Redalyc.A Taxonomic Bibliography of the South American Snakes of The

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.A Taxonomic Bibliography of the South American Snakes of The Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil Vanzolini, Paulo E.; Calleffo, Myriam E.V. A taxonomic bibliography of the South American snakes of the Crotalus durissus complex (Serpentes, Viperidae) Anais da Academia Brasileira de Ciências, vol. 74, núm. 1, março, 2002, pp. 37-83 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32774105 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2002) 74(1): 37–83 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc A taxonomic bibliography of the South American snakes of the Crotalus durissus complex (Serpentes, Viperidae) PAULO E. VANZOLINI and MYRIAM E.V. CALLEFFO 1Museu de Zoologia, Universidade de São Paulo, Cx. Postal 42694, 04299-970 São Paulo, SP, Brasil 2Instituto Butantan, Laboratório de Herpetologia, São Paulo, SP, Brasil Manuscript received on October 26, 2001; accepted for publication on November 9, 2001; contributed by Paulo E. Vanzolini ABSTRACT A survey is made of the taxonomic literature on South American rattlesnakes (genus Crotalus, family Viperi- dae). Two main areas are emphasized: the attribution of the names proposed in the eighteenth century by Linnaeus and Laurenti, and the current scheme of division in subspecies. The attribution of names is examined based on the original descriptions and on relevant previous and con- temporary literature. The presently adopted scheme, proposed by Klauber (1941, 1972) is found not entirely satisfactory, but reasonable enough – besides being hallowed by use. The scheme of geographical differentiation, intrinsically important and with broad practical implications (differentiation of the venom) is found to be the culmination of a long series of deficient analyses, and in urgent need of proper investigation. Key words: Crotalus durissus, Viperidae, geographical differentidation, differentiation of the venom. INTRODUCTION old literature is confused and confusing: it has been analyzed at several reprises by Klauber (q.v.i.), who The assemblage of forms currently known as the proposed a sensible, if rather uninspired scheme, subspecies of Crotalus durissus embodies some of generally adopted. Geographical differentiation, the most interesting problems in Neotropical her- obvious and intense, was deplorably dealt with by petology. They constitute a set of closely related Hoge (1966), whose cursory work has been accepted parapatric forms, whose mutual relations and mech- in the literature without evaluation, culminating in anisms of speciation, never yet properly studied, the thorough but uncritical compilation by McCranie are conceivably of great theoretical interest. Addi- (1993). tionally, on the practical side, geographical differ- The very extensive range of the group and the entiation has been demonstrated in the chemistry of relatively large size of the individual snakes raise the venom, a fact of far-reaching and urgent med- considerable logistic problems to a comprehensive ical as well as zoological implications. In contra- revision. We have undertaken a piecemeal review distinction with these attractive features, studies on of the Brasilian forms, using mostly the materials the group have been few and undistinguished. The at hand in our institutions and aiming initially at a formal traditional taxonomic treatment, to be fol- Correspondence to: P.E. Vanzolini E-mail: [email protected] lowed, if feasible, by investigations in more depth An. Acad. Bras. Cienc., (2002) 74 (1) 38 PAULO E. VANZOLINI and MYRIAM E.V. CALLEFFO of the evolutionary aspects. Thus the present review seum Regis, to Bradley (1721), and to Seba (1734- of papers of systematic or distributional importance. 1765). Additional notes referred to its venomous- We have organized the matter in four sections: ness, to its eating birds and squirrels on trees, to (i) a history of the systematic concepts in what they its being predated upon by hogs and to the exis- refer to South America; (ii) papers that contain pre- tence of a natural antidote (‘‘senega’’, or milkwort, cise geographic information, listed in Appendix 1; root, a Polygala). All these are well-known parts of and (iii) papers that, although mentioning South North American folklore, early reported in Europe American rattlers, contain no information useful in by Kalm (1752). the present context, so denoted in the References. 2. C. dryinas, 165 + 30 scales, from ‘‘America’’, There is one additional section on chromatism, and with a laconic note on color pattern, and a refer- a concise gazetteer. ence to Amoenitates Academicae 1: 217 (Linnaeus 1749). This is a mistaken reference: the page men- A HISTORY OF CONCEPTS AND NAMES tioned is part of a botanical dissertation on ‘‘Pe- Usually, the review of old literature is evocative and loria’’ . However, in the same Amoenitates, in the pleasant. Not here: the literature on South Ameri- chapter entitled Museum Principis, p. 578, n◦ 24, can Crotalus is very uneven and uncommonly unre- is described an ‘‘Anguis (Crotalophorus) scutis ab- warding. Rattlesnakes are charismatic animals, sur- dominalibus CLXV, caudalibus XXX’’, which is rounded by legend, and from early times attracted certainly C. dryinas. Eight references are made to the attention of travelers of diverse scientific com- the literature. Five are useless to us: Ray (1693), petence, who tended to write copiously on them. Seba (1734-1765), Jonstone (1650-1653), Nierem- These, mostly naive, travel reports constitute the raw berg (1635) and Olearius (1674). Three other ci- materials of practically all the early literature (Cur- tations are potentially useful, to Marcgrave (1648), ran 1935). Specimens, with or without locality data, Piso (1648) and Hernandez (1651) – but in fact they were surprisingly rare in collections, and sparingly are contradictory. The former two would point to reported upon. northeastern Brasil, the latter to Mexico. One juve- Linnaeus (1758: 214) diagnosed the genus nile (‘‘barely 2 feet long’’) was available, gray with Crotalus as snakes having (widened) ventral scales, yellowish dorsal spots; no doubt a faded specimen. small or large (actually divided or undivided) sub- 3. C. durissus, with 172 + 24 scales, was referred to caudals, and a terminal rattle, or crepitaculum. He Kalm (1752, 1753), to Gronovius (1763-1764) and included three species, all three marked with the to the Amoenitates 1: 500. This last citation is again ‘‘Mars sign’’, , that at the time already signified a mistake: the page mentioned (part of the thesis in the general literature ‘‘male’’, but that in the con- Surinamensia Grilliana) contains reference to one text of the Systema Naturae indicated instead that Amphisbaena and to Anilius scytale, not to Crotalus. the species had poison fangs (Linnaeus 1758: 194- Instead, on page 510 of the same Surinamensia Gril- 195). For each species Linnaeus gave scale counts liana there is a ‘‘Crotalophorus scutis abdominalibus (ventrals and subcaudals), country of origin (‘‘habi- CLXXII, scutis caudalibus XXI, paribusque squa- tat’’) and, in two cases, summary notes on color marum III’’, which is certainly C. durissus. Ref- pattern. He also included bibliographic references, erences in the Amoenitates are to Jonstone (1650- to his own pre-Systema work and to contemporary 1653), to Nieremberg (1635), to Olearius (1674) to authors. The species were: vol. 1, part 1, of the ‘‘Museum Imperiale Petropoli- 1. Crotalus horridus, 167 ventrals + 25 subcau- tanus’’ (1742), and toVincent (1726). None of them dals, from ‘‘America’’. References are given to Lin- is of any present use. Additionally, Swedish scien- naeus’s own ‘‘Mus. Ad. Fr.’’, better known as Mu- tists who reviewed surviving Linnean herpetologi- An. Acad. Bras. Cienc., (2002) 74 (1) A TAXONOMIC BIBLIOGRAPHY OF THE SOUTH AMERICAN SNAKES 39 cal types (Lönnberg 1896, Andersson 1900, Holm – three of them, he says, depicted by Seba (1735: 1957) make it clear that no rattlesnake type is extant. pl. 45, fig. 4). (Incidentally this, a precise and reli- able locality, is unusual for a Seba plate). Vosmaer It is evident that Linnaeus recognized three comments on the Linnaen device of characterizing species of rattlesnakes, based on actual specimens, snake species by counts of ventral and subcaudal but that his understanding of these was confused scales, and attempts to identify his own specimens and did not go beyond the generic level. It is a con- by this means. He finds them in agreement with Lin- spicuous fact in the history of the knowledge about naeus’s horridus. This was the beginning of the pre- rattlesnakes that their being large venomous snakes Klauberian tradition of applying horridus to South sporting a rattle did for a long time overshadow more American snakes. This was not such an unreason- systematic information. In the case of the Linnaean able construction, especially given the information names it is impossible to restore the original con- on Seba’s specimens. Klauber’s purely pragmatic cepts. Short of squarely dismissing them (to us the proposal (see below) was in fact motivated by the best alternative, but too late now), the solution is lack of positive data on the Linnaean types and on to find an acceptable
Recommended publications
  • Mechanistic Insights Into Functional Characteristics of Native Crotamine
    Toxicon 146 (2018) 1e12 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Mechanistic insights into functional characteristics of native crotamine Daniel Batista da Cunha a, Ana Vitoria Pupo Silvestrini a, Ana Carolina Gomes da Silva a, Deborah Maria de Paula Estevam b,Flavia Lino Pollettini b, Juliana de Oliveira Navarro a, Armindo Antonio^ Alves a, Ana Laura Remedio Zeni Beretta a, * Joyce M. Annichino Bizzacchi c, Lilian Cristina Pereira d, Maurício Ventura Mazzi a, a Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil b Graduate Program in Agrarian and Veterinary Sciences, State University Paulista Júlio de Mesquita Filho-UNESP, Jaboticabal, SP, Brazil c Blood Hemostasis Laboratory, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil d Department of Bioprocesses and Biotechnology, Faculty of Agronomic Sciences, State University Paulista Júlio Mesquita Filho-UNESP, Botucatu, SP, Brazil article info abstract Article history: The chemical composition of snake venoms is a complex mixture of proteins and peptides that can be Received 4 October 2017 pharmacologically active. Crotamine, a cell-penetrating peptide, has been described to have antimicro- Received in revised form bial properties and it exerts its effects by interacting selectively with different structures, inducing 6 March 2018 changes in the ion flow pattern and cellular responses. However, its real therapeutic potential is not yet Accepted 20 March 2018 fully known. Bearing in mind that crotamine is a promising molecule in therapeutics, this study inves- Available online 21 March 2018 tigated the action of purified molecule in three aspects: I) antibacterial action on different species of clinical interest, II) the effect of two different concentrations of the molecule on platelet aggregation, and Keywords: fi Crotalus durissus terrificus III) its effects on isolated mitochondria.
    [Show full text]
  • Mating in Free-Ranging Neotropical Rattlesnakes, Crotalus Durissus: Is It Risky for Males?
    Herpetology Notes, volume 14: 225-227 (2021) (published online on 01 February 2021) Mating in free-ranging Neotropical rattlesnakes, Crotalus durissus: Is it risky for males? Selma Maria Almeida-Santos1,*, Thiago Santos2, and Luis Miguel Lobo1 Field observations of the mating behaviour of snakes The male remained stretched out for about 20 minutes are scarce, probably because of the secretive nature and and showed no defensive posture even with the presence low encounter rates of many species (Sasa and Curtis, of the observer. We then noticed drops of blood on the 2006). In the Neotropical rattlesnake, Crotalus durissus vegetation and the hemipenis (Fig. 1 E-F). We could not Linnaeus, 1758, mating has been reported only in determine the origin of the blood, but we suggest two captive individuals (Almeida-Santos et al., 1999). Here nonexclusive hypotheses. The hemipenis spicules may we describe the first record of the mating behaviour of have hurt the female’s vagina while she was dragging the the Neotropical rattlesnake, Crotalus durissus, in nature male over a long distance. Alternatively, the male may (Fig. 1 A). have suffered an injury to the hemipenis while being Observations were made on 9 March 2017, at 14:54 h, dragged quickly by the female. The slow hemipenis a warm and sunny day (temperature = 27.1 oC; relative retraction and the male’s fatigue after copulation may humidity = 66%), in an ecotone between dry forest and better support the second hypothesis. Cerrado (Brazilian savannah) in Prudente de Morais, Potential costs for male C. durissus during mating Minas Gerais, Brazil (-19.2841 °S,-44.0628 °W; datum season include increased activity and energy expenditure WGS 84).
    [Show full text]
  • Venom Week 2012 4Th International Scientific Symposium on All Things Venomous
    17th World Congress of the International Society on Toxinology Animal, Plant and Microbial Toxins & Venom Week 2012 4th International Scientific Symposium on All Things Venomous Honolulu, Hawaii, USA, July 8 – 13, 2012 1 Table of Contents Section Page Introduction 01 Scientific Organizing Committee 02 Local Organizing Committee / Sponsors / Co-Chairs 02 Welcome Messages 04 Governor’s Proclamation 08 Meeting Program 10 Sunday 13 Monday 15 Tuesday 20 Wednesday 26 Thursday 30 Friday 36 Poster Session I 41 Poster Session II 47 Supplemental program material 54 Additional Abstracts (#298 – #344) 61 International Society on Thrombosis & Haemostasis 99 2 Introduction Welcome to the 17th World Congress of the International Society on Toxinology (IST), held jointly with Venom Week 2012, 4th International Scientific Symposium on All Things Venomous, in Honolulu, Hawaii, USA, July 8 – 13, 2012. This is a supplement to the special issue of Toxicon. It contains the abstracts that were submitted too late for inclusion there, as well as a complete program agenda of the meeting, as well as other materials. At the time of this printing, we had 344 scientific abstracts scheduled for presentation and over 300 attendees from all over the planet. The World Congress of IST is held every three years, most recently in Recife, Brazil in March 2009. The IST World Congress is the primary international meeting bringing together scientists and physicians from around the world to discuss the most recent advances in the structure and function of natural toxins occurring in venomous animals, plants, or microorganisms, in medical, public health, and policy approaches to prevent or treat envenomations, and in the development of new toxin-derived drugs.
    [Show full text]
  • Rattlesnake Tales 127
    Hamell and Fox Rattlesnake Tales 127 Rattlesnake Tales George Hamell and William A. Fox Archaeological evidence from the Northeast and from selected Mississippian sites is presented and combined with ethnographic, historic and linguistic data to investigate the symbolic significance of the rattlesnake to northeastern Native groups. The authors argue that the rattlesnake is, chief and foremost, the pre-eminent shaman with a (gourd) medicine rattle attached to his tail. A strong and pervasive association of serpents, including rattlesnakes, with lightning and rainfall is argued to have resulted in a drought-related ceremo- nial expression among Ontario Iroquoians from circa A.D. 1200 -1450. The Rattlesnake and Associates Personified (Crotalus admanteus) rattlesnake man-being held a special fascination for the Northern Iroquoians Few, if any of the other-than-human kinds of (Figure 2). people that populate the mythical realities of the This is unexpected because the historic range of North American Indians are held in greater the eastern diamondback rattlesnake did not esteem than the rattlesnake man-being,1 a grand- extend northward into the homeland of the father, and the proto-typical shaman and warrior Northern Iroquoians. However, by the later sev- (Hamell 1979:Figures 17, 19-21; 1998:258, enteenth century, the historic range of the 264-266, 270-271; cf. Klauber 1972, II:1116- Northern Iroquoians and the Iroquois proper 1219) (Figure 1). Real humans and the other- extended southward into the homeland of the than-human kinds of people around them con- eastern diamondback rattlesnake. By this time the stitute a social world, a three-dimensional net- Seneca and other Iroquois had also incorporated work of kinsmen, governed by the rule of reci- and assimilated into their identities individuals procity and with the intensity of the reciprocity and families from throughout the Great Lakes correlated with the social, geographical, and region and southward into Virginia and the sometimes mythical distance between them Carolinas.
    [Show full text]
  • Crotalus Vegrandis Klauber (Uracoan Rattlesnake)
    Crotalus vegrandis / 51 CROTALUS VEGRANDIS KLAUBER (URACOAN RATTLESNAKE) By: Pete Strimple, 5310 Sultana Drive, Cincinnatti, Ohio 45238, U.S.A. Contents: Historical - Taxonomic status - Description - Scalation - Size - Range -Habitat - Food - Habits - Breeding -Acknowledgements - References. * * * HISTORICAL The uracoan rattlesnake was first described by Klauber in 1941 as Crotalus vegrandis. The type specimen was collected by Harry A. Beatty in 1939. The type locality as given by Klauber (1941) is as follows: 'collected in the Maturin Savannah, near Uracoa, Sotillo District, State of Monagas, Venezuela.' The common name for this rattlesnake comes from the word Uracoa, the name of the city near the type locality listed above. The specific name of vegrandis is Latin for 'not large,' in reference to the size that this species attains in the wild (Brown, 1978). TAXONOMIC STATUS Even today controversy still exists as to whether this rattlesnake is a distinct species, or a subspecies of Crotalus durissus. In this article I have elected to use the specific status for this rattlesnake, primarily because this seems to be more widely accepted in the herpetological community. After his original description of this snake as Crotalus vegrandis, Klauber (1956) changed the taxonomic status of this rattlesnake and listed it as Crotalus durissus vegrandis. Later, in 1972, he again gave it specific status and recorded it as Crotalus vegrandis. Over the years since its original description, this rattlesnake has generally been accepted as a distinct species by numerous authors, including Caras (1974), Freiberg (1982), Harding & Welch (1980), Harris & Simmons (1978), Hoge (1966, 1981), McCranie (1984), Peters & Orejas­ Miranda (1970, 1986), Phelps (1984), and Russel (1983).
    [Show full text]
  • New Rattlesnakes in the Genera Crotalus Linne
    AustralasianAustralasian JournalJournal ofof HerpetologyHerpetology Hoser, R. T. 2020. New Rattlesnakes in the genera Crotalus Linne, 1758, Uropsophus Wagler, 1830, Cottonus Hoser, 2009, Matteoea Hoser, 2009, Piersonus Hoser, 2009 and Caudisona Laurenti, 1768 (Squamata: Serpentes: Viperidae: Crotalinae). Australasian Journal of Herpetology 48:1-64. ISSN 1836-5698 (Print) ISSN 1836-5779 (Online) ISSUE 48, PUBLISHED 3 AUGUST 2020 2 Australasian Journal of Herpetology Australasian Journal of Herpetology 48:1-64. Published 3 August 2020. ISSN 1836-5698 (Print) ISSN 1836-5779 (Online) New Rattlesnakes in the genera Crotalus Linne, 1758, Uropsophus Wagler, 1830, Cottonus Hoser, 2009, Matteoea Hoser, 2009, Piersonus Hoser, 2009 and Caudisona Laurenti, 1768 (Squamata: Serpentes: Viperidae: Crotalinae). LSIDURN:LSID:ZOOBANK.ORG:PUB:F44E8281-6B2F-45C4-9ED6-84AC28B099B3 RAYMOND T. HOSER LSIDurn:lsid:zoobank.org:author:F9D74EB5-CFB5-49A0-8C7C-9F993B8504AE 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 1 June 2020, Accepted 20 July 2020, Published 3 August 2020. ABSTRACT Ongoing studies of the iconic Rattlesnakes (Crotalinae) identified a number of reproductively isolated populations worthy of taxonomic recognition. Prior to this paper being published, they were as yet unnamed. These studies and taxa identified and formally named herein are following on from earlier papers of Hoser in 2009, 2012, 2016 and 2018, Bryson et al. (2014), Meik et al. (2018) and Carbajal Márquez et al. (2020), which besides naming new genera and subgenera, also named a total of 9 new species and 3 new subspecies. The ten new species and eight new subspecies identified as reproductively isolated and named in accordance with the International Code of Zoological Nomenclature (Ride et al.
    [Show full text]
  • Patterns in Protein Components Present in Rattlesnake Venom: a Meta-Analysis
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 September 2020 doi:10.20944/preprints202009.0012.v1 Article Patterns in Protein Components Present in Rattlesnake Venom: A Meta-Analysis Anant Deshwal1*, Phuc Phan2*, Ragupathy Kannan3, Suresh Kumar Thallapuranam2,# 1 Division of Biology, University of Tennessee, Knoxville 2 Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville 3 Department of Biological Sciences, University of Arkansas, Fort Smith, Arkansas # Correspondence: [email protected] * These authors contributed equally to this work Abstract: The specificity and potency of venom components gives them a unique advantage in development of various pharmaceutical drugs. Though venom is a cocktail of proteins rarely is the synergy and association between various venom components studied. Understanding the relationship between various components is critical in medical research. Using meta-analysis, we found underlying patterns and associations in the appearance of the toxin families. For Crotalus, Dis has the most associations with the following toxins: PDE; BPP; CRL; CRiSP; LAAO; SVMP P-I & LAAO; SVMP P-III and LAAO. In Sistrurus venom CTL and NGF had most associations. These associations can be used to predict presence of proteins in novel venom and to understand synergies between venom components for enhanced bioactivity. Using this approach, the need to revisit classification of proteins as major components or minor components is highlighted. The revised classification of venom components needs to be based on ubiquity, bioactivity, number of associations and synergies. The revised classification will help in increased research on venom components such as NGF which have high medical importance. Keywords: Rattlesnake; Crotalus; Sistrurus; Venom; Toxin; Association Key Contribution: This article explores the patterns of appearance of venom components of two rattlesnake genera: Crotalus and Sistrurus to determine the associations between toxin families.
    [Show full text]
  • Identification of Crotasin, a Crotamine-Related Gene of Crotalus
    Toxicon 43 (2004) 751–759 www.elsevier.com/locate/toxicon Identification of crotasin, a crotamine-related gene of Crotalus durissus terrificus G. Ra´dis-Baptistaa,*, T. Kubob, N. Oguiurac, A.R.B. Prieto da Silvaa, M.A.F. Hayashid, E.B. Oliveirae, T. Yamanea aMolecular Toxinology Laboratory, Butantan Institute, Av. Vital Brazil 1500, Sa˜o Paulo 05503-900, Brazil bMolecular Neurophysiology Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central 6, Tsukuba 305-8566, Japan cLaboratory of Herpetology, Butantan Institute, Av. Vital Brazil 1500, Sa˜o Paulo 05503-900, Brazil dLaboratory of Biochemistry and Biophysics, Av. Vital Brazil 1500, Sa˜o Paulo 05503-900, Brazil eDepartment of Biochemistry, Faculty of Medicine of Ribeira˜o Preto, University of Sa˜o Paulo, Ribeira˜ Preto 14049-900, Brazil Received 25 November 2003; accepted 25 February 2004 Abstract Crotamine is a cationic peptide (4.9 kDa, pI 9.5) of South American rattlesnake, Crotalus durissus terrificus’ venom. Its presence varies according to the subspecies or the geographical locality of a given species. At the genomic level, we observed the presence of 1.8 kb gene, Crt-p1, in crotamine-positive specimens and its absence in crotamine-negative ones. In this work, we described a crotamine-related 2.5 kb gene, crotasin (Cts-p2), isolated from crotamine-negative specimens. Reverse transcription coupled to polymerase chain reaction indicates that Cts-p2 is abundantly expressed in several snake tissues, but scarcely expressed in the venom gland. The genome of crotamine-positive specimen contains both Crt-p1 and Cts-p2 genes.
    [Show full text]
  • Crotalus Cerastes (Hallowell, 1854) (Squamata, Viperidae)
    Herpetology Notes, volume 9: 55-58 (2016) (published online on 17 February 2016) Arboreal behaviours of Crotalus cerastes (Hallowell, 1854) (Squamata, Viperidae) Andrew D. Walde1,*, Andrea Currylow2, Angela M. Walde1 and Joel Strong3 Crotalus cerastes (Hallowell, 1854) is a small study area has no uninterrupted sandy areas outside of horned rattlesnake that ranges throughout most of the ephemeral washes, and no dune-like habitats. It is in deserts of southwestern United States, and south into this scrub-like habitat that we made three observations northern Mexico (Ernst and Ernst, 2003). This species of the previously undocumented arboreal behaviour of is considered to be a psammophilous (sand-dune) C. cerastes. specialist, typically inhabiting loose sand habitats and On 7 April 2005 at 1618h, we observed an adult C. dune blowouts (Ernst and Ernst, 2003). Although C. cerastes coiled in an A. dumosa shrub approximately 25 cerastes is primarily a nocturnal snake, it is known to cm above the ground (Fig. 1 A). The air temperature be active diurnally in the spring, and to bask in early was 21 °C and ground temperature was 27 °C. The morning or late afternoon (Ernst and Ernst, 2003). snake did not attempt to flee at our approach, but did This rattlesnake species exhibits a unique style of reposition slightly in the branches. A second observation locomotion known as sidewinding, from which it occurred on 18 April 2005 at 1036h, when we observed derives its common name, Sidewinder. Sidewinding is another adult C. cerastes extending the anterior third of believed to be an adaptation to efficiently move in loose its body beyond the top of an A.
    [Show full text]
  • Identification of Crotasin, a Crotamine-Related Gene of Crotalus
    Toxicon 43 (2004) 751–759 www.elsevier.com/locate/toxicon Identification of crotasin, a crotamine-related gene of Crotalus durissus terrificus G. Ra´dis-Baptistaa,*, T. Kubob, N. Oguiurac, A.R.B. Prieto da Silvaa, M.A.F. Hayashid, E.B. Oliveirae, T. Yamanea aMolecular Toxinology Laboratory, Butantan Institute, Av. Vital Brazil 1500, Sa˜o Paulo 05503-900, Brazil bMolecular Neurophysiology Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central 6, Tsukuba 305-8566, Japan cLaboratory of Herpetology, Butantan Institute, Av. Vital Brazil 1500, Sa˜o Paulo 05503-900, Brazil dLaboratory of Biochemistry and Biophysics, Av. Vital Brazil 1500, Sa˜o Paulo 05503-900, Brazil eDepartment of Biochemistry, Faculty of Medicine of Ribeira˜o Preto, University of Sa˜o Paulo, Ribeira˜ Preto 14049-900, Brazil Received 25 November 2003; accepted 25 February 2004 Abstract Crotamine is a cationic peptide (4.9 kDa, pI 9.5) of South American rattlesnake, Crotalus durissus terrificus’ venom. Its presence varies according to the subspecies or the geographical locality of a given species. At the genomic level, we observed the presence of 1.8 kb gene, Crt-p1, in crotamine-positive specimens and its absence in crotamine-negative ones. In this work, we described a crotamine-related 2.5 kb gene, crotasin (Cts-p2), isolated from crotamine-negative specimens. Reverse transcription coupled to polymerase chain reaction indicates that Cts-p2 is abundantly expressed in several snake tissues, but scarcely expressed in the venom gland. The genome of crotamine-positive specimen contains both Crt-p1 and Cts-p2 genes.
    [Show full text]
  • Toxin Transcripts in Crotalus Atrox Venom and in Silico Structures of Toxins
    University of Texas Rio Grande Valley ScholarWorks @ UTRGV Biology Faculty Publications and Presentations College of Sciences 6-17-2020 Toxin transcripts in Crotalus atrox venom and in silico structures of toxins Ying Jia The University of Texas Rio Grande Valley Ivan Lopez The University of Texas Rio Grande Valley Paulina Kowalski The University of Texas Rio Grande Valley Follow this and additional works at: https://scholarworks.utrgv.edu/bio_fac Part of the Animal Sciences Commons, Biology Commons, and the Pharmacology, Toxicology and Environmental Health Commons Recommended Citation Jia Y, Lopez I, Kowalski P. Toxin transcripts in Crotalus atrox venom and in silico structures of toxins. J Venom Res. 2020 Jun 17;10:18-22. This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact [email protected], [email protected]. ISSN: 2044-0324 J Venom Res, 2020, Vol 10, 18-22 RESEARCH REPORT Toxin transcripts in Crotalus atrox venom and in silico structures of toxins Ying Jia*, Ivan Lopez and Paulina Kowalski Biology Department, The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA *Correspondence to: Ying Jia, Email: [email protected] Received: 16 May 2020 | Revised: 15 June 2020 | Accepted: 16 June 2020 | Published: 17 June 2020 © Copyright The Author(s). This is an open access article, published under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0).
    [Show full text]
  • 2. Crotalus Basiliscus Oaxacus Gloyd 1. Crotalus Basiliscus Basiliscus
    283.1 REPTILIA: SQUAMATA: SERPENTES: CROTALIDAE CROTALUS BASILISCUS Catalogue of American Amphibians and Reptiles. lisco (see COMMENT).The subspecies basiliscus usually occurs below 1000 m in various dry forest formations, but it has been MCCRANIE,JAMESR. 1981. Crotalus basiliscus. collected above 1900 m in southeastern Sinaloan pine-oak forest. Armstrong and Murphy (1979) reported a specimen collected at 2225 m in a pine-oak forest in Michoacan. The subspecies oa• Crotalus basiliscus (Cope) xacus occurs primarily in pine-oak forest in Oaxaca and has been Mexican west coast rattlesnake reported from between 1225 and 2450 m. Armstrong and Murphy (1979) discuss various vegetation formations in which the species Caudisona basilisca Cope, 1864:166. Type-locality, "Near Coli• has been collected. Hardy and McDiarmid (1969) listed and ma, Mexico," restricted to "Colima, Colima, Mexico" by mapped numerous locality records from Sinaloa. Smith and Taylor (1950). Holotype, Smithsonian 6118, now U.S. Nat. Mus. 53586, a skin, collected by John Xantus, date • FOSSILRECORD. None. unknown (not examined by author). Crotalus basiliscus: Yarrow, 1875:532. • PERTINENTLITERATURE. Smith and Smith (1976) listed the majority of the literature on the species and Klauber (1972) pro• • CONTENT. Two subspecies are recognized: basiliscus and vided data on numerous aspects of the snake's biology. Other oaxacus. references are: Bowler (1977), longevity in captivity; Fitch (1970), summary of literature on reproduction; Malkin (1958), the species • DEFINITION. Crotalus basiliscus is a large rattlesnake rang• in relation to the culture of Cora Indians; Murphy and Armstrong ing from about 300 mm at birth to a little over 2000 mm. Some (1978) and Telford (1964), infections; Smith and Lynch (1967), large adults have a prominent dorsal ridge and rough and tuber• first literature report of [oaxacus] males; Tu (1977), venom; Wiley culate scales, particularly posteriorly (see diagnosis of nominate (1930), dicephalic embryo.
    [Show full text]