lord Chapter Achievement Award ......................................................................... Kai Pan Mark Distinguished Chapter Leadership Award ...................................................... Trond Clausen and Emmanuel Gonzalez Distinguished Member Award ........................................................................ Victor Nelson Edwin C. Jones, Jr. Meritorious Service Award .............................................. Susan Lord Hewlett-Packard/Harriett B. Rigas Award ..................................................... Joanne Bechta Dugan Mac Van Valkenburg Early Career Teaching Award... ................................... S. Hossein Mousavinezhad Student Leadership Award ............................................................................. -
Directorate for Engineering Advisory Committee
National Science Foundation Directorate for Engineering (ENG) Advisory Committee Spring 2020 Committee Membership Tilak Agerwala Gilda Barabino Research Vice President (retired), IBM Corp. Dean, The Grove School of Engineering TKMA Consulting The City College of New York 16 Cross Road Steinman Hall, Room T-142 Cortlandt Manor, NY 10567 160 Convent Avenue [email protected] New York, NY 10031 [email protected] 212-650-5435 – Office ACCI Liaison CEOSE Liaison Term: Fall 2016 – Spring 2022 Term: Fall 2015 – Spring 2021 Bruce Horn Leah Jamieson Distinguished Engineer Ransburg Distinguished Professor of Electrical Datawire.io and Computer Engineering, and Professor of 745 Atlantic Ave. Engineering Education (by courtesy) Boston, MA 02111 The John A. Edwardson Dean Emerita, College [email protected] of Engineering Purdue University 465 Northwestern Avenue West Lafayette, IN 47907-2035 [email protected] 765-494-3653 – Office Term: Fall 2018 – Spring 2021 Term: Fall 2017 – Spring 2023 Mary Juhas Robin Murphy Associate Vice President Raytheon Professor of Computer Science & Ohio State ADVANCE Engineering Office of Research Humanitarian Robotics and Artificial Clinical Professor Intelligence Laboratory Material Science & Engineering Center for Robot-Assisted Search and Rescue Ohio State University Department of Computer Science and 208 Bricker Hall, 190 N. Oval Mall Engineering Columbus, OH 43210 3112 TAMU [email protected] College Station, TX 77843-3112 614-688-8239 – Office [email protected] 979-845-8737 – Office SBIR Subcommittee Liaison Term: Fall 2018 – Spring 2021 Term: Spring 2019 – Fall 2021 1 National Science Foundation Directorate for Engineering (ENG) Advisory Committee Spring 2020 Lance Pérez Darryll J. Pines Dean Dean of A. -
A Legacy of Leadership
A Legac o Leadshi Arvind Varma 1947-2019 Varma Booklet [07Oct2019c].indd 1 10/7/19 2:09 PM Arvind Varma: Fro th Priden Table of Contents Arvind Varma, the R. Games Slayter Distinguished Professor of Chemical Engineering and 10th Head of the Davidson School of Chemical Engineering, will forever be remembered for his ground breaking research in the areas of hydrogen and other energy sources, chemical and catalytic reaction engineering, and in the synthesis of advanced materials. He was also renowned for his leadership in the field of chemical engineering. Table of Contents Arvind arrived at Purdue from Notre Dame in January 2004 and served as Head of the Davidson School of Chemical Engineering through July 2016. During his tenure, he oversaw significant growth in faculty, graduate student, and Arvind Varma: Key Dates...............................................................2 undergraduate student numbers; increased research expenditures; expanded facilities and equipment, as well as renovations to existing space and the addition Thank You for Attending ...............................................................3 of a new wing (dedicated in October 2004). He also led the celebration of the School’s Centennial (2011) and had a tremendous grasp of and respect for the Arvind: My Amazing Friend ................................................... 4-5 School’s history. Arvind took great pride in his leadership role with the faculty and also enjoyed Arvind Varma Academic Tree ................................................6-7 celebrating the accomplishments of the graduate students with whom he worked so tirelessly. Arvind’s legacy is his steadfast commitment to the relationships he Celebration of Career Agenda ..........................................8-10 built with the students, the faculty and the alumni of the School of Chemical Financial Impact: Varma Legacy ............................................11 Engineering.